On the growth of ridge functions non-vanishing in an angular domain

A. M. Vishnyakova

February 25, 2013

Abstract

For an entire ridge function of finite order ρ which is non-vanishing in the angle $\{z:|\arg z-\pi / 2|<\alpha\} \cup\{z:|\arg z+\pi / 2|<\alpha\}, 0<$ $\alpha \leq \pi / 2$, the sharp estimate of ρ in terms of α is obtained. Analogous result is obtained for ridge functions analytic in the upper half-plane.

Key words: Characteristic function, Fourier transform, ridge function AMS subject classification No: 30D15, 30D37, 60E10

An entire function $f, f(0)=1$, is called a ridge function if it satisfies the inequality

$$
\begin{equation*}
|f(z)| \leq f(i \operatorname{Im} z) \tag{1}
\end{equation*}
$$

If f is analytic in the upper half-plane \boldsymbol{C}_{+}and satisfies (1) there, then we call it an analytic in \boldsymbol{C}_{+}ridge function. In particular, all entire or analytic in \boldsymbol{C}_{+}characteristic functions of probability distributions are ridge functions.

The well-known Marcinkiewicz theorem [1] states that, if entire ridge function of finite order ρ has a few zeros in some sense, then $\rho \leq 2$. This theorem has been strenghtened and generalized in many directions (see the bibliography in [2]). In particular, I. P. Kamynin [3] proved that, if an analytic in \boldsymbol{C}_{+}ridge function of a finite order ρ has no zeros at all, then $\rho \leq 3$. The examples of the entire characteristic function of the Gauss distribution $f(z)=\exp \left(-\gamma z^{2}+i \beta z\right),(\gamma>0, \beta \in \boldsymbol{R})$, and the analytic in \boldsymbol{C}_{+}characteristic function $f(z)=(1-i z)^{-1} \exp \left(i z^{3}-3 z^{2}\right)$ (constructed by I. P. Kamynin) show that both estimates are the best possible. In [4]
the question about estimate of the order of an entire or analytic in \boldsymbol{C}_{+} ridge function non-vanishing in some angle is considered. The following two theorems are proved.

Theorem A ([4]). If an analytic in \boldsymbol{C}_{+}ridge function of finite order ρ does not vanish in the angle $\{z:|\arg z-\pi / 2|<\alpha\}, 0<\alpha \leq \pi / 2$, then $\rho<\max (4 ; \pi / \alpha)$.

Theorem B ([4]). If an entire ridge function of finite order ρ does not vanish in the angle $\{z:|\arg z-\pi / 2|<\alpha\} \cup\{z:|\arg z+\pi / 2|<\alpha\}$, $0<\alpha \leq \pi / 2$, then

$$
\rho\left\{\begin{array}{lr}
\leq 2, & \pi / 4 \leq \alpha \leq \pi / 2 \tag{2}\\
<\pi / \alpha, & 0<\alpha<\pi / 4
\end{array}\right.
$$

We show that the estimates for ρ given in Theorem A and Theorem B can be improved and obtain the best possible estimates.

Denote by $\gamma(\alpha), 0<\alpha \leq \pi / 6$, the solution of the equation

$$
\begin{equation*}
\cos ^{\gamma}(\alpha+\pi / \gamma)=-\cos (\gamma \alpha) \tag{3}
\end{equation*}
$$

which belongs to the interval $(\pi /(2 \alpha), \pi / \alpha)$. It is easy to see that the function $\gamma(\alpha)$ decreases and the following asymptotic equality holds

$$
\begin{equation*}
\gamma(\alpha)=\frac{\pi}{\alpha}-2 \sqrt{\frac{\pi}{\alpha}}(1+o(1)), \quad \alpha \rightarrow 0 \tag{4}
\end{equation*}
$$

Theorem 1. Let f be an analytic in \boldsymbol{C}_{+}ridge function of finite order ρ non-vanishing in the angle $\{z:|\arg z-\pi / 2|<\alpha\}, 0<\alpha \leq \pi / 2$. Then

$$
\rho \leq\left\{\begin{array}{lr}
\gamma(\alpha), & 0<\alpha \leq \pi / 6 \tag{5}\\
3=\gamma(\pi / 6), & \pi / 6<\alpha \leq \pi / 2
\end{array}\right.
$$

Theorem 2. Let f be an entire ridge function of finite order ρ nonvanishing in the angle $\{z:|\arg z-\pi / 2|<\alpha\} \cup\{z:|\arg z+\pi / 2|<\alpha\}$, $0<\alpha \leq \pi / 2$. Then

$$
\rho \leq\left\{\begin{array}{lr}
\gamma(\alpha), & 0<\alpha \leq \pi / 6 \tag{6}\\
\pi /(2 \alpha), & \pi / 6<\alpha \leq \pi / 4 \\
2, & \pi / 4<\alpha \leq \pi / 2
\end{array}\right.
$$

Remark. In [5], in particular, the following theorem has been proved.
Theorem. If an analytic in \boldsymbol{C}_{+}ridge function f does not vanish in the angle $\{z:|\arg z-\pi / 2|<\beta\}$ for some $\beta \in(0 ; \pi / 2]$ and

$$
\lim _{y} \inf _{\rightarrow+\infty} y^{-1} \log ^{+} \log ^{+}|f(i y)|=0
$$

then the function f is of finite order.
Using this theorem, it is possible to weaken the condition of finiteness of the order in theorems 1 and 2.

Proof of Theorem 1. It is sufficient to prove the theorem for $\alpha \in(0 ; \pi / 6)$. Assume that Theorem 1 is not valid. Let f be an analytic in C_{+}ridge function which does not vanish in the angle $\{z:|\arg z-\pi / 2|<\alpha\}, 0<\alpha<$ $\pi / 6$, and has the finite order $\rho>\gamma(\alpha) \geq \gamma(\pi / 6)=3$. Let $a_{k}=r_{k} e^{i \varphi_{k}}$ be zeros of $f(i z)$. We shall use the following notations:

$$
\begin{array}{r}
u(z)=\log |f(i z)| ; \\
v_{R}(z)=\operatorname{Im}\left(e^{i \rho \alpha} z^{-\rho}+z^{\rho} e^{-i \rho \alpha} R^{-2 \rho}\right)= \\
\left(|z|^{-\rho}-|z|^{\rho} R^{-2 \rho}\right) \sin \rho(\alpha-\arg z) ; \\
\prod_{R}=\{z: 1<|z|<R, 0<\arg z<\alpha+\pi / \rho\} \quad(R>1) ; \\
\beta=\alpha+\pi / \rho \quad(0<\beta<\pi / 2) . \tag{10}
\end{array}
$$

Let us apply the Green formula in the domain \prod_{R} to the pair $\left(u(z), v_{R}(z)\right)$. Since $v_{R}(z)$ is harmonic in Π_{R} for every $R>1$ and, moreover, from (1) follows $\partial u /\left.\partial y\right|_{(x, 0)}=0,1 \leq x \leq R$, we obtain

$$
\begin{array}{r}
\int_{1}^{R}\left\{(-\cos \rho \alpha) u(x)-u\left(x e^{i \beta}\right)\right\}\left(x^{-\rho-1}-x^{\rho-1} R^{-2 \rho}\right) d x= \\
2 R^{-\rho} \int_{0}^{\beta} u\left(R e^{i \theta}\right) \sin \rho(\alpha-\theta) d \theta+ \\
2 \pi \rho^{-1} \sum_{a_{k} \in \prod_{R}}\left(r_{k}^{-\rho}-r_{k}^{\rho} R^{-2 \rho}\right) \sin \rho\left(\alpha-\varphi_{k}\right)+C_{1}+C_{2} R^{-2 \rho}, \tag{11}
\end{array}
$$

where C_{1} and C_{2} are constants not depending on R.
Denote

$$
\begin{equation*}
A(R)=\int_{1}^{R}\left\{(-\cos \rho \alpha) u(x)-u\left(x e^{i \beta}\right)\right\}\left(x^{-\rho-1}-x^{\rho-1} R^{-2 \rho}\right) d x \tag{12}
\end{equation*}
$$

$$
\begin{array}{r}
B(R)=2 R^{-\rho} \int_{0}^{\beta} u\left(R e^{i \theta}\right) \sin \rho(\alpha-\theta) d \theta ; \\
S(R)=2 \pi \rho^{-1} \sum_{a_{k} \in \prod_{R}}\left(r_{k}^{-\rho}-r_{k}^{\rho} R^{-2 \rho}\right) \sin \rho\left(\alpha-\varphi_{k}\right) . \tag{14}
\end{array}
$$

Using these notations we can rewrite formula (11) in such a way

$$
\begin{equation*}
A(R)=B(R)+S(R)+C_{1}+C_{2} R^{-2 \rho} \tag{15}
\end{equation*}
$$

Subtracting from (15) the formula obtained by replacing R by r in (15), $1<r<R<\infty$, we obtain

$$
\begin{equation*}
A(R)-A(r)=B(R)-B(r)+S(R)-S(r)+C_{2}\left(R^{-2 \rho}-r^{-2 \rho}\right) \tag{16}
\end{equation*}
$$

Now let us estimate from below the left-hand side of (16). Since f is a ridge function, $u(x)$ is convex on $R([1])$. Therefore without loss of generality we may asuume that $u(x)$ is positive and monotonically increases in x when $x>0$. Further we shall denote by K positive constants not depending on r, R not necessary equal. We have

$$
\begin{array}{r}
A(R)-A(r)=\int_{1}^{R}\left(u(x)-u\left(x e^{i \beta}\right)\right)\left(x^{-\rho-1}-x^{\rho-1} R^{-2 \rho}\right) d x- \\
\int_{1}^{r}\left(u(x)-u\left(x e^{i \beta}\right)\right)\left(x^{-\rho-1}-x^{\rho-1} r^{-2 \rho}\right) d x- \\
(1+\cos \rho \alpha) \int_{1}^{R} u(x)\left(x^{-\rho-1}-x^{\rho-1} R^{-2 \rho}\right) d x+ \\
(1+\cos \rho \alpha) \int_{1}^{r} u(x)\left(x^{-\rho-1}-x^{\rho-1} r^{-2 \rho}\right) d x \geq \\
\int_{r}^{R}\left(u(x)-u\left(x e^{i \beta}\right)\right)\left(x^{-\rho-1}-x^{\rho-1} R^{-2 \rho}\right) d x- \\
(1+\cos \rho \alpha) \int_{r}^{R} u(x) x^{-\rho-1} d x-(1+\cos \rho \alpha) \int_{1}^{r} u(x) x^{\rho-1} r^{-2 \rho} d x \geq \\
\int_{r}^{R}(u(x)-u(x \cos \beta))\left(x^{-\rho-1}-x^{\rho-1} R^{-2 \rho}\right) d x- \\
(1+\cos \rho \alpha) \int_{r}^{R} u(x) x^{-\rho-1} d x-(1+\cos \rho \alpha) \int_{1}^{r} u(x) x^{\rho-1} r^{-2 \rho} d x \geq \\
\int_{r}^{R}\{(-\cos \rho \alpha) u(x)-u(x \cos \beta)\} x^{-\rho-1} d x- \\
\int_{r}^{R} u(x) x^{\rho-1} R^{-2 \rho} d x-(1+\cos \rho \alpha) \int_{1}^{r} u(x) x^{\rho-1} r^{-2 \rho} d x \geq
\end{array}
$$

$$
\begin{array}{r}
(-\cos \rho \alpha) \int_{r}^{R} u(x) x^{-\rho-1} d x-\cos ^{\rho} \beta \int_{r \cos \beta}^{R \cos \beta} u(x) x^{-\rho-1} d x- \\
K u(R) R^{-\rho}-K u(r) r^{-\rho}\left(-\cos \rho \alpha-\cos ^{\rho} \beta\right) \int_{r}^{R} u(x) x^{-\rho-1} d x- \\
\cos ^{\rho} \beta \int_{r \cos \beta}^{r} u(x) x^{-\rho-1} d x-K u(R) R^{-\rho}-K u(r) r^{-\rho} \geq \\
\left(-\cos \rho \alpha-\cos ^{\rho} \beta\right) \int_{r}^{R} u(x) x^{-\rho-1} d x-K u(R) R^{-\rho}-K u(r) r^{-\rho} . \tag{17}
\end{array}
$$

The function $h_{\alpha}(\rho)=-\cos \rho \alpha-\cos ^{\rho} \beta=-\cos \rho \alpha-\cos ^{\rho}(\alpha+\pi / \rho)$ has the unique root $\gamma(\alpha)$ on the interval $[\pi /(2 \alpha) ; \pi / \alpha)$, and $h_{\alpha}(\pi / \alpha)>0$. Therefore using our assumption $\rho>\gamma(\alpha)$ we have $\varepsilon=h_{\alpha}(\rho)>0$. Substituting estimate (17) into (16) and dividing by $\varepsilon>0$ we obtain

$$
\begin{array}{r}
\int_{r}^{R} u(x) x^{-\rho-1} d x \leq K(B(R)-B(r))+K(S(R)-S(r))+ \\
K u(R) R^{-\rho}+K u(r) r^{-\rho} . \tag{18}
\end{array}
$$

(we have applied positivity and monotonic increasing of $u(x)$).
Let us estimate the right-hand side of (18) from above.

1. To estimate $B(R)$ we use the following Lemma.

Lemma 1. ([4])

$$
\begin{equation*}
|B(R)| \leq K u(R) R^{-\rho} . \tag{19}
\end{equation*}
$$

Proof of Lemma 1. We use the Carleman formula for function $f(z)$ ([8, p.224]):

$$
\begin{array}{r}
\frac{1}{\pi R} \int_{0}^{\pi} \log \left|f\left(R e^{i \theta}\right)\right| \sin \theta d \theta+\frac{1}{2} \int_{1}^{R}\left(t^{-2}-R^{-2}\right) \log |f(t) f(-t)| d t= \\
\sum_{1<r_{k}<R}\left(r_{k}^{-1}-r_{k} R^{-2}\right) \cos \varphi_{k}+b_{1}+b_{2} R^{-2}, \tag{20}
\end{array}
$$

where $1 \leq R<\infty ; b_{1}, b_{2}$ do not depend on R. Since $f(z)$ is a ridge function, $f(0)=1$, we have $|f(t)| \leq 1, t \in \boldsymbol{R}$. Hence (20) implies

$$
\begin{equation*}
\frac{1}{\pi R} \int_{0}^{\pi} \log \left|f\left(R e^{i \theta}\right)\right| \sin \theta d \theta \geq b_{1}+b_{2} R^{-2} \tag{21}
\end{equation*}
$$

Using the fact that $0<\beta<\pi / 2$ and (21), we obtain

$$
|B(R)| \leq K R^{-\rho} \int_{\pi / 2}^{\pi / 2+\beta}|\log | f\left(R e^{i \theta}\right)| | d \theta \leq
$$

$$
\begin{array}{r}
K R^{-\rho} \int_{\pi / 2}^{\pi / 2+\beta}\left(\log ^{+}\left|f\left(R e^{i \theta}\right)\right|+\log ^{-}\left|f\left(R e^{i \theta}\right)\right|\right) \sin \theta d \theta \leq \\
K R^{-\rho} u(R)+K R^{-\rho} \int_{0}^{\pi} \log ^{-}\left|f\left(R e^{i \theta}\right)\right| \sin \theta d \theta \leq \\
K R^{-\rho}\left(u(R)+\pi b_{1} R+\pi b_{2} R^{-1}\right) \tag{22}
\end{array}
$$

Since f is an unbounded in \boldsymbol{C}_{+}analytic ridge function we have by [1] $R=$ $O\left(\log ^{+} f(i R)\right), R \rightarrow+\infty$. Therefore from (22) we obtain the statement of Lemma 1.

Using the statement of Lemma 1 we obtain

$$
\begin{equation*}
B(R)-B(r) \leq K u(R) R^{-\rho}+K u(r) r^{-\rho} . \tag{23}
\end{equation*}
$$

2. To estimate $S(R)-S(r)$ we shall use the fact that function $f(i z)$ does not vanish in the angle $\{z: 0<\arg z<\alpha\}$. We have

$$
\begin{gather*}
S(R)-S(r)=2 \pi \rho^{-1}\left(\sum_{\substack{1<r_{k} \ll \\
\alpha<\varphi_{k}<\beta}}\left(r_{k}^{-\rho}-r_{k}^{\rho} R^{-2 \rho}\right) \sin \rho\left(\alpha-\varphi_{k}\right)-\right. \\
\left.\sum_{\substack{1<r_{k}<r \\
\alpha<\varphi_{k}<\beta}}\left(r_{k}^{-\rho}-r_{k}^{\rho} r^{-2 \rho}\right) \sin \rho\left(\alpha-\varphi_{k}\right)\right)= \\
2 \pi \rho^{-1}\left(\sum_{\substack{1<r_{k}<r \\
\alpha<\varphi_{k}<\beta}} r_{k}^{\rho}\left(r^{-2 \rho}-R^{-2 \rho}\right) \sin \rho\left(\alpha-\varphi_{k}\right)+\right. \\
\left.\sum_{\substack{r<r_{k}<R \\
\alpha<\varphi_{k}<\beta}}\left(r_{k}^{-\rho}-r_{k}^{\rho} R^{-2 \rho}\right) \sin \rho\left(\alpha-\varphi_{k}\right)\right) \leq 0 . \tag{24}
\end{gather*}
$$

Substituting (23) and (24) into (18), we obtain

$$
\begin{equation*}
\int_{r}^{R} u(x) x^{-\rho-1} d x \leq K u(R) R^{-\rho}+K u(r) r^{-\rho} . \tag{25}
\end{equation*}
$$

To complete the proof we shall use the following elementary lemma:
Lemma 2 ([4]). Let $w(x) \geq 0$ be continuously differentiable non-decreasing function on $[1 ; \infty)$ and for all r and $R, r<R$, the inequality

$$
\begin{equation*}
w(R)-w(r) \leq K R w^{\prime}(R)+K r w^{\prime}(r) . \tag{26}
\end{equation*}
$$

holds. Then for all sufficiently large x we have:

1) if $w(\infty)=\infty$, then $w(x) \geq K x^{\delta}$;
2) if $w(\infty)<\infty$, then $w(\infty)-w(x) \leq K x^{-\delta}$,
where δ is a positive number.
Proof of Lemma 2.
1. Let $w(\infty)=\infty$. Then by (26) we have $R w^{\prime}(R) \rightarrow \infty, R \rightarrow \infty$. Substituting $r=1$ into (26) and using the last statement, we have

$$
\begin{equation*}
w(R) \leq K R w^{\prime}(R) \tag{27}
\end{equation*}
$$

(with a larger K).
Hence

$$
\begin{equation*}
\frac{w^{\prime}(R)}{w(R)} \geq \frac{1}{K R} . \tag{28}
\end{equation*}
$$

Integrating the last inequality from 1 to r, we obtain statement 1) of Lemma2.
2. Let $w(\infty)<\infty$. Then there exists a sequence $R_{k} \rightarrow \infty$ such that $R_{k} w^{\prime}\left(R_{k}\right) \rightarrow 0, k \rightarrow \infty$. Making $R \rightarrow \infty$ along the sequence $\left\{R_{k}\right\}_{k=1}^{\infty}$ we have

$$
\begin{equation*}
w(\infty)-w(r) \leq K r w^{\prime}(r) \tag{29}
\end{equation*}
$$

hence

$$
\begin{equation*}
\frac{w^{\prime}(r)}{w(\infty)-w(r)} \geq \frac{1}{K r} \tag{30}
\end{equation*}
$$

Integrating last inequality from 1 to r, we obtain

$$
\begin{equation*}
-\log \frac{w(\infty)-w(r)}{w(\infty)-w(1)} \geq \log r^{1 / K} \tag{31}
\end{equation*}
$$

that implies statement 2) of Lemma 2.
Using Lemma 2 with $w(x)=\int_{1}^{x} u(t) t^{-\rho-1} d t$, we obtain contradiction to the assumption that ρ is the order of the function f.

Theorem 1 is proved.
Proof of the Theorem 2. Since f is an analytic in \boldsymbol{C}_{+}ridge function we have $\rho \leq \gamma(\alpha)$ for $0<\alpha \leq \pi / 6$. Therefore it is sufficient to prove Theorem 2 for $\pi / 6<\alpha<\pi / 4,2<\rho \leq 3$. Without loss of generality we can assume that f is an even function (we can consider the function $f(z) f(-z)$ instead of $f(z)$). Suppose the contrary that there exists an even entire ridge function f non-vanishing in the angle $\{z:|\arg z-\pi / 2|<\alpha\} \cup\{z:|\arg z+\pi / 2|<\alpha\}$
and having the finite order $\rho>\pi /(2 \alpha)$. Let us denote by $a_{k}=r_{k} e^{i \varphi_{k}}$ zeros of function $f(i z)$ lying in the half-plane $\{z: \operatorname{Re} z>0\}$. We use the notations $u(z)$ and $v_{R}(z)$ introduced in the proof of the Theorem 1. Denote $C_{R}=\{z: 1<|z|<R, 0<\arg z<\pi / 2\}, R>1$. Let us use the Green formula in C_{R} for functions u and v_{R}. Since v_{R} is harmonic in C_{R}, and $f(z)$ is even and satisfies (1), we obtain $\partial u(x, 0) / \partial y=0, \partial u(0, y) / \partial x=0$. Hence

$$
\begin{array}{r}
\int_{1}^{R}\{(-\cos \rho \alpha) u(x)-(-\cos \rho(\alpha-\pi / 2)) u(i x)\}\left(x^{-\rho-1}-x^{\rho-1} R^{-2 \rho}\right) d x= \\
2 R^{-\rho} \int_{0}^{\pi / 2} u\left(R e^{i \theta}\right) \sin \rho(\alpha-\theta) d \theta+ \\
2 \pi \rho^{-1} \sum_{a_{k} \in C_{R}}\left(r_{k}^{-\rho}-r_{k}^{\rho} R^{-2 \rho}\right) \sin \rho\left(\alpha-\varphi_{k}\right)+C_{1}+C_{2} R^{-2 \rho}, \tag{32}
\end{array}
$$

where C_{1} and C_{2} are positive constants. By our assumption ($-\cos \rho(\alpha-$ $\pi / 2))>0$ holds. Since $f, f(0)=1$ is an even entire ridge function, the function $u(x)$ is positive and monotonically increases in $x, x>0$. As in the proof of Theorem 1 we denote

$$
\begin{array}{r}
A(R)=\int_{1}^{R}\{(-\cos \rho \alpha) u(x)-(-\cos \rho(\alpha-\pi / 2)) u(i x)\} \times \\
\left(x^{-\rho-1}-x^{\rho-1} R^{-2 \rho}\right) d x \\
B(R)=2 R^{-\rho} \int_{0}^{\pi / 2} u\left(R^{i \theta}\right) \sin \rho(\alpha-\theta) d \theta \\
S(R)=2 \pi \rho^{-1} \sum_{a_{k} \in C_{R}}\left(r_{k}^{-\rho}-r_{k}^{\rho} R^{-2 \rho}\right) \sin \rho\left(\alpha-\varphi_{k}\right) \tag{35}
\end{array}
$$

Substacting from (32) the formula obtained from (32) by changing R by r, $1<r<R<\infty$, we have

$$
\begin{equation*}
A(R)-A(r)=B(R)-B(r)+S(R)-S(r)+C_{2}\left(R^{-2 \rho}-r^{-2 \rho}\right) \tag{36}
\end{equation*}
$$

Let us estimate the left-hand part of (36) from below

$$
\begin{aligned}
& A(R)-A(r)= \int_{1}^{R}(-\cos \rho \alpha) u(x)\left(x^{-\rho-1}-x^{\rho-1} R^{-2 \rho}\right) d x- \\
& \int_{1}^{r}(-\cos \rho \alpha) u(x)\left(x^{-\rho-1}-x^{\rho-1} r^{-2 \rho}\right) d x- \\
&(-\cos \rho(\alpha-\pi / 2)) \int_{1}^{R} u(i x)\left(x^{-\rho-1}-x^{\rho-1} R^{-2 \rho}\right) d x+
\end{aligned}
$$

$$
\begin{array}{r}
(-\cos \rho(\alpha-\pi / 2)) \int_{1}^{r} u(i x)\left(x^{-\rho-1}-x^{\rho-1} r^{-2 \rho}\right) d x \geq \\
x(-\cos \rho \alpha) \int_{1}^{R} u(x)\left(x^{-\rho-1}-x^{\rho-1} R^{-2 \rho}\right) d x- \\
(-\cos \rho \alpha) \int_{1}^{r} u(x)\left(x^{-\rho-1}-x^{\rho-1} r^{-2 \rho}\right) d x \geq \\
(-\cos \rho \alpha) \int_{r}^{R} u(x)\left(x^{-\rho-1}-x^{\rho-1} R^{-2 \rho}\right) d x \geq \\
(-\cos \rho \alpha) \int_{r}^{R} u(x) x^{-\rho-1} d x-K u(R) R^{-\rho} . \tag{37}
\end{array}
$$

The upper estimate of $B(R)-B(r)$ we obtain in the same way as in the proof of Theorem 1. We have

$$
\begin{equation*}
B(R)-B(r) \leq K u(R) R^{-\rho}+K u(r) r^{-\rho} \tag{38}
\end{equation*}
$$

Since function f has no zeros in the angle $\{z:|\arg z-\pi / 2|<\alpha\}$

$$
\begin{equation*}
S(R)-S(r) \leq 0 \tag{39}
\end{equation*}
$$

holds.
Substituting (37), (38), and (39) into (36), we obtain

$$
\begin{equation*}
\int_{r}^{R} u(x) x^{-\rho-1} d x \leq K u(R) R^{-\rho}+K u(r) r^{-\rho} . \tag{40}
\end{equation*}
$$

As in the proof of Theorem 1 we see that (40) contradicts to the fact that ρ is the order of function f.

Theorem 2 is proved.
The next statement shows the sharpness of the estimates of ρ in Theorems 1 and 2 .

Theorem 3. 1. For each $\alpha, 0<\alpha \leq \pi / 2$, there exists an entire characteristic function f nonvanishing in the angle $\{z:|\arg z-\pi / 2|<\alpha\} \cup\{z$: $|\arg z+\pi / 2|<\alpha\}$ and having the order

$$
\rho=\left\{\begin{array}{lr}
\gamma(\alpha), & 0<\alpha \leq \pi / 6 \tag{41}\\
\pi /(2 \alpha), & \pi / 6<\alpha \leq \pi / 4 \\
2, & \pi / 4<\alpha \leq \pi / 2
\end{array}\right.
$$

2. For each $\alpha, 0<\alpha \leq \pi / 2$, there exists an analytic in \boldsymbol{C}_{+}characteristic function f non-vanishing in the angle $\{z:|\arg z-\pi / 2|<\alpha\}$ and having the order

$$
\rho=\left\{\begin{array}{lr}
\gamma(\alpha), & 0<\alpha \leq \pi / 6 \tag{42}\\
3, & \pi / 6<\alpha \leq \pi / 2
\end{array}\right.
$$

Proof of Theorem 3. 1. For $\alpha \in[\pi / 4 ; \pi / 2]$ we can take the Gauss characteristic function $f(z)=\exp \left\{-\gamma z^{2}+i \beta z\right\}(\gamma>0 ; \beta \in \boldsymbol{R})$ as an example. Consider $\alpha \in(0 ; \pi / 4)$. For constructing an example in this case we shall use a result of [6]. Let $h(\theta)$ be a 2π-periodic function on \boldsymbol{R}, let ρ be a number greater than 2 . Suppose that the following conditions are satisfied:

1) $h(\theta)$ is a ρ-trigonometrically convex function;
2) $\exists \delta>0, A>0 ; h(\theta)=A \cos \rho(\pi / 2-\theta)$ for $|\pi / 2-\theta|<\delta$;
3) $h(\pi / 2+\theta)=h(\pi / 2-\theta)$, for $\theta \in[0 ; \pi / 2]$;
4) $h(\pi / 2+\theta) \leq h(\pi / 2) \cos ^{\rho}(\pi / 2-\theta)$, for $\theta \in[0 ; \pi / 2]$.

Theorem [6]. There exists an entire characteristic function f of order ρ having completely regular growth (in sense Levin-Pfluger) with the indicator $h(\theta)$ and non-vanishing inside the angles where $h(\theta)$ if ρ-trigonometric.

We shall construct function $h(\theta)$ satisfying conditions 1)-4) and such that $h(\theta)$ is ρ-trigonometric for $\theta \in[\pi / 2-\alpha ; \pi / 2+\alpha]$. Since $h(\theta)$ will be an even function satisfying 3), it is sufficient to construct $h(\theta)$ when $\theta \in[\pi / 2 ; \pi]$.
a). Consider $\alpha \in[0 ; \pi / 6], \rho=\gamma(\alpha) \geq 3$. Define $h(\theta)$ by the formula

$$
h(\theta)=\left\{\begin{array}{lr}
\cos \rho(\pi / 2-\theta), & \theta \in[\pi / 2 ; \pi / 2+\alpha] ; \tag{43}\\
-\cos ^{\rho-1}(\alpha+\pi / \rho) \times & \\
\cos \rho\left(\theta+\alpha / \rho+\pi / \rho^{2}-\alpha-\pi / 2\right), & \theta \in[\pi / 2+\alpha ; \pi / 2+\alpha+\pi / \rho] ; \\
\cos \rho(\pi / 2-\theta), & \theta \in[\pi / 2+\alpha+\pi / \rho ; \pi] .
\end{array}\right.
$$

It is easy to verify that $h(\theta)$ is a ρ-trigonometrically convex function (we use the fact that $\rho=\gamma(\alpha)$ satisfies equation $\left.\cos ^{\rho}(\alpha+\pi / \rho)=-\cos \rho \alpha\right)$ and $h(\theta)$ satisfies 1)-4). Therefore Theorem of [6] cited above yields that there exists an entire characteristic function f of order ρ and of completely regular growth having indicator $h(\theta)$. Since $h(\theta)$ is ρ-trigonometric for $\theta \in$ $[-\pi / 2-\alpha ;-\pi / 2+\alpha] \cup[\pi / 2-\alpha ; \pi / 2+\alpha]$, the function f does not vanish in the angle $\{z:|\arg z-\pi / 2|<\alpha\} \cup\{z:|\arg z+\pi / 2|<\alpha\}$.
2. Consider $\alpha \in[\pi / 6 ; \pi / 4], \rho=\pi /(2 \alpha)$. Define

$$
h(\theta)=\left\{\begin{array}{lr}
\cos \rho(\pi / 2-\theta), & \theta \in[\pi / 2 ; \pi / 2+\alpha] \tag{44}\\
0, & \theta \in[\pi / 2+\alpha ; \pi] .
\end{array}\right.
$$

The function $h(\theta)$ is ρ-trigonometrically convex and satisfies 1$)-4)$. Therefore the above Theorem of [6] yields that there exists an entire characteristic function f of order ρ and of completely regular growth having indicator $h(\theta)$. Since $h(\theta)$ is ρ-trigonometric for $\theta \in[-\pi / 2-\alpha ;-\pi / 2+\alpha] \cup[\pi / 2-\alpha ; \pi / 2+\alpha]$, the function f does not vanish in the angle $\{z:|\arg z-\pi / 2|<\alpha\} \cup\{z$: $|\arg z+\pi / 2|<\alpha\}$.
2. When $\alpha \in(0 ; \pi / 6]$ we can take as example the entire function constructed in a). When $\alpha \in[\pi / 6 ; \pi / 2]$ we can take $f(z)=(1-i z)^{-1} \exp \left(i z^{3}-\right.$ $3 z^{2}$).

Theorem 3 is proved.
Remark. Using methods of the theory of the cluster sets of subharmonic functions developed by V. S. Azarin [9], A. E. Fryntov in [7] proved independently some more general statement than Theorem 2.

References

[1] Yu. V. Linnik and I. V. Ostrovskii. Decomposition of random variables and vectors, Amer. Math. Soc., Providence, R.I., 1977.
[2] I. V. Ostrovskii. The arithmetic of probability distributions, Theor. Probab. Appl., 1986, vol. 31, p. 1-24.
[3] I. P. Kamynin. A generalization of the Marcinkiewicz theorem on entire characteristic functions of probability distribution, Zap. Nauchn. Sem. LOMI, 1979, English transl.: J. Soviet Math., vol. 20, No. 3, 1982.
[4] A. M. Vishnyakova, I. V. Ostrovskii. An analogue of the Marcinkiewicz theorem for entire ridge functions non-vanishing in an angular domain, Dokl. Akad. Nauk Ukraine, Ser. A. 1987, No. 9, p. 8-11 (Russian).
[5] A. M. Vishnyakova, I. V. Ostrovskii, A. M. Ulanovskii. On a conjecture of Ju. V. Linnik, Algebra \& Analiz, 1991, vol. 2, No. 4, p. 82-90, English transl.: Leningrad Math. J., 1991, vol. 2, No. 4, p. 765-773.
[6] A. A. Gol'dberg and I. V. Ostrovskii. Indikators of entire Hermitianpositive functions of finite order, Sibirsk. Mat. Zh., 1982, vol. 23, No. 6, p. 55-73, English transl.: Siberian Math. J., 1982, p. 804-820.
[7] A. E. Fryntov. About one property of cone generated by translations of subharmonic ridge function, Analiticheskie metody v teorii veroyatnostey i teorii operatorov, Kiev, "Naukova dumka", 1990, p. 33-39 (Russian).
[8] B. Ja. Levin. Distribution of Zeros of Entire Functions, AMS, Providence, R.I., 1980.
[9] V. S. Azarin. Cluster sets of entire and subharmonic functions. In "Itogi nauki i techniki, Ser. Sovrem. problemy mat.", VINITI, Moscow 1991, 52-68 (Russian).

