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Summary. - -  The notion of helicity for the free electromagnetic field is analysed. 
The generalized helicity is introduced which is a conserved quantity coinciding with 
the difference of the right and left circularly polarized photons composing the 
electromagnetic field. It seems that it completes the list of the zilch-type invariants 
found by Lipkin and Ragusa. The gauge-invariant expression for the energy of the 
free gravitational field is obtained which strongly resembles the well-known bilinear 
expression for the total number of photons composing the electromagnetic field. 

PACS 11.10 - Field theory. 
PACS 12.90 - Miscellaneous theoretical ideas and models. 

1.  - I n t r o d u c t i o n  

The difficulties associated with the probability density for photons were 
recognized by Landau and Peierls as early as 1930 [1]. However, density obtained by 
them was not positive definite and, thus, had no physical meaning. Later,  
Zeldovich[2] obtained the following bilinear representation for a number of 
photons: 

(1.1) N -  1 I E(x)E(y) +_H(x)H(y) 
16xc3 hc Ix yl  2 d3xd3y • 

Here E and H are electromagnetic-field strengths. The relation of photon 
non-localizability to other fundamental problems of modern physics has been 
discussed recently in ref. [3] which, in fact, initiated this investigation. For  the static 

(*) The authors of this paper have agreed to not receive the proofs for correction. 
(**) E-marl: afanasev(o~theor.jinrc.dubna.su. 
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field there is a topological invariant called helicity which is defined 

(1.4) 

satisfy the equation 

(1.5) 

Here A is the usual magnetic vector potential (H =curlA).  The main advantage of S is 
that it is invariant under the gauge transformation A--*A + g r a d f  provided that 
either f H  decreases sufficiently fast at infinity or the normal component of H 
vanishes at some boundary inside which H and A are confined. For the static 
magnetic field S characterizes to what extent magnetic lines are coupled with each 
other. It has meaning even for the single magnetic line. In this case it estimates the 
screwness of this line. The relativistic generalization of helicity was introduced in 
ref. [7]. It is defined as an integral over the zeroth component of the vector 

V ~  ~ 

(1.3) j ,  = ~,V.A~, F'V = -- e" PF~z, 
2 

Fap = aaAp - 3zA~, 

where e aÈro is a completly antisymmetric fourth-rank tensor with s °123= 1. The 
components of the 4-current density 

j ° = A . H ,  j = H . C p - A  × E  

Or, explicitly, 

~i,  j l' = - 2 E  " H . 

It follows from this that j ,  is conserved only if E . H  = O. This means that in a 
relativistic case helicity (1.2) has physical meaning only for the very special 
electromagnetic fields. Another approach adopted in ref. [8, 9] was grounded on the 
observation made by Stratton [10] that for the free electromagnetic field the standard 
representation of field strengths 

(1.6) E = - grad ~b - A / c ,  H = c u r l A ,  

coexists with the following one: 

(1.7) E = - curl V, H = - grad ~g - f , ' /c .  

Obviously, E and H may be united into the 2nd-rank tensor 

po~ = - H~ , P~J = ~ijk" Ek  , E'~,v = ~, Vv - a~ V~, , V~, = ( ~g, - V )  . 

The following 4-current can be constructed from F "~ and V ' 

y~, = r~,~.V~. 

~° = E . V ,  j = E . ~ g - H ×  V .  

(1.2) S = I A . H d V .  
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It is easy to check that 3,)~z = - 2 E . H .  It follows that 4-current J~ = f f - j z  is 
conserved: 2 z J " =  0. The explicit components of J~ are 

( 1 . 8 )  J ° = H . A - E . V ,  J = H . C p + E × A - E . ~ g + H × V .  

Some words should be added concerning the alternative representation of the 
electromagnetic strengths (1.7). In ref. [11] the non-trivial configurations of electric 
dipoles were found which are described adequately by the electric vector potential 
rather than the electric scalar one. Further, a quite different functional form of the 
Fourier transforms of A and V (see eq. (2.2)) suggests that they describe different 
degrees of freedom of the electromagnetic field. 

2. - Relativistic helicity and its physical meaning 

The conservation of J~ suggests that the integral 

(2.1) S = I ( H ' A  - E .  V)  d3x 

does not depend on time. It is the relativistic generalization of helicity for an 
arbitrary free electromagnetic field. For this field only transversal components of E 
and H have physical meaning (however, sometimes (see, e.g., [12, 13]) the physical 
sense is ascribed to the longitudinal component of electromagnetic field). The 
longitudinal component is most easily eliminated if the Coulomb gauge is used 

= (/) = 0, divA = div V = 0. 

To clarify the physical meaning of S, we perform the Fourier expansion of field 
strengths and potentials according to the following rule: 

G(x) = f G(k)  exp[ik .x] d3k. 

The requirement of E,  H, A, V to be real leads to the following representation of the 
Fourier components [14]: 

E(k) = V ~  ( f (k)  + f* ( - k ) ) ,  H ( k )  - 2---~ 2 z V ~  k x ( f (k  ) - f* (-k)), 

(2.2) - ic - c2 i f*  
A (k )  - 2z----~w ( f (k )  - f* ( - k ) ) ,  V(k)  - --2zw3/2 k x ( f (k)  + ( - k ) ) .  

Here w = c I k l .  The function f ( k )  being the photon wave function in the momentum 
space satisfies the equations 

i3 t f  = w f  , k . f  = 0 

(in fact, f - -  exp[ - ioJt], fo where fi  does not depend on time). Using (2.2) we evaluate 
the energy of the electromagnetic field: 

I E 2 + H 2  f = d~x = w f * ( k ) f ( k ) d a k .  
8~ 
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It  follows from this that ~(k)  = f*  ( k ) f ( k ) / h  is the photons density in the momentum 
space. The total number of photons is given by 

(2.3) N = f ¢)(k) d3k. 

The same expression is obtained if we substitute the Fourier expansions of E and H 
into (1.1) and perform integration over the spatial variables. To clarify the physical 
meaning of S we change E,  H, A, V in (2.1) by their Fourier expansions and 
get 

(2.4) S --- - -  8 1 r c 2 i  f k" (f* (k)  × f ( k ) )  dsk 
to 

Now we represent f in the form [14] 

(2.5) f = e R f R  + e L f L  . 

Here e R and e L are the unit vectors for the right and left circularly polarized photons 
(e~'eR = e~ "eL = 1, e~ × eR = ieK, e~ × eL = -- ieg, eg = k / k ) .  

Substitution of (2.5) into (2.4) gives 

(2.6) S = 8~c I (Ifn 12 - IfL 12) dak" 

It is easy to check that the photon density in the momentum space is given by ¢)(k) = 
= ( i f  R ]e + if L ]2)/h. This means that S / S z c h  coincides with the difference of the right 
and left circularly polarized photons. Hence, (IfR 12- IfL 12)/h and ( H A -  EV)/8rcch 
are the densities corresponding to this difference in the momentum and coordinate 
space, respectively. Now we express f ( k )  in eq. (2.3) through its Fourier transform 

( f(k)  = 1/(2z) 31 f (x)  e x p [ - / k . x ]  dax). Then, N = I ¢)(x) dSx, where Q(x) = If(x) l 2 lb. 

Since •(x) is positive definite it seems at first that Q(x) may be viewed as a candidate 
for the photon density. However, the observables of the electromagnetic field are the 
field strengths E and H. The vector function f ( x )  is a highly non-local function of 
them. To see this, we express f ( k )  through the Fourier components of E and H 

2yt 
f ( k  ) = - - ~  (E(k  ) - eK X H ( k  )) . 

V~ 

It  follows from this that the Fourier transform of f (k ) ,  that  is f ( x )  depends on the 
values of E and H in the whole space, not at the point x only. This is generally 
considered as a serious drawback [14]. 

For the free electromagnetic field Lipkin [15] has obtained the conserved 3rd-rank 
tensor (the so-called zilch) composed of field strengths and its derivatives. It  was 
traceless and symmetric with respect to the first two indices. Later, Ragusa has 
discovered [16] the antisymmetric counterpart of the zflch tensor. He explicitly 
showed [17] that its components in the momentum space are reduced to the integral 
over the difference of right and left circularly polarized photons multiplied by the 
first or second power of w. Because of this the physical meaning of the zflch-type 
tensors is rather obscure. On the other hand, the helicity S given by (2.1) reduces to 
the difference of right and left photons. It measures the screwness of the 
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electromagnetic field and may be considered as a missing link in the list of the 
Lipkin-Ragusa invariants. Obviously, the helicity S equals zero for the plane linearly 
polarized electromagnetic wave. The following important theorem concerning 
massless particles was formulated in ref. [18]. 

Theorem 1. A theory that allows the construction of a Lorentz-covariant 
conserved four-current Jr cannot contain massless particles of spin J > 1/2 with 
non-vanishing values of the conserved charge fJ°  d3x. 

In our case, for the particles of the spin 1 (photons) there are the conserved 
4-vector given by (1.8) and the conserved charge given by (2.1). At first glance, this 
disagrees with Theorem 1. However, the proof of this theorem given in [18] contains 
the implicit assumption that the wave function of a massless particle with definite 
values of 4-momentum and helicity is an eigenfunction of rotation (around 
3-momentum) in an arbitrary Lorentz reference frame (written in italics helicity 
means the projection of the spin onto the direction of motion in contradistinction to 
helicity defined by (2.1)). This in turn means that the wave function of a particle is 
uniquely (up to a non-essential phase factor) defined by its 4-momentum and helicity 
and, thus, is gauge invariant. In quantum electrodynamics there is no complete 
agreement as to what one means by the wave function of the photon. Some authors 
(see, e.g., [19]) mean by it the 4-potential A,,  while others (see, e.g., [20]) prefer to 
deal with stress tensor F~  . Even in different editions of the same book [14,21] 
various definitions are sometimes adopted. The gauge-invariant definition of photon 
wave function adopted in ref. [18] corresponds to the the second definition, i.e. to Fz.. 
In this basis (i.e. in F~) all the matrix elements of the 4-vector (1.8) are equal to zero. 
This is not the case for the basis associated with the 4-potential A~. Theorem 1 being 
applied to photons may be formulated in a different way [14]: it is impossible to 
construct the conserved 4-vector by using only field strengths F, , .  

We briefly summarize the content of this section: the quantity (2.1) is found which 
generalizes helicity notion for the arbitrary free electromagnetic field. It coincides 
with the difference of the right and left photons composing this field. The density 
corresponding to this generalized helicity taken at some space point x is expressed 
through the values of electromagnetic strengths and potentials taken at the same 
point. 

3. - Gauge- invar iant  representat ion  for the  energy o f  weak  gravi tat ional  f ield 

In the above-mentioned ref. [18] another theorem was proved as well. 

Theorem 2. A theory that allows the construction of a conserved Lorentz- 
covariant energy-momentum 0 zv for which fO°vdSx is the energy-momentum 
four-vector cannot contain massless particles of spin j > 1. 

This means, in particular, that a gauge-invariant density of the field energy does 
not exist for the Lorentz-covariant field of the spin 2. It  was shown in ref. [22] that 
Einsteinian gravitational equations in the weak-field limit and in the absence of 
masses coincide with the equations describing the massless spin-2 field. Then, the 
above Theorem reflects the well-known difficulty with the energy density problem in 
the general relativity [23]. In this section, we find the gauge-invariant expression for 
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the energy of the weak gravitational field consisting of gravitational waves. 
However, this expression reduces to a double integral similar to (1.1). Following 
ref. [22], we introduce the gauge-invariant (in the sense defined below, see eq. (3.7)) 
quantities 

1 i i 
(3.1) E i j  = R4j4i = ~ ~jkl~imnRklmn, H i j  = -~ eimnRajmn = ~ EimnRmn4j. 

Here R~q~ is the Riemann tensor. According to [22], the symmetric traceless tensors 
Eij and Hij in the weak-field limit satisfy equations strongly resembling the 
Maxwellian ones 

(3.2) 

{ eiklakE~j + 1 ~tHi j 0, aiHij 0, 
C 

E ikl ~k Hlj  - 1 ~t Ely = O, ~i E i j  = O. 
c 

For the weak gravitational field (g~v = 5z~ + hzv, Ih~v I<< 1) the standard equations 
connecting the curvature tensor with Christoffel symbols have the form [24] 

R~,oo = clQ F ~ o -  cgo Fl, vQ. 

Here F~,vo = (1/2)(~vh,o+ ~oh,v-azhvo).  Having taken into account (3.1) these 
equations can be presented in the form similar to the electrodynamic ones (1.6) and 
(1.7): 

1 
(3.3) H i j  = eimn ~mAnj  , Eij ---- -- - -  ~ t A i j  - ~iAoj , 

C 

1 
(3.4) Eij = - ~ iron ~m Vnj , Hij - c3t Vij - eli Voj . 

C 

Here 

1 i 
(3.5) A i j  = iF4~i , Aoj = f4j4, Vij  = -- -~ ~jmn rmni  , Yoj = -~ ~imn Fmn4 " 

It  turns out that  for the weak gravitational field E, H and A, V are the gravitational 
analogues of the electromagnetic strengths and potentials. 

Using a gauge Aoj = 0, Voj = 0 we find the following expressions for the Fourier 
transforms of Eij (x), Hij (x), Aij (x), Vij (x) strongly resembling the electromagnetic 
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ones (2.2): 

(3.6) 

Ei j ( k )  - ~ ( f i j (k )  + f i ~ ( - k ) )  
2..g2 C2 V ~ 

_ _  :¢ 
Hi j (k )  - :r2cV~ Eimnk,~(fnj(k) - f ~ ( - k ) )  , 

* ( - k ) )  A~j (k ) = - i ~ (f~j (k ) - f~j 

W 
V~j(k ) = - i z~ V~_  ~ ei,~,~k,~ ( fnj(k ) + f ~  ( -  k )) . 

Here G is a Newtonian gravitational constant. Symmetric traceless tensors ~j(k) 
satisfy the equations 

iSt f i j  = o)fij, kifi j  = O. 

The Hilbert condition 8~hz. - (1/2)2~hQQ = 0 usually imposed on h~, [24] leads to the 
following equation on h~, : 

Dhz, = O. 

The gauge transformation 

(3.7) h~.~h . .  + 8.v~ + 8~v~,, ~v,  = o,  

does not change the tensor R,,eo, conserves the Hilbert condition and does not change 
the total energy and momentum of the weak gravitational field (as it adds com- 
plete divergence to the energy momentum pseudotensor). The gauge transforma- 
tion (3.7) may be used to obtain h,, satisfying the following transversal gauge 
conditions [25]: 

h44 = O, h4i = h~4 = O, hii = O, 3k hik = O. 

By taking into account (3.6) one gets 

1 1 
A i i -  2c 8t h~j,. Aoi = 0, V~5 = ~-s~.~ 3.~ hn, j, Voj = 0. 

Using the standard definition of the energy momentum pseudotensor [24], one easily 
finds the following expression for the energy of the weak gravitational field: 

c4 f (3.8) ~ - 16zG (Aij(x)2 + Vi j (x )2 )d3x"  
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On the other hand, this energy may be presented as a double integral over the bilocal 
gauge-invariant density 

(3.9) °P-  64z2GCa I Eij(x)EiJ(Y)lx--yl + Hij(x)HiJ(Y) d3xd3y" 

Expressing in (3.8) and (3.9) Aij , Vij , Eij and Hij through their Fourier transforms and 
performing the integration over the spatial variables we arrive at 

(3.10) 4 ~ = ~ IJ~(k)l 2wd3k" 

A posteriori the distinction of Ix - Y l degrees in (1.1) and (3.9) may be realized by the 
dimensional considerations. In (3.9) the fields Eij and Hij have dimensions [L] -2 , the 
integral has dimension [L] and with account of the factor standing in front of the 
integral one obtains the dimension of energy. In (1.1) the electromagnetic strengths E 
and H have dimensions [e]/[L] 2 (e is a charge), the integral has dimension [e] 2 and the 
whole expression (1.1) is dimensionless, as it should be. The following fact remains 
unclear to us. In the case of a weak gravitational field there are two equivalent 
expressions for energy corresponding to the local (3.8) and bilocal (3.9) densities. In 
the electromagnetic case, there is only bilocal density for the sum (1.1) of right and 
left photons and local density for their difference (2.1). 

4.  - C o n c l u s i o n  

We have proved that for the free electromagnetic field the conserved gauge-non- 
invariant 4-pseudovector can be constructed. The integral over its zeroth component 
is a gauge-invariant, independent-of-time quantity that coincides with the difference 
of the right and left photons composing the field. This conserved integral is a 
relativistic generalization of the helicity, well-known topological invariant widely 
used for the description of the static magnetic field. The existence of such a quantity 
does not contradict the well-known theorem prohibiting the existence of the 
conserved gauge-invariant 4-current composed only of the electromagnetic-field 
strengths (likewise there is no gauge-invariant density of the gravitational-field 
density). For the weak gravitational field reducing to the gravitational waves it is 
possible to introduce the quantities strongly resembling the electromagnetic 
potentials and strengths. The energy density of the weak gravitational field may be 
expressed through quadratic combinations of these potentials. On the other hand, the 
energy of the gravitational field may be represented as a double integral over the 
bilinear gauge-invariant density. The existence of these two representations does not 
contradict the theorem mentioned above. At the end, we note the similarity of the 
electrodynamic equations (1.6), (1.7), (2.2) to the gravitational ones (3.2), (3.4), (3.6). 
Probably, this will be a balm for those who believe in the vector gravitational 
theory (its nice exposition may be found in the book [26]). Yet, this similarity is 
limited by the weak gravitational fields. 
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