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The paper presents the results of the study of the models of convective instability near its threshold of thin layers of liquid and gas
bounded by poorly conducting walls. These models single out one spatial scale of interaction, leaving the possibility for the evolution
of the system to choose the symmetry character. This is due to the fact that the conditions for the realization of the modes of
convective instability near the threshold are chosen. All spatial perturbations of the same spatial scale, but of different orientations,
interact with each other. It turned out that the presence of minima of the interaction potential of the Proctor-Sivashinsky equation
modes, the absolute value of the wave number vectors of which is unchanged, determines the choice of symmetry and, accordingly,
the characteristics of the spatial structure. In the case of a more realistic model of convection described by the Proctor-Sivashinsky
equation, it was possible to observe both the first-order phase transition and the second-order phase transition and detect the form of
the state function, which is responsible for the topology of the resulting convective structures: metastable rolls and stable square
cells. In this paper, it is shown that the nature of the structural-phase transition in a liquid when taking into account the dependence of
viscosity on temperature in the Proctor-Sivashinsky model is similar to the case of the absence of such a dependence. The transition
time turns out to be the same, despite the fact that a different structure is formed - hexagonal convective cells. As in the Swift-
Hohenberg model, a hard mode for the formation of hexagonal cells in a gas medium is possible only for a sufficiently noticeable
dependence of its viscosity on temperature. The phase transition times are inversely proportional to the difference in the values of
this function for two consecutive states. A similar description of phase transitions did not use phenomenological approaches and
various speculative considerations, which allows for a closer look at the nature of transients.

KEYWORDS: first-order phase transition, the second-order phase transition, state function, convective structures, Swift-Hohenberg,
Proctor-Sivashinsky models.

Below, we discuss the possibility of phase transitions in a thin layer of liquid or gas, between walls with poorly
conducting heat. The layer is limited only from below and above, in other directions there are no borders.

We first consider the Proctor-Sivashinsky equation with allowance for the temperature dependence of viscosity
[1, 2] in the case of the proximity of the Rayleigh number to the critical value of the occurrence of convection Rq , that
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where e<<1, V¢ =i-—=+j-== is a two-dimensional operator, and, 7 , j are single unit orthogonal to each other unit
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vectors in the (£',2) plane of the media separation, and we will assume k, =1, since we restrict ourselves to the case of

a weak excess over the threshold of convective instability. Indeed, for any deviation of the wavenumber from unity, the
perturbation amplitude rapidly decreases. Here ¢ is the relative temperature at the upper boundary of the layer. An

increase in this value indicates an increase in the thermal conductivity of the layer as a whole.
Table 1.

Transition from used variables to real physical quantities

Physical Value Representation
Temperature  T(x/e, ) T, +(T, - T )(~y+F(xJe,y)
Horizontal speed V¥, 60+/¢ - F -2y’ =3y"+y)
Vertical speed -y, -30e-(F. ),z Ot =21+ %)

where f:x\/g, N=y, F=0¢-17/660 -

Equation (1) contains vector quadratic nonlinearity (that is, dependent on the orientation of perturbations and
derived quantities), and the cubic nonlinearity, which takes into account the influence of the temperature field at the
upper boundary of the layer, responsible for the change in the topology of spatial structures of convection.

To describe such convection under the same conditions, the simplified Swift—-Hohenberg equation is often used [3]
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where the vector character of the nonlinear terms is replaced by the scalar one. Heree=(1—a), where such
dependences are chosen g = 4-4/231/68 , and the dimensionless heat transfer coefficient between the fluid and the
boundary, here equals the number of Biot and is equal to h=£”- 3.

The growth of disturbance amplitudes in case of instability ¢ o< exp{Ilme-T}occurs with an increment
Imw=e—(k*—1)*. For ¥ > 0 gas flow (this corresponds to gas convection) it goes back to the center of the cell,
with ¢ < 0 (which corresponds to the movement of the liquid) - vice versa.

The Swift-Hohenberg equation, as noted in the review [4], describes, after the formation of an amorphous state of
disorderly convection, a system of distinct hexahedral cells as a result of a soft (for liquid) and hard (for gas) instability
regime, observed in particular in [5]. Moreover, the nature of the instability demonstrates all the features of the first-
order phase transition — the formation of a clear spatial structure of convection from an amorphous state.

The purpose of the work is the analysis of the soft and hard regimes of structural-phase transitions in the Proctor-
Sivashinsky model in the conditions of temperature dependence of viscosity.

DESCRIPTION OF PHASE TRANSITIONS IN THE MODEL OF THE PROCTOR-SIVASHINSKY IN
THE ABSENCE OF TEMPERATURE DEPENDENCE OF VISCOSITY

In contrast to the traditionally used Swift-Hohenberg equations, we use the 3D Proctor-Sivashinsky equation that
meets the real conditions. This task is obviously three-dimensional in space and non-stationary, which at first glance
creates significant problems. However, the Proctor-Sivashinsky model makes it possible to reduce the dimension of the
description and focus on topological aspects, that is, appearance, size and development time of spatial structures.

In the case of a more realistic model of convection, described by the Proctor-Sivashinsky equation (1), both the
first-order phase transition and the second-order phase transition can be observed, and the state function, which is
responsible for the topology of the resulting convective structure, was detected [6].

The equation that determines the dynamics of the temperature field of this process in the horizontal plane (x, y) is:

%’:gzq)—(1—V2)2q>+;—v(v<b|q>|2)+ng, 3)

where ® =0/+/3, £€* = e, f— is a random function describing external noise, @ — the temperature deviation from the

equilibrium one (varying according to a linear law), and the magnitudeg determining the excess of the convection
development threshold, we suppose, as before, to be quite small (0<¢e<1).We present the solution in the form of

®=¢Y. 4, exp(ik,7) with | 121. =1.
J

For replacements T - ¢ = ¢, for slow amplitudes in the absence of noise, we obtain a mathematical expression for
the Proctor-Sivashinsky model for describing convection.
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where the interaction coefficients are defined by the relations ¥, =1 and y —(» /3)(1 +2( i ];)2) ) /3)(1+ 2c0878,)> ¥ "
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the angle between the vectors Ei and lgj with the initial values of the amplitudes of the spectrum A; 0= 4,0, =27/3-

The analysis of the Proctor-Sivashinsky model in the absence of the dependence of viscosity on temperature
(7¥=0) was studied in detail by authors of this work earlier [7]. It was shown that after the first-order phase transition, a
quasistable system of convective rolls (the form of which is shown in Fig. 1a) is formed from amorphous random
convection of a state. Later, as a result of rolls modulation within the framework of a second-order phase transition,
form a stable field of square convective cells (the form of which is shown in Fig. 1b).

The first-order structural-phase transition, noted earlier in [4], corresponds to the transition from an amorphous
state of convection to a state that has the form of a pronounced spatial structure. It should be emphasized that such a
spatial clarity of the structure is observed only in conditions of proximity to the instability threshold. If, as a result of
instability, the topology of the structure changes, we can speak of a second-order structural-phase transition.

In this case, the phase transition times are inversely proportional to the difference in the values of the state

function ZA,-Z .
(+) N
{[zAj {z) } oy ®)
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It was the fulfillment of the last relation that allowed us to consider the value as a state function, since each spatial
structure of convection uniquely corresponded to its value of this function, besides, the phase transition time was also
related to the changes of the magnitudes of this function (these changes can be seen in Fig. 2). The fragments of the
spatial structure of the temperature field distribution on the surface of layer are presented in Fig. 3.

Fig. 1. Convective structures: rolls (a) and square cells (b)
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Fig. 2. Behavior of the quantity Z A (upper curve) and its derivative Bz A / dT oftime T
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Fig. 3. The appearance of fragments of the spatial structure of the temperature field distribution on the surface of layer
a) — after the structural phase transition of the first kind with the formation of convective rolls, b) — with the transverse modulation of
the rolls, ¢) — with the formation of a metastable spatial structure, after the destruction of the system of rolls, d) — with the formation

of a stable convective structure - square convective cells.
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PHASE TRANSITIONS IN THE PROJECT-SIVASHINSKY MODEL UNDER THE CONDITIONS
OF VISCOSITY DEPENDENCE ON TEMPERATURE
Soft mode of excitation of a six-sided convective structure. Taking into account the temperature dependence of
viscosity demonstrates the ability to implement soft (when y<0) and hard (that is, setting the initial perturbation

already in the form of the desired structure 20% higher than the average values of the amorphous state upony>0)

excitation of six-sided convective cells, the state function of which is almost equal to the state function of the rolls
system. The time of the first-order structural-phase transition from the amorphous state is almost the same. When
negative ¥ < 0 is observed, as in the Swift-Hohenberg model, the mode of soft excitation of six-sided convective cells

(Fig. 4).
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Fig.4. Behavior of the value ZAZ (upper curve) and its derivative of time 7, aZ A? / 97 in soft mode excitement at ¥=-0.25

The time interval of the first-order phase transition is equal 7,, but despite the fact that the values of the state

function are equal to unity, which in the former case of the absence of the temperature viscosity dependence (¥=0),
corresponded to a system of convective rolls. But in that case the system of six-sided cells is formed, as can be seen in
Fig. 5, which depicts the dynamics of the instability spectrum.

T

Fig. 5. Dynamics of the instability spectrum with soft imbalance mode (¥=-0.25)
Hard mode convective hexagon structure. In the case of ¥ > 0 mode only hard excitation possible, that is, the

initial conditions must be specified in the form of hexagonal convective perturbations, clearly expressed against the
background of fluctuations. Under these conditions, all characteristics of the process are similar to the case of mild
excitation at the same values| y|. Otherwise, the dynamics of the process even in the case of non-zero y>0is similar to

the case of the absence of dependence of viscosity on temperature, discussed above.
To implement a hard mode against the background of an amorphous state, a structure was formed whose
amplitude was 20% higher than the average value of the amplitudes of the modes (Fig. 6).



38

EEJP. 4 (2019) Ivan V. Gushchin, Volodymyr M. Kuklin et al.

0 8 16 24 32 40 48 56 64 72 8 88 J

Fig. 6. The initial state of the spectrum of modes on the background of the amorphous state of the system before the phase transition
in a gaseous medium (7> 0)
The behavior of the state function z A* and the derivative of time az A /9T is presented in Fig. 7 and Fig. 8 respectively.
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Fig. 7. Behavior of the value of time 7 in hard excitation mode y=0.2
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Fig. 8. Behavior of the value of time T in hard excitation mode = 0.2
The dynamics of spectrum formation are shown in Fig. 9. The change 1 < j < 100 corresponds to a change in

angle 0 < ¥} < 277 . The appearance in the spectrum of three modes shifted by 277 / 3 corresponds to the formation of
hexagonal cells.

Fig. 9. Instability spectrum dynamics with hard imbalance mode (7 = 0.2)
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CONCLUSIONS

The peculiarity of the models describing convective instability of thin layers of liquid and gas, bounded by poorly
conducting walls of Swift-Hohenberg and Proctor-Sivashinsky, is that they single out one spatial scale of interaction,
leaving the possibility for the evolution of the system to choose the symmetry character. This is due to the fact that the
conditions for the realization of the modes of convective instability near the threshold of convective instability are
chosen. All spatial perturbations of the same spatial scale, but of different orientations, interact with each other. It
turned out that the presence of minima of the interaction potential of the Proctor-Sivashinsky equation modes, the
absolute value of the wave number vectors of which is unchanged, determines the choice of symmetry and, accordingly,
the characteristics of the spatial structure. It was in the case of a more realistic model of convection, described by the
Proctor-Sivashinsky equation (1), that we were able to observe both the first-order phase transition and the second-order
phase transition and detect the form of the state function that is responsible for the topology of the resulting convective
structures.

It should be noted that such a description of phase transitions did not use phenomenological approaches and
various speculative considerations, which makes it possible to more closely examine the nature of the transient
processes, which arouses the greatest interest of researchers. It is necessary to pay attention that presented on Fig. 3c. a
metastable state in the vicinity of a second-order phase transition needs more careful analysis and will help clarify not
only the particular nature of this transition, but it is possible to see some common features of such transitions.
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®A30BBIE NEPEXO/IbI B KOHBEKIIUHU
H.B. I'ymun, B.M. Kyxiinn, E.B. IlokioHckuii
Xapvroeckuii Hayuonanvrviil yHueepcumem umenu B. H. Kapasuna, Xapvxos, Ykpauna
ni. Ce0600wi 4, 2. Xapvkos, Ykpauna, 61022

B paGote mpencraBieHsl pe3yibTaThl U3yUEHHs MOJENEH ONUCaHUs KOHBEKTUBHOW HEYyCTOMYMBOCTH BOJIM3M €€ MOpOra TOHKHX
CJIOEB JKUJIKOCTH U Ta3a, OrPaHUYEHHBIX IUIOXO IPOBOJSIIMMH CTEHKAMH. DTH MOJEIH BBIICIAIOT OAWH IPOCTPAHCTBEHHBII
Macmrab B3anMOJCHCTBHS, OCTABIISAS U ABOJIIONUH CHCTEMBI BO3MOXKHOCTh BEIOPATh XapaKTep CUMMETPHU. OTO CBS3aHO C TEM,
9YTO BBIOPAaHBI YCIIOBHS PEAM3al[MH PEKHIMOB KOHBEKTHBHOW HEYCTOHUYMBOCTH BOIM3M ee Iopora. Bce mpocTpaHCTBEHHBIE
BO3MYIIECHHS OJHOTO MPOCTPAHCTBEHHOTO MaciiTaba, HO pa3sHOH OpHEHTAIMH B3aMMOMACHCTBYIOT MeXIy coOoil. Oka3anoch, 4To
HaJIMYie MUHIMYMOB MOTEHIMAaNa B3aUMOJCHCTBUS MOJ ypaBHeHHH IIpokTopa-CHBamMHCKOrO, aOCOMIOTHAS BEJIMYHHA BEKTOPOB
BOJIHOBBIX YHCEN KOTOPBIX HEM3MEHHA, M OMNpEJeiseT BHIOOP CUMMETPHUH M COOTBETCTBEHHO XapaKTEPHCTHKU MPOCTPAHCTBEHHOI
CTPYKTYpBL. B ciryuae Gonee peanncTHuHOM MOJETHM KOHBEKIMH, ONMMCHIBaeMOH ypaBHeHHeM IIpokTopa-CHBAIIMHCKOTO, YAAJIOCh
Ha0II0AaTh MPOIECCHl KaK CTPYKTYPHO-()a30BOTO mepexoja MepBOro poia, Tak M Imporecc (azoBoro mepexona BTOPOTO poja U
OOHapykKUTh BHUJ (QYHKIMHM COCTOSIHHUSA, KOTOpas OTBEYAeT 3a TOMOJOTHIO OOpa30BABIIMXCSI KOHBEKTHBHBIX CTPYKTYp:
MeTacTaOMIbHBIX BaJOB M CTAOMIBHBIX KBAJIPaTHBIX sdeeK. B maHHOHM paboTe MOKa3aHO, 4TO XapakTep CTPYKTypHO-(a30BOTO
Nepexosa TepBOro PoAa B JKUJIKOCTU TIPH ydeTe 3aBHCHMOCTH BS3KOCTH OT TeMieparypsl B Mozenu IIpoxropa-CHBammHCKOTO
nofi00eH ciTyyaro OTCYTCTBHS TaKOH 3aBUCHMOCTH. Bpems mepexosia OKa3bIBacTCsl TEM K€, HECMOTPSI Ha TO, YTO (hOpMUpYETCs HHAs
CTPYKTypa — ILIECTHIPaHHbIC KOHBEKTHUBHBIC sdeiiku. Tak ke kak B moneian Caudra-XodHOepra, BO3MOXEH KECTKUH PeXUM
(dopMHpOBaHUS IIECTUTPAHHBIX SUEEK B Ta30BOM cpeAe JMIIb JUI JOCTaTOYHO 3aMETHOW 3aBUCHMOCTU €€ BSI3KOCTH OT
Temneparypsl. BpemeHa (a3oBbIX IepexoJoB OOpPaTHO NPONOPLMOHAIBHBI PA3HOCTH 3HAYCHMH 3TOH (GYHKLUMH a1 IBYX
HocJIe0BaTeNIbHbIX cocTostHuM. [Tono0HOe omucanue (a3oBbIX NEPEXOJOB HE HCIOJIB30BAIO (DEHOMEHOJIOTMYECKHE MOAXOIbI U
pa3IUuHbIe CIIEKYIATUBHBIE COOOPAXEHHS, YTO MO3BOMIAET O0Jiee MPUCTANBHO PACCMOTPETh XapaKTep MepPeX0JHbBIX MPOLECCOB.
KJIOYEBBIE CJIOBA: ¢a3oBble nepexosl IepBOro poza, (asoBble MEpexolbl BTOPOTO pOja, KOHBEKTUBHBIE CTPYKTYDHI,
GbyHkius cocrosHus, moaenu Ceudra -Xosubdepra u [Ipokropa-CuparnHcKoro.

®A30BI ITEPEXO/IA B KOHBEKIIIT
L.B. I'ymun, B.M. KykJin, E.B. [lokaonckmii
Xapxiecokuti nayionanvhutl ynisepcumem imeni B. H. Kapazina, Xapxis, Yxpaina

nn. Ceoboou 4, m Xapxis, Yrpaina, 61022
VY po6oTi npescTaBieHo pe3yabTaTH BUBYESHHS MOJEINEl ONMCcy KOHBEKTHBHOI HECTIHKOCTI 1MOOH3y 11 opora TOHKUX IIapiB piIuHA
i rasy, OOMEKEHHX CTIHKaMH, M0 clabko MpoBOJATH Temio. L{i Mozjeni BHIUIAIOTH OJWH MPOCTOPOBHU MacmiTad B3aEMOi,
3aJIMIIA0YH TSI CBOJIFOLIT CHCTEMH MOJKIUBICTh BHOpaTH XxapakTtep cuMerpii. Lle mos's3aHo 3 THM, 0 0OpaHi YMOBHU peaizamii
PSKUMIB KOHBEKTUBHOI HECTiHKOCTI mobum3y i mopory. Bci mpocTopoBi 30ypeHHS OIHOTO MPOCTOPOBOTO Maciitaly, ajne pi3HOi
Opi€HTAIli B3a€EMOIIIOTh MK c000r0. BusBHIOCS, IO HasBHICTP MIHIMyMIB MOTEHIialy B3a€MOii MOX piBHSHB I[IpokTopa-
CiBanriHCKOro, a0CONIOTHA BEIMYMHA BEKTOPIB XBHIJIBOBHX YHCEN SKMX HE3MiHHA, 1 BU3HA4ae BUOIp CUMETpii Ta XapaKTCPUCTUK
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MPOCTOPOBOI CTPYKTYpH. Y BHOAIKy OUIBII peasicTHYHOI MOJENi KOHBEKMii, omucyBaHOi piBHsSHHSAM IIpokropa-CiBamriHckoro,
BJAJIOCS CIIOCTEPIraTé MPOLECH SIK CTPYKTPHO-(a30BOro Mepexoay MEepLIoro poly, Tak i Mpolec cTpyKTypHO-(a3oBoro mepexomy
JOpyroro poxay i BUABUTH BHI (PYHKUIl CTaHy, sKa BiANOBifa€ 3a TOMOJOIiI0 KOHBEKTHBHUX CTPYKTYp: MeTacTabLIbHHX BaliB i
CTaOUIPHUX KBAJPaTHUX CTPYKTYp. Y HaHiii poOOTi MOKa3aHO, L0 XapaKTep CTPYKTYypHO-(a30BOro mepexoiy MEpuioro poay B
piiuMHK TpU ypaxyBaHHI 3aJle)KHOCTI B'S3KOCTi Bix TemmepaTypu B Mopaeini IIpokropa-CiBamriHcKoro mofiOHuii BHOAAKy Npu
BiZICYyTHOCTI Takoi 3aJeXHOCTi. Yac mepexoay BUSIBISIETHCS THM JKe, HE NUBJISAYUCH HA T, WO (OPMYETHCS iHIIA CTPYKTypa -
LISCTUTPAaHHI KOHBEKTHBHI cTpykTypu. Tak camo sik B mozeni Caidra-XoeHOepra, MOXIIUBHH JKOPCTKHH PexHUM (OPMYBaHHSI
IIECTUTPAaHHUX CTPYKTYp B Ta30BOMY CEPEIOBHIII JIMIIE I JOCUTh IIOMITHOIO 3aJeXHOCTI 1 B'A3kOCTi Bif Temmeparypu. Yacu
(ha3oBUX TEPEex0IiB 0OCPHEHO MPOMOPIINHHI Pi3HUIN 3HAUCHD i€l QYHKIT VIS TBOX MOCHIIOBHUX cTaHiB. [loaiOHuii onmc $hazoBux
TIepexo/iB He BUKOPHCTaB (DeHOMEHOJOTIUHI MiAXOAH 1 Pi3HI CHEKYJITHBHI MipKyBaHHS, IO AO3BOJISIE OLIBII MHIBHO PO3TIISTHYTH
XapakTep MepexiTHUX MPOIIECiB.

KJIFOYOBI CJIOBA: da30Bi nepexou nepuoro poay, Gba3oBi mepexoau APyroro poay, KOHBEKTUBHI CTPYKTYpH, QYHKIIS CTaHY,
mozeri Ceidra -Xoenbepra i [Ipokropa-CiBammiHckoro.





