УДК 543.42.062+544.77+547.633.6

ВЛИЯНИЕ БЕТА-ЦИКЛОДЕКСТРИНА НА ДИССОЦИАЦИЮ 2,7-ДИХЛОРФЛУОРЕСЦЕИНА В ВОДНОМ РАСТВОРЕ

© 2005 Л. Н. Вилкова, Н. А. Водолазкая, Н. О. Мчедлов-Петросян

Добавка β -циклодекстрина (β -ЦД) изменяет положение протолитического равновесия 2,7-дихлорфлуоресцеина в водном растворе. Значения pK_{a0} , pK_{a1} и pK_{a2} , характеризующие ступенчатое равновесие $H_3R^+ \stackrel{\longrightarrow}{\longleftarrow} H_2R \stackrel{\longrightarrow}{\longleftarrow} HR^- \stackrel{\longrightarrow}{\longleftarrow} R^{2-}$, изменяются различным образом при введении 0.01 моль/л β -ЦД в водный раствор красителя с ионной силой 0.05 моль/л: значение pK_{a0} снижается на 0.8 ед., значение pK_{a1} повышается на 0.5 ед., а значение pK_{a2} практически не изменяется. Показано, что главной причиной такого характера изменений является преимущественное связывание нейтральной формы 2,7-дихлорфлуоресцеина гептаамилозной полостью, о чем свидетельствует резкий сдвиг таутомерного равновесия молекул H_2R от окрашенного хиноида к бесцветному лактону.

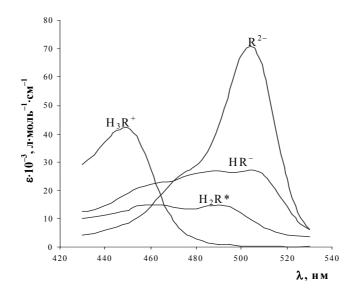
Как известно, введение супрамолекул в водные растворы может оказывать заметное влияние на положение химических равновесий [1-3]. Удобными объектами для исследования свойств организованных растворов являются различные индикаторные красители, спектральные и кислотно-основные свойства которых чувствительны к природе микроокружения.

Поскольку гидроксиксантеновые красители обладают ценными фотофизическими и фотохимическими свойствами и достаточно хорошо исследованы в воде, водно-органических смесях, мицеллярных растворах ПАВ, а также в прямых и обращенных микроэмульсиях [4-8], мы изучили влияние β -циклодекстрина (β -ЦД) на протолитические равновесия 2,7-дихлорфлуоресцеина в водном растворе.

Предварительные спектрофотометрические исследования показали, что ионизация этого индикатора в водном растворе происходит, как и в случае флуоресцеина, в три ступени:

$$H_3R^+ \rightleftharpoons H_2R + H^+, K_{a0}$$
 (1)

$$H_2R \iff HR^- + H^+, \quad K_{a1}$$
 (2)


$$HR^- \rightleftharpoons R^{2-} + H^+$$
 , K_{a2} (3)

Нами использован препарат 2,7-дихлорфлуоресцеина фирмы Apolda, Германия без дополнительной очистки. Этот краситель ранее уже исследовался в нашей лаборатории [5-7]. Препарат β -ЦД (>99%) фирмы Fluka использовали без дополнительной очистки.

Для определения констант ионизации (в рассматриваемом случае приравненных к константам диссоциации) использовался спектрофотометрический метод [4-8]. Спектры измеряли на приборе СФ–46 в односантиметровых кюветах. Для варьирования значений рН применяли боратные, фосфатные, ацетатные и бифталатные буферные растворы, а также разбавленные растворы HCl. При определении р K_{a1} и р K_{a2} ионная сила рабочих растворов поддерживалась постоянной и равной 0.05 моль/л (буфер+NaCl), а значение р K_{a0} определяли при переменной ионной силе, создаваемой растворами HCl. Для измерения спектров поглощения катионной формы красителя H_3R^+ применяли концентрированные растворы HCl (3 и 10 моль/л). Значения рН определяли при 25 °C с помощью стеклянного электрода в цепи с переносом, градуированной по стандартным буферным растворам (1.68, 4.01, 6.86 и 9.18).

При исследовании равновесий в водном растворе β -ЦД рабочая концентрация красителя была $6\cdot 10^{-5}$ моль/л. Для расчетов значений р K_a использовались значения оптической плотности в диапазоне длин волн λ =430–530 нм (21 значение λ), измеренные при 25 °C для 14 рас-

творов с различными рН. Спектр дианиона R^{2-} измерен при рН = 10. Расчет значений р K_{a1} и р K_{a2} проведен совокупно с коэффициентами молярного поглощения (ε) моноаниона HR $^-$ на основании измерений в области рН $2.0 \div 8.0$, с использованием, как и ранее [6, 8], программы CLINP. Значение р K_{a0} определено изолированно, из измерений в области рН $0 \div 1.0$. Спектр формы H_2R окончательно уточнялся из измерений в области рН максимального выхода молекулярной формы, с использованием всех трех значений р K_a [4, 6, 8]. Спектры молекулярной и ионных форм в водном растворе β -ЦД представлены на рис.1.

Рис. 1. Спектры поглощения молекулярной и анионных форм 2,7–дихлорфлуоресцеина в водном растворе β -циклодекстрина (0.01 моль/л) при ионной силе 0.05 моль/л (буфер+NaCl); спектр H_3R^+ измерен в высококонцентрированных растворах HCl, без β -ЦД; * значения ε (H_2R) увеличены в 5 раз.

Значения параметров ионных равновесий 2,7—дихлорфлуоресцеина в воде и в растворах β -циклодекстрина представлены в таблице 1.

Таблица 1. Влияние 0.01 моль/л β -циклодекстрина на значения параметров ионных равновесий 2,7-дихлорфлуоресцеина в водном растворе при ионной силе 0.05 моль/л (25 °C)

Константа	0.01 моль/л $oldsymbol{eta}$ -ЦД	Без добавки β -ЦД [5, 9-11]	Разность
pK_{a0}	-0.33 ± 0.12 *	0.44 ± 0.05	-0.77
pK_{a1}	4.40 ± 0.05	3.91 ± 0.10	+0.49
pK_{a2}	4.91 ± 0.04	4.93 ± 0.06	-0.02
$pk_{0,OH}$	0.62	0.92	-0.30
pk _{1,COOH}	3.45	3.43	0.02
$pk_{2,OH}$	4.91	4.93	-0.02

ионная сила превышает 0.05 моль/л.

Значения pK_{a0} , pK_{a1} и pK_{a2} , характеризующие ступенчатое равновесие, изменяются различным образом при введении 0.01 моль/л β -ЦД в водный раствор красителя. Значение pK_{a2} практически не изменяется. По-видимому, из этого можно сделать вывод о том, что если

связывание сопряженных форм R^{2-} и HR^{-} 2,7-дихлорфлуоресцеина полостью β -ЦД и имеет место, то происходит оно не с фрагментом, включающим диссоциирующую гидроксильную группу, а с кольцом, содержащим карбоксильную группу. Повышение значения pK_{a1} на 0.5 ед. и понижение pK_{a0} на 0.8 ед. по сравнению с таковыми в воде свидетельствуют о преимущественном связывании и дополнительной стабилизации нейтральной формы 2,7-дихлорфлуоресцеина гептаамилозной полостью.

В таблице 2 приведены значения спектральных характеристик ионов и молекул 2,7-дихлорфлуоресцеина в воде и в водном растворе β -циклодекстрина.

Таблица 2. Значения спектральных характеристик ионов и молекул 2,7-дихлорфлуоресцеина в водном растворе и в присутствии β -циклодекстрина

Ион (молекула)	λ_{max} , нм (ϵ_{max} 10 $^{-3}$, л·моль $^{-1}$ ·см $^{-1}$)		
	В присутствии 0.01 моль/л eta -ЦД	В отсутствие β -ЦД [5,6, 9-11]	
H ₃ R ⁺	450 (44.95)*	450 (44.95)	
H_2R	460 (3.00); 490 (2.98)	460 (8.96); 485 (8.70)	
HR ⁻	490 (26.75); 504 (27.02)	465–470 (24.1); 490 (28.3)	
\mathbb{R}^{2-}	504 (72.62)	502 (75.02)	

 $^{^*}$ измерено в высококонцентрированных растворах HCl, без eta-ЦД.

Изменения спектральных характеристик индикатора в присутствии 0.01 моль/л β -ЦД по сравнению с водой наблюдаются для форм R^{2-} , HR^- и H_2R красителя. Это указывает на вероятное связывание этих форм полостью β -ЦД и согласуется с параметрами ионных равновесий 2,7-дихлорфлуоресцеина в изученной системе. В работе [1] при рассмотрении взаимодействия ионов R^{2-} ряда гидроксиксантеновых красителей с α -, β - и γ - циклодекстринами предлагаются два различных типа связывания этих индикаторов полостью супрамолекулы: 1) связывание ксантеновой части и 2) связывание фрагмента, содержащего карбоксильную группу.

Схема 1 описывает протолитические равновесия флуоресцеиновых красителей в растворах [4-11]. Обнаружено, что переход от воды к средам, содержащим супрамолекулы, приводит к заметному гипохромному эффекту лишь для нейтральной формы H_2R (табл.2), как и в случае водно-органических смесей, мицеллярных растворов ПАВ и микроэмульсий [4-11]. Аналогичный эффект наблюдается для флуоресцеина в водных растворах β -ЦД [12]. Возможность существования бесцветной лактонной структуры для молекулярной формы флуоресцеиновых красителей бесспорна [4, 6, 11], и речь идет, следовательно, о сдвиге положения таутомерного равновесия,

Судя по полученным спектральным характеристикам молекулярной и ионных форм 2,7-дихлорфлуоресцеина в растворах β -ЦД (рис.1), можно предположить существование катиона в растворе в виде структуры I, нейтральной формы – в виде равновесной смеси хиноида III и бесцветного лактона IV, причем характер спектра H_2R не дает оснований предполагать наличие в растворах β -ЦД цвиттер-ионной частицы II, ввиду отсутствия дополнительного поглощения в области λ_{max} (H_3R^+). В случае производных флуоресцеина, содержащих атомы галогенов в положениях 2, 4, 5 и 7, существование цвиттер-иона маловероятно, так как кислотность групп ОН существенно усиливается. Спектр формы HR^- близок по форме спектру H_2R , следовательно, для 2,7-дихлорфлуоресцеина в растворах β -ЦД, как и в воде [9-11], структура V преобладает над структурой VI.

Схема 1. Протолитическое равновесие флуоресцеина (X=H) и 2,7-дихлорфлуоресцеина (X=Cl). $K_{\rm T} = [{\rm IV}]/[{\rm III}]; \ K_{\rm T}' = [{\rm II}]/[{\rm III}]; \ K_{\rm T}' = K_{\rm T} \, / \, K_{\rm T}' = [{\rm IV}]/[{\rm II}]; \ K_{\rm T_x} = [{\rm VI}]/[{\rm V}]; \\ k_{\pm,{\rm COOH}} = a_{\rm H^+}^* a_{\rm II} \, / \, a_{\rm I} \, ; k_{0,{\rm OH}} = a_{\rm H^+}^* a_{\rm III} \, / \, a_{\rm I} \, ; \ k_{1,{\rm Z}} = a_{\rm H^+}^* a_{\rm V} \, / \, a_{\rm II}; \ k_{1,{\rm COOH}} = a_{\rm H^+}^* a_{\rm V} \, / \, a_{\rm III}; \\ k_{1,{\rm OH}} = a_{\rm H^+}^* a_{\rm VI} \, / \, a_{\rm III}; \ k_{2,{\rm OH}} = a_{\rm H^+}^* a_{\rm VII} \, / \, a_{\rm V}; \ k_{2,{\rm COOH}} = a_{\rm H^+}^* a_{\rm VII} \, / \, a_{\rm VI} \, .$

Расчет долей таутомеров (α) формы H_2R 2,7-дихлорфлуоресцеина проводили по уравнению (4) [4, 6, 8-11]:

$$\varepsilon(H_2R) = \alpha (II) \cdot \varepsilon(H_3R^+) + \alpha (III) \cdot \varepsilon(HR^-), \tag{4}$$

которое превращается в систему уравнений при использовании спектральных данных, полученных на длинах волн 460 - 490 нм. Это уравнение справедливо, если приравнять значения ε таутомеров II и III значениям ε форм H_3R^+ (структура I) и HR^- (структура V), соответственно. При этом α (IV)=1- α (II)- α (III). Для растворов β -ЦД нами получено: α (III)=0.112 и α (IV)=0.888, при условии, что доля таутомера II пренебрежимо мала. Отсюда легко рассчитать значения обозначенных на схеме 1 констант таутомерного равновесия и микроконстант диссоциации (k). Связь этих параметров с константами K_a выражается соотношениями при (K_T^{\prime} << K_T):

$$pK_{a0} = pk_{0,OH} - lg(1 + K_T)$$
 (5)

$$pK_{a1} = pk_{1,COOH} + lg(1+K_T)$$
 (6)

$$pK_{a2} = pk_{2,OH}. (7)$$

Значение $K_{\rm T}$ для 2,7-дихлорфлуоресцеина в растворах β -ЦД составляет 8.1±0.2, а в воде — 2.0 [9-11]. Значения микроконстант, полученные с помощью уравнений (5-7), представлены в таблице 1. Понижение значения р $k_{0,{
m OH}}$ 2,7-дихлорфлуоресцеина в растворе, содержащем β -ЦД, доказывает связывание и стабилизацию хиноидного таутомера нейтральной формы (III) полостью β -ЦД, а повышение значения $K_{\rm T}$ в 4 раза по сравнению с величиной $K_{\rm T}$ в воде свидетельствует о сдвиге таутомерного равновесия в сторону лактонной структуры (IV).

Таким образом, в ходе ступенчатой диссоциации в водном растворе 2,7-дихлорфлуоресцеина с добавкой β -ЦД реально существуют следующие частицы:

Литература

- 1. Flamigni L. J.Phys.Chem. 1993. V. 97. No. 38. P. 9566-9572.
- 2. Kuwabara T., Takamura M., Matsushita., Ikeda H., Nakamura A., Ueno A., Toda F. J.Org.Chem. 1998. V. 63. No. 24. P. 8729-8735.
- 3. Funasaki N. Вестник Харьк. нац. университета. 2002. № 549. Химия. Вып. 8 (31). С. 7-14.
- 4. Мчедлов-Петросян Н.О. Журн. аналит. химии. 1979. Т. 34. № 6. С. 1055-1059.
- 5. Mchedlov-Petrossyan N.O., Rubtsov M.I., Lukatskaya L.L. Dyes and Pigments. 1992. V. 18. P. 179-198.
- 6. Mchedlov-Petrossyan N.O., Kleshchevnikova V.N. J.Chem.Soc., Faraday Trans. 1994. V. 90. No. 4. P. 629-640.
- 7. Mchedlov-Petrossyan N.O., Kukhtik V.I., Bezugliy V.D. J.Phys.Org.Chem. 2003. V. 16. P. 380-397; and references cited therein.
- 8. Саламанова Н.В., Водолазкая Н.А., Мчедлов-Петросян Н.О. Вестник Харьк. нац. университета. 2003. № 596. Химия. Вып. 10 (33). С. 137-141.
- 9. Мчедлов-Петросян Н.О., Васецкая Л.В. Журн. общ. химии. 1989. Т. 59. Вып.3. С. 691-703.
- 10. Мчедлов-Петросян Н.О. Вестник Харьк. нац. университета. 2004. № 626. Химия. Вып. 11 (34). С. 221-312.
- 11. Мчедлов-Петросян Н.О. Дифференцирование силы органических кислот в истинных и организованных растворах. Харьков: Издательство Харьковского национального университета имени В.Н. Каразина, 2004. 326 с.
- 12. Buvari A., Barcza L., Kajtar M. J. Chem. Soc. Perkin Trans. 1988. II. P. 1687-1690.

Поступила в редакцию 5 августа 2005 г

Kharkov University Bulletin. 2005. N° 669. Chemical Series. Issue 13(36). L. N. Vilkova, N.A. Vodolazkaya, N.O. Mchedlov-Petrossyan. The influence of beta–cyclodextrin on dissociation of 2,7-dichlorofluorescein in aqueous solution.

The addition of β -cyclodextrin changes the state of protolytic equilibrium of 2,7-dichlorofluorescein in aqueous solution. When 0.01 mol dm⁻³ of β -cyclodextrin is added to the solution with the ionic strength 0.05 mol dm⁻³, parameters pK_{a0} , pK_{a1} , and pK_{a2} , characterizing the stepwise equilibrium $H_3R^+ \longrightarrow H_2R \longrightarrow HR^- \longrightarrow R^2$ undergo different changes. The pK_{a0} value decreases by ca. 0.8 units, the pK_{a1} value increases by ca. 0.5 units, while the pK_{a2} value remain practically unaffected. It is demonstrated that the main reason for this effect is preferential binding of the neutral species of 2,7-dichlorofluorescein by the heptaamilose cage. This explanation is strongly supported by the observed marked shift of the tautomeric equilibrium of H_2R molecules from colored quinonoid to colorless lactone.