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Complex biological networks govern most functional properties at subcellular, cellular, tissue 
and organ levels. They appear at the early development stages of a growing organism at different 
physical and biological conditions, under biochemical and genetic control (Metzger 1999). 
Recent biophysical and morphometric  data give us a detailed description of the topology, 
function and dynamics of biological networks. The most amazing discovery is the common 
design principles of the network construction in Nature including animal and plant tissues and  
organs (La Barbera 1990). One of the most investigated questions is structure of the long-
distance transport systems  which are designed for transport of liquid and dissolved substances on 
distances that are comparable to the characteristic size of the system.. The precise data on 
geometry of arterial and venous beds in mammals (La Barbera  1990; Pries 1995), conducting 
systems in leaves and roots of higher plants (Mitchison 1980; Kizilova  2001; McCulloh 2003), 
branches and shoots in trees (Honda 1978; Zhi 2001) trophic fluid transport systems in sponges 
(La Barbera 1990) and river basins (Pelletier 1999) reveal their similarity. In spite of the 
complicated topology of the networks a few mathematical principles underlie the patterns of 
structure, bifurcations and closed loops in the network organization (Zamir 1984; La Barbera 
1990; Frame 1995). The principles correspond to the model of optimal branching tree-like 
pipeline which provide the liquid delivering at the minimal total costs on the liquid motion and 
the pipeline construction and maintenance.  
In the present paper the statistical data on network geometry of the venation system of Morus 
alba leaf are presented. The mathematical  model of the sap motion in the conducting system of a 
leaf is proposed.  On the base of the solution of an optimization problem the principle of optimal 
construction of a bifurcation in plant leaf venation that correspond to Murray’s law is obtained.  
 
1. Network geometry description. Regularities in the vascular systems organization are 
investigated on special plastic casts, radiographic, x-ray images and tinted preparations. The 
lengths iL , diameters id  and branching angles iα  at each bifurcation as well as the number of 
vessels iN  of the same order i  are measured (fig.1). The branching order is determined as 
follows:  

 
1. The largest  (the first) vessel possesses 1=i ; 
2. Two vessels with the branching orders l  and k  join into a parent vessel with the order 
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The following statistical dependences between the measured parameters have been obtained for 
different branching long-distance transportation systems in Nature: 

1. Murray’s law γγγ += 210 ddd , where 2,1,0d  – the diameters of the parent and daughter’s 

vessels at the bifurcation. For the most networks 3≈γ  ( 02.355.2 −=γ  for arterial, 
02.376.2 −=γ  for venous, 91.261.2 −=γ  for respiratory systems) and the higher the animal’s 

position at the evolutionary scale, the closer γ  to =γ 3 (Zamir 1986).  
2. Branching angles in a bifurcation 
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where 121 <=ξ dd  – asymmetry of the bifurcation, { }2,11 min dd = .  

3. The length-diameter relation b
jj adL = , where ba,  characterize the structure of the network. 

For mammalian arterial beds =a 2.60–7.59, =b 0.84–1.16. For 1~b  and ii dL ~ , Murray’s 
law for the vessels’ lengths at a bifurcation is valid as well. 
 
 

2. Statistical data on organization of the 
conducting system in plant  leaves. 
Geometry of a conducting system of fresh-
cutted Morus Alba leaves have been 
investigated on the scanned images using 
the computer methods of image analysis 
(SciImage 3b software). The branching 
orders of different veins have been 
established by the rules (1). The diameters, 
lengths and branching angles of the veins 
at different bifurcations have been 
measured. The dependences )( 0dξ , 
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)cos( 21 α+α=A  have been investigated 
and  the corresponding coefficients ba,  have been calculated with least squares method. As an 
illustration the dependences for one leaf (approximately 200-250 vein bifurcations) is presented 
in fig.2-5.  
 

 
 

Figure 2. Dependence )( 0dξ , 31−=i . Figure 3. Dependence )( 0dλ , 51−=i . 

 

 
Figure 4. Dependence )(KA , 41−=i . Figure 5. Dependence )(Ld , 31−=i . 

 
Figure 1. Morus Alba leaf venation  and a schema 
of the bifurcation of the veins. 
 



The diameters 20, −jd  in the bifurcations obey Murray’s law at 3≈γ  (fig.2-3). The numerical 

solution of the equation 1))()(1( 0112 =+ γγ dddd  that follows form Murray’s law, give 
08.372.2 −=γ  for 42 specimens of Morus Alba leaf. The brunching angles correspond to the 

optimal values (2)  (solid line in fig.4). The relation )(Ld  between the geometrical parameters 
L , d  of the separate conducting element s is linear (fig.5). Comparative analysis of the data for 
Morus Alba (fig.2-5), Cotinus obovatus (Kizilova 2003) as well as for some other leaves 
(Kizilova 2000) and mammal vascular systems (Zamir 1984, 1986) shows, that both transport 
structures are characterized by a similar kind of statistical dependences. It means that 
construction of long-distance transport systems governs by the same design principles in animals 
and high plants. The conclusion is quite amazing for the developmental ways of the plants and 
animals have been departed since the earliest stages of evolution at single-cellular level.  
 
3. Model of an optimal bifurcation of the tubes with permeable walls. Axisymmetric steady 
motion of a viscous fluid through a single bifurcation (fig.1) of vessels with permeable walls is 
considered. Each vessel is represented as a thin long round tube ( 1/ <<jj Ld , 20 −=j ). At 

1Re <<   the mass and impulse continuity conditions in the cylindrical coordinate system (r, ϑ ,x) 
that is connected with the tube are the followings 
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where p  is pressure, ),0,( xr VVV =
r

 is velocity, µ  is viscosity of the fluid. The boundary 
conditions are defined as: 
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where w  is the outflow speed. By integrating (3) with respect to r  taking into account (4), we 
shall receive: 
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and the equation for the pressure field: 
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Pressure is obtained from (7), (5) as  
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at )1(2 0 yww −= , where Lxy /=  or, in other form  
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)0,(2 , )(128 4dLZ p πµ= , 0wΣ=Φ . In both cases of w  distribution 

along the wall the full outflow 0dLwπ=Φ  remains the same. Substitution (8), (9) in (6) gives 
the velocity fields. Hence it follows that the hydraulic resistance QLppZ /))(( 1 −=  of the tube 

is   ))2/(1()1( QZZ p Φ−= , ))3/(21()2( QZZ p Φ−=  
For a symmetrical bifurcation ( 12 LL = , 12 dd = ) of the tubes with diameters 1,0L  and lengths 

1,0d , Poiseuille’s  law for the tubes in a bifurcation is  1121 ZQpp =− ,    2232 ZQpp =− , 
where 1Q , 2/)( 112 Φ−= QQ , 2,1Z  are the volumetric rates at the inlet and the hydraulic 

resistances  of the tubes with 1=i  and 2=i , )0(1 pp = , )( 12 Lpp = , )( 213 LLpp += . The x-
axis is continuous along two tubes and ],0[ 1Lx ∈  for the first-order tube and ],[ 211 LLLx +∈  
for the second-order ones. Hence it follows for the total hydraulic resistance 131 /)( QppZ −=  
of the bifurcation: 
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Here ),,,( 102,12,1 QwRLZZ =  at the constant 10 ,Qw  depends on the bifurcation geometry 
only. The extreme problem for a bifurcation can be considered in the form of 

 
min),( 2,12,1 →RLZ ,      constRLG =),( 2,12,1      (10) 

 
where G  is a geometrical restriction. Problem (10) for { }DSVG ,,= , where V - full volume, S - 
full lateral surface, D - full dissipation in the system, and a few other criteria was solved for a 
single tube and a bifurcation of tubes with non-permeable walls as applied to the arterial vessels. 
As a result the criteria { }VG =  fit the experimental data best of all. Problem (10) with a number 
of criteria G  was solved for a single tube with permeable walls as applied to plant leaves and the 
same result was obtained (Kizilova 2000, 2003). Taking into account this conclusion, we 
consider here the problem (10) with { }VG =  as applied to the bifurcation of tubes with 

permeable walls. The Lagrange function is GZ λ+=Ω . The conditions 0/
, 2,12,1

=Ω RL  bring 

finally to the nonlinear system of equations { }0),( =lrf i , where 10 / ddr = , 10 / LLl = . In 
contrast to the tubes with non-permeable walls the relative diameters and lengths are not 
independent here. The results of the numerical solution of this system are presented in Fig.6. 
Different curves correspond to the different pairs ),( VZ j of optimal criteria in (10), where 0=j  
correspond to the motion in the tube with non-permeable walls, 2,1=j  – the tube with 
permeable walls at constww == 0  and )1(2 0 yww −=  respectively. Two solid lines in fig.6 
correspond to the upper and lower boundaries of the measured data ( ]89.1;35.1[∈r , 

]97.2;25.0[∈l (Kizilova 2000)) for a number of leaves with different venation types including 
Morus Alba leaf.  

The models of the optimal bifurcation of the tubes with permeable walls both at constant 
and linearly decreasing functions w  agree closely with the measured data. Two cases of )(yw  
slightly differ. For comparison the results of solution of the problem (10) at SG =  are presented 
in fig.6 as well. All these curves lie closely to parameters of the optimal bifurcation of tubes with 
impermeable walls and do not agree with the real data. Consequently the model of optimal 
bifurcation of the tubes with permeable walls, which deliver the liquid with a minimal hydraulic 



resistance at a given volume is best suited to the measured data. This model perfectly 
corresponds to physics of the sap motion through the vein systems of the leaves.  

 
 

Conclusions .   The branching 
long-range transport systems in 
mammal tissues and high plants 
are statistically identical, obey 
some relations including 
Murray’s law and correspond to 
the model of the optimal 
pipeline which provided liquid 
delivering at the minimal total 
cost. The validity of Murray’s 
law can be explained within the 
frames of the presented 
mathematical model of sap 
motion in plant vessels and the 
solution of the optimization 

problem. The solutions for the optimal pipelines which deliver water at minimal hydraulic 
resistance at a given total volume of the pipeline with either permeable or impermeable walls lie 
quite close each other and approximate the measured data perfectly.   
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Figure 6.  The dependences )(lr  for different optimal  
symmetrical bifurcations. 


