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Abstract

For an entire ridge function of finite order ρ which is non-vanishing
in the angle {z : | arg z − π/2| < α} ∪ {z : | arg z + π/2| < α}, 0 <
α ≤ π/2, the sharp estimate of ρ in terms of α is obtained. Analogous
result is obtained for ridge functions analytic in the upper half-plane.
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An entire function f , f(0) = 1, is called a ridge function if it satisfies the
inequality

|f(z)| ≤ f(iImz). (1)

If f is analytic in the upper half-plane C+ and satisfies (1) there, then we
call it an analytic in C+ ridge function. In particular, all entire or analytic in
C+ characteristic functions of probability distributions are ridge functions.

The well-known Marcinkiewicz theorem [1] states that, if entire ridge
function of finite order ρ has a few zeros in some sense, then ρ ≤ 2. This
theorem has been strenghtened and generalized in many directions (see the
bibliography in [2]). In particular, I. P. Kamynin [3] proved that, if an
analytic in C+ ridge function of a finite order ρ has no zeros at all, then
ρ ≤ 3. The examples of the entire characteristic function of the Gauss
distribution f(z) = exp(−γz2 + iβz), (γ > 0, β ∈ R), and the analytic
in C+ characteristic function f(z) = (1 − iz)−1 exp(iz3 − 3z2) (constructed
by I. P. Kamynin) show that both estimates are the best possible. In [4]
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the question about estimate of the order of an entire or analytic in C+

ridge function non-vanishing in some angle is considered. The following two
theorems are proved.

Theorem A ([4]). If an analytic in C+ ridge function of finite order ρ
does not vanish in the angle {z : | arg z − π/2| < α}, 0 < α ≤ π/2, then
ρ < max(4;π/α).

Theorem B ([4]). If an entire ridge function of finite order ρ does not
vanish in the angle {z : | arg z − π/2| < α} ∪ {z : | arg z + π/2| < α},
0 < α ≤ π/2, then

ρ





≤ 2, π/4 ≤ α ≤ π/2;

< π/α, 0 < α < π/4.
(2)

We show that the estimates for ρ given in Theorem A and Theorem B can
be improved and obtain the best possible estimates.

Denote by γ(α), 0 < α ≤ π/6, the solution of the equation

cosγ(α + π/γ) = − cos(γα) (3)

which belongs to the interval (π/(2α), π/α). It is easy to see that the function
γ(α) decreases and the following asymptotic equality holds

γ(α) =
π

α
− 2

√
π

α
(1 + o(1)), α → 0. (4)

Theorem 1. Let f be an analytic in C+ ridge function of finite order ρ
non-vanishing in the angle {z : | arg z − π/2| < α}, 0 < α ≤ π/2. Then

ρ ≤




γ(α), 0 < α ≤ π/6;

3 = γ(π/6), π/6 < α ≤ π/2.
(5)

Theorem 2. Let f be an entire ridge function of finite order ρ non-
vanishing in the angle {z : | arg z − π/2| < α} ∪ {z : | arg z + π/2| < α},
0 < α ≤ π/2. Then

ρ ≤




γ(α), 0 < α ≤ π/6;
π/(2α), π/6 < α ≤ π/4;
2, π/4 < α ≤ π/2.

(6)
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Remark. In [5], in particular, the following theorem has been proved.
Theorem. If an analytic in C+ ridge function f does not vanish in the

angle {z : | arg z − π/2| < β} for some β ∈ (0;π/2] and

lim
y

inf→+∞ y−1 log+ log+ |f(iy)| = 0,

then the function f is of finite order.
Using this theorem, it is possible to weaken the condition of finiteness of

the order in theorems 1 and 2.
Proof of Theorem 1. It is sufficient to prove the theorem for α ∈ (0;π/6).

Assume that Theorem 1 is not valid. Let f be an analytic in C+ ridge
function which does not vanish in the angle {z : | arg z−π/2| < α}, 0 < α <
π/6, and has the finite order ρ > γ(α) ≥ γ(π/6) = 3. Let ak = rke

iϕk be
zeros of f(iz). We shall use the following notations:

u(z) = log |f(iz)|; (7)

vR(z) = Im(eiραz−ρ + zρe−iραR−2ρ) =

(|z|−ρ − |z|ρR−2ρ) sin ρ(α− arg z); (8)∏
R
= {z : 1 < |z| < R, 0 < arg z < α + π/ρ} (R > 1); (9)

β = α + π/ρ (0 < β < π/2). (10)

Let us apply the Green formula in the domain
∏

R to the pair (u(z), vR(z)).
Since vR(z) is harmonic in

∏
R for every R > 1 and, moreover, from (1)

follows ∂u/∂y|(x,0) = 0, 1 ≤ x ≤ R, we obtain

∫ R

1

{
(− cos ρα)u(x)− u(xeiβ)

}
(x−ρ−1 − xρ−1R−2ρ)dx =

2R−ρ
∫ β

0
u(Reiθ) sin ρ(α− θ)dθ +

2πρ−1
∑

ak∈
∏

R

(r−ρ
k − rρkR

−2ρ) sin ρ(α− ϕk) + C1 + C2R
−2ρ, (11)

where C1 and C2 are constants not depending on R.
Denote

A(R) =
∫ R

1

{
(− cos ρα)u(x)− u(xeiβ)

}
(x−ρ−1 − xρ−1R−2ρ)dx; (12)
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B(R) = 2R−ρ
∫ β

0
u(Reiθ) sin ρ(α− θ)dθ; (13)

S(R) = 2πρ−1
∑

ak∈
∏

R

(r−ρ
k − rρkR

−2ρ) sin ρ(α− ϕk). (14)

Using these notations we can rewrite formula (11) in such a way

A(R) = B(R) + S(R) + C1 + C2R
−2ρ. (15)

Subtracting from (15) the formula obtained by replacing R by r in (15),
1 < r < R < ∞, we obtain

A(R)− A(r) = B(R)−B(r) + S(R)− S(r) + C2(R
−2ρ − r−2ρ). (16)

Now let us estimate from below the left-hand side of (16). Since f is a ridge
function, u(x) is convex on R ([1]). Therefore without loss of generality we
may asuume that u(x) is positive and monotonically increases in x when
x > 0. Further we shall denote by K positive constants not depending on r,
R not necessary equal. We have

A(R)− A(r) =
∫ R

1

(
u(x)− u(xeiβ)

)
(x−ρ−1 − xρ−1R−2ρ)dx−

∫ r

1

(
u(x)− u(xeiβ)

)
(x−ρ−1 − xρ−1r−2ρ)dx−

(1 + cos ρα)
∫ R

1
u(x)(x−ρ−1 − xρ−1R−2ρ)dx+

(1 + cos ρα)
∫ r

1
u(x)(x−ρ−1 − xρ−1r−2ρ)dx ≥

∫ R

r

(
u(x)− u(xeiβ)

)
(x−ρ−1 − xρ−1R−2ρ)dx−

(1 + cos ρα)
∫ R

r
u(x)x−ρ−1dx− (1 + cos ρα)

∫ r

1
u(x)xρ−1r−2ρdx ≥

∫ R

r

(
u(x)− u(x cos β)

)
(x−ρ−1 − xρ−1R−2ρ)dx−

(1 + cos ρα)
∫ R

r
u(x)x−ρ−1dx− (1 + cos ρα)

∫ r

1
u(x)xρ−1r−2ρdx ≥

∫ R

r

{
(− cos ρα)u(x)− u(x cos β)

}
x−ρ−1dx−

∫ R

r
u(x)xρ−1R−2ρdx− (1 + cos ρα)

∫ r

1
u(x)xρ−1r−2ρdx ≥
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(− cos ρα)
∫ R

r
u(x)x−ρ−1dx− cosρ β

∫ R cosβ

r cosβ
u(x)x−ρ−1dx−

Ku(R)R−ρ −Ku(r)r−ρ(− cos ρα− cosρ β)
∫ R

r
u(x)x−ρ−1dx−

cosρ β
∫ r

r cosβ
u(x)x−ρ−1dx−Ku(R)R−ρ −Ku(r)r−ρ ≥

(− cos ρα− cosρ β)
∫ R

r
u(x)x−ρ−1dx−Ku(R)R−ρ −Ku(r)r−ρ. (17)

The function hα(ρ) = − cos ρα − cosρ β = − cos ρα − cosρ(α + π/ρ) has the
unique root γ(α) on the interval [π/(2α);π/α), and hα(π/α) > 0. Therefore
using our assumption ρ > γ(α) we have ε = hα(ρ) > 0. Substituting estimate
(17) into (16) and dividing by ε > 0 we obtain

∫ R

r
u(x)x−ρ−1dx ≤ K

(
B(R)−B(r)

)
+K

(
S(R)− S(r)

)
+

Ku(R)R−ρ +Ku(r)r−ρ. (18)

(we have applied positivity and monotonic increasing of u(x)).
Let us estimate the right-hand side of (18) from above.
1. To estimate B(R) we use the following Lemma.
Lemma 1. ([4])

|B(R)| ≤ Ku(R)R−ρ. (19)

Proof of Lemma 1. We use the Carleman formula for function f(z) ([8,
p.224]):

1

πR

∫ π

0
log |f(Reiθ)| sin θdθ + 1

2

∫ R

1
(t−2 −R−2) log |f(t)f(−t)|dt =

∑

1<rk<R

(r−1
k − rkR

−2) cosϕk + b1 + b2R
−2, (20)

where 1 ≤ R < ∞; b1, b2 do not depend on R. Since f(z) is a ridge function,
f(0) = 1, we have |f(t)| ≤ 1, t ∈ R. Hence (20) implies

1

πR

∫ π

0
log |f(Reiθ)| sin θdθ ≥ b1 + b2R

−2. (21)

Using the fact that 0 < β < π/2 and (21), we obtain

|B(R)| ≤ KR−ρ
∫ π/2+β

π/2

∣∣∣log |f(Reiθ)|
∣∣∣dθ ≤
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KR−ρ
∫ π/2+β

π/2

(
log+ |f(Reiθ)|+ log− |f(Reiθ)|

)
sin θdθ ≤

KR−ρu(R) +KR−ρ
∫ π

0
log− |f(Reiθ)| sin θdθ ≤

KR−ρ
(
u(R) + πb1R + πb2R

−1
)
. (22)

Since f is an unbounded in C+ analytic ridge function we have by [1] R =
O(log+ f(iR)), R → +∞. Therefore from (22) we obtain the statement of
Lemma 1.

Using the statement of Lemma 1 we obtain

B(R)−B(r) ≤ Ku(R)R−ρ +Ku(r)r−ρ. (23)

2. To estimate S(R)−S(r) we shall use the fact that function f(iz) does
not vanish in the angle {z : 0 < arg z < α}. We have

S(R)− S(r) = 2πρ−1

( ∑

1<rk<R
α<ϕk<β

(r−ρ
k − rρkR

−2ρ) sin ρ(α− ϕk)−

∑

1<rk<r
α<ϕk<β

(r−ρ
k − rρkr

−2ρ) sin ρ(α− ϕk)

)
=

2πρ−1

( ∑

1<rk<r
α<ϕk<β

rρk(r
−2ρ −R−2ρ) sin ρ(α− ϕk) +

∑

r<rk<R
α<ϕk<β

(r−ρ
k − rρkR

−2ρ) sin ρ(α− ϕk)

)
≤ 0. (24)

Substituting (23) and (24) into (18), we obtain
∫ R

r
u(x)x−ρ−1dx ≤ Ku(R)R−ρ +Ku(r)r−ρ. (25)

To complete the proof we shall use the following elementary lemma:
Lemma 2 ([4]). Let w(x) ≥ 0 be continuously differentiable non-decre-

asing function on [1;∞) and for all r and R, r < R, the inequality

w(R)− w(r) ≤ KRw′(R) +Krw′(r). (26)

holds. Then for all sufficiently large x we have:
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1) if w(∞) = ∞, then w(x) ≥ Kxδ;

2) if w(∞) < ∞, then w(∞)− w(x) ≤ Kx−δ,

where δ is a positive number.
Proof of Lemma 2.
1. Let w(∞) = ∞. Then by (26) we have Rw′(R) → ∞, R → ∞.

Substituting r = 1 into (26) and using the last statement, we have

w(R) ≤ KRw′(R) (27)

(with a larger K).
Hence

w′(R)

w(R)
≥ 1

KR
. (28)

Integrating the last inequality from 1 to r, we obtain statement 1) of Lemma2.
2. Let w(∞) < ∞. Then there exists a sequence Rk → ∞ such that

Rkw
′(Rk) → 0, k → ∞. Making R → ∞ along the sequence {Rk}∞k=1 we

have
w(∞)− w(r) ≤ Krw′(r), (29)

hence
w′(r)

w(∞)− w(r)
≥ 1

Kr
(30)

Integrating last inequality from 1 to r, we obtain

− log
w(∞)− w(r)

w(∞)− w(1)
≥ log r1/K , (31)

that implies statement 2) of Lemma 2.
Using Lemma 2 with w(x) =

∫ x
1 u(t)t−ρ−1dt, we obtain contradiction to

the assumption that ρ is the order of the function f .
Theorem 1 is proved.
Proof of the Theorem 2. Since f is an analytic in C+ ridge function we

have ρ ≤ γ(α) for 0 < α ≤ π/6. Therefore it is sufficient to prove Theorem
2 for π/6 < α < π/4, 2 < ρ ≤ 3. Without loss of generality we can assume
that f is an even function (we can consider the function f(z)f(−z) instead
of f(z)). Suppose the contrary that there exists an even entire ridge function
f non-vanishing in the angle {z : | arg z−π/2| < α}∪{z : | arg z+π/2| < α}
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and having the finite order ρ > π/(2α). Let us denote by ak = rke
iϕk

zeros of function f(iz) lying in the half-plane {z : Rez > 0}. We use the
notations u(z) and vR(z) introduced in the proof of the Theorem 1. Denote
CR = {z : 1 < |z| < R, 0 < arg z < π/2}, R > 1. Let us use the Green
formula in CR for functions u and vR. Since vR is harmonic in CR, and f(z)
is even and satisfies (1), we obtain ∂u(x, 0)/∂y = 0, ∂u(0, y)/∂x = 0. Hence

∫ R

1

{
(− cos ρα)u(x)− (− cos ρ(α− π/2))u(ix)

}
(x−ρ−1 − xρ−1R−2ρ)dx =

2R−ρ
∫ π/2

0
u(Reiθ) sin ρ(α− θ)dθ +

2πρ−1
∑

ak∈CR

(r−ρ
k − rρkR

−2ρ) sin ρ(α− ϕk) + C1 + C2R
−2ρ,(32)

where C1 and C2 are positive constants. By our assumption (− cos ρ(α −
π/2)) > 0 holds. Since f , f(0) = 1 is an even entire ridge function, the
function u(x) is positive and monotonically increases in x, x > 0. As in the
proof of Theorem 1 we denote

A(R) =
∫ R

1

{
(− cos ρα)u(x)− (− cos ρ(α− π/2))u(ix)

}
×

(x−ρ−1 − xρ−1R−2ρ)dx; (33)

B(R) = 2R−ρ
∫ π/2

0
u(Reiθ) sin ρ(α− θ)dθ; (34)

S(R) = 2πρ−1
∑

ak∈CR

(r−ρ
k − rρkR

−2ρ) sin ρ(α− ϕk). (35)

Substacting from (32) the formula obtained from (32) by changing R by r,
1 < r < R < ∞, we have

A(R)− A(r) = B(R)−B(r) + S(R)− S(r) + C2(R
−2ρ − r−2ρ). (36)

Let us estimate the left-hand part of (36) from below

A(R)− A(r) =
∫ R

1
(− cos ρα)u(x)(x−ρ−1 − xρ−1R−2ρ)dx−

∫ r

1
(− cos ρα)u(x)(x−ρ−1 − xρ−1r−2ρ)dx−

(− cos ρ(α− π/2))
∫ R

1
u(ix)(x−ρ−1 − xρ−1R−2ρ)dx+
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(− cos ρ(α− π/2))
∫ r

1
u(ix)(x−ρ−1 − xρ−1r−2ρ)dx ≥

x(− cos ρα)
∫ R

1
u(x)(x−ρ−1 − xρ−1R−2ρ)dx−

(− cos ρα)
∫ r

1
u(x)(x−ρ−1 − xρ−1r−2ρ)dx ≥

(− cos ρα)
∫ R

r
u(x)(x−ρ−1 − xρ−1R−2ρ)dx ≥

(− cos ρα)
∫ R

r
u(x)x−ρ−1dx−Ku(R)R−ρ. (37)

The upper estimate of B(R) − B(r) we obtain in the same way as in the
proof of Theorem 1. We have

B(R)−B(r) ≤ Ku(R)R−ρ +Ku(r)r−ρ. (38)

Since function f has no zeros in the angle {z : | arg z − π/2| < α}

S(R)− S(r) ≤ 0 (39)

holds.
Substituting (37), (38), and (39) into (36), we obtain

∫ R

r
u(x)x−ρ−1dx ≤ Ku(R)R−ρ +Ku(r)r−ρ. (40)

As in the proof of Theorem 1 we see that (40) contradicts to the fact that ρ
is the order of function f .

Theorem 2 is proved.
The next statement shows the sharpness of the estimates of ρ in Theorems

1 and 2.
Theorem 3. 1. For each α, 0 < α ≤ π/2, there exists an entire charac-

teristic function f nonvanishing in the angle {z : | arg z − π/2| < α} ∪ {z :
| arg z + π/2| < α} and having the order

ρ =





γ(α), 0 < α ≤ π/6;
π/(2α), π/6 < α ≤ π/4;
2, π/4 < α ≤ π/2.

(41)
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2. For each α, 0 < α ≤ π/2, there exists an analytic in C+ characteristic
function f non-vanishing in the angle {z : | arg z−π/2| < α} and having the
order

ρ =





γ(α), 0 < α ≤ π/6;

3, π/6 < α ≤ π/2.
(42)

Proof of Theorem 3. 1. For α ∈ [π/4; π/2] we can take the Gauss char-
acteristic function f(z) = exp{−γz2 + iβz} (γ > 0; β ∈ R) as an example.
Consider α ∈ (0; π/4). For constructing an example in this case we shall use
a result of [6]. Let h(θ) be a 2π-periodic function on R, let ρ be a number
greater than 2. Suppose that the following conditions are satisfied:

1) h(θ) is a ρ-trigonometrically convex function;

2) ∃δ > 0, A > 0;h(θ) = A cos ρ(π/2− θ) for |π/2− θ| < δ;

3) h(π/2 + θ) = h(π/2− θ), for θ ∈ [0;π/2];

4) h(π/2 + θ) ≤ h(π/2) cosρ(π/2− θ), for θ ∈ [0;π/2].

Theorem [6]. There exists an entire characteristic function f of order ρ
having completely regular growth (in sense Levin-Pfluger) with the indicator
h(θ) and non-vanishing inside the angles where h(θ) if ρ-trigonometric.

We shall construct function h(θ) satisfying conditions 1)–4) and such that
h(θ) is ρ-trigonometric for θ ∈ [π/2−α; π/2+α]. Since h(θ) will be an even
function satisfying 3), it is sufficient to construct h(θ) when θ ∈ [π/2;π].

a). Consider α ∈ [0; π/6], ρ = γ(α) ≥ 3. Define h(θ) by the formula

h(θ) =





cos ρ(π/2− θ), θ ∈ [π/2; π/2 + α];
− cosρ−1(α + π/ρ)×
cos ρ(θ + α/ρ+ π/ρ2 − α− π/2), θ ∈ [π/2 + α;π/2 + α + π/ρ];
cosρ(π/2− θ), θ ∈ [π/2 + α + π/ρ;π].

(43)
It is easy to verify that h(θ) is a ρ-trigonometrically convex function (we
use the fact that ρ = γ(α) satisfies equation cosρ(α + π/ρ) = − cos ρα)
and h(θ) satisfies 1)–4). Therefore Theorem of [6] cited above yields that
there exists an entire characteristic function f of order ρ and of completely
regular growth having indicator h(θ). Since h(θ) is ρ-trigonometric for θ ∈
[−π/2−α;−π/2+α]∪ [π/2−α;π/2+α], the function f does not vanish in
the angle {z : | arg z − π/2| < α} ∪ {z : | arg z + π/2| < α}.
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2. Consider α ∈ [π/6;π/4], ρ = π/(2α). Define

h(θ) =





cos ρ(π/2− θ), θ ∈ [π/2;π/2 + α];

0, θ ∈ [π/2 + α;π].
(44)

The function h(θ) is ρ-trigonometrically convex and satisfies 1)–4). Therefore
the above Theorem of [6] yields that there exists an entire characteristic
function f of order ρ and of completely regular growth having indicator h(θ).
Since h(θ) is ρ-trigonometric for θ ∈ [−π/2−α;−π/2+α]∪[π/2−α; π/2+α],
the function f does not vanish in the angle {z : | arg z − π/2| < α} ∪ {z :
| arg z + π/2| < α}.

2. When α ∈ (0; π/6] we can take as example the entire function con-
structed in a). When α ∈ [π/6; π/2] we can take f(z) = (1− iz)−1 exp(iz3 −
3z2).

Theorem 3 is proved.
Remark. Using methods of the theory of the cluster sets of subharmonic

functions developed by V. S. Azarin [9], A. E. Fryntov in [7] proved indepen-
dently some more general statement than Theorem 2.
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