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Complex biological networks govern most functional properties at subcellular, cellular, tissue
and organ levels. They appear at the early development stages of a growing organismat different
physical and biological conditions, under biochemical and genetic control (Metzger 1999).
Recent biophysica and morphometric data give us a detailed description of the topology,
function and dynamics of biological networks. The most amazing discovery is the common
design principles of the network construction in Nature including animal and plant tissues and
organs (La Barbera 1990). One of he most investigated questions is structure of the long-
distance transport systems which are designed for transport of liquid and dissolved substances on
distances that are comparable to the characteristic size of the system.. The precise data on
geometry of arterial and venous beds in mammals (La Barbera 1990; Pries 1995), conducting
systems in leaves and roots of higher plants (Mitchison 1980; Kizilova 2001; McCulloh 2003),
branches and shoots in trees (Honda 1978; Zhi 2001) trophic fluid transport systems in sponges
(La Barbera 1990) and river basins (Pelletier 1999) revea their similarity. In spite of the
complicated topology of the networks afew mathematical principles underlie the patterns of
structure, bifurcations and closed bops in the network organization (Zamir 1984; La Barbera
1990; Frame 1995). The principles correspond to the model of optimal branching tree-like
pipeline which provide the liquid delivering at the minimal total costs on the liquid motion ard
the pipeline construction and maintenance.

In the present paper the statistical data on network geometry of the venation system of Morus
alba leaf are presented. The mathematical model of the sap motion in the conducting system of a
leaf is proposed. On the base of the solutionof an optimization problem the principle of optimal
construction of a bifurcation in plant leaf venation that correspond to Murray’s law is obtained.

1. Network geometry description. Regularities in the vascular systems organization are
investigated on special plastic casts, radiographic, x-ray images and tinted preparations. The
lengths L;, diameters d; and branching angles a; at each bifurcation as well as the number of
vessdls N; of the same order i are measured (fig.1). The branching order is determined as
follows:

1. The largest (the first) vessel possesses i =1;

2. Two vessels with the branching orders | and k join into a parent vessel with the order
i1 -1 at I =k
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The following statistical dependences between the measured parameters have been obtained for
different branching long-distance transportation systems in Nature:

1. Murray's law dg = dlg +dg, where dOJ,z — the diameters of the parent and daughter’s

vessels at the bifurcation. For the most networks g»3 (g=2.55-3.02 for arterid,
g=276- 3.02 for venous, g=2.61- 2.91 for respiratory systems) and the higher the animal’s
position at the evolutionary scale, the closer g to g =3 (Zamir 1986).

2. Branching angles in a bifurcation
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where x = d1/d> <1 —asymmetry of the bifurcation d; = min{dlz}.
3. The length-diameter relation Lj = ad?, where a,b characterize the structure of the network.

For mammalian arteriad beds a =2.60-7.59, b=0.84-1.16. For b~1 and Lj ~d; , Murray’s
law for the vessels' lengths at a bifurcation is valid as well.

2. Statistical data on organization of the
conducting system in plant leaves.
Geometry of a conducting system of fresh
cutted Morus Alba leaves have been
investigated on the scanned images using
the computer methods of image anaysis
(Scilmage 3b software). The branching
orders of different veins have been
established by the rules (1). The diameters,
lengths and branching angles of the veins
a different bifurcations have been
measured. The dependences x(dg),
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Figure 1. Morus Alba leaf venation and a schema 3 3./.3 2 A2/ 42
of the bifurcation of the veins. I =(d +0|2)/O| o KEQ +d2)/d ’

A=cos@a;+ay) have been investigated
and the corresponding coefficients a,b have been calculated with least squares method. As an

illustration the dependences for one leaf (approximately 200-250 vein bifurcations) is presented
in fig.2-5.

& A

n.a

04

iyt gy le 4
R Ol E

+ 4

*g
¥ ¥,

0.1 0.2 0.3 0.4 dpy(ern)

0
0 0.1 0.2 0.3 dolem)

Figure 2. Dependencex(dg), i =1- 3. Figure 3. Dependence | (dg),i =1- 5.

dicm)
03

0.2

0.1

10 Licm)

0 3]
Figure 4. Dependence A(K), i =1- 4. Figure 5. Dependence d(L), i =1- 3.



The diameters d j o- 2 in the bifurcations obey Murray's law at g» 3 (fig.2-3). The rumerical

solution of the equation (1+ (do/dq)®)(d1/dg)® =1 tha follows form Murray’s law, give
g=2.72- 3.08 for 42 specimens of Morus Alba leaf. The brunching angles correspond to the
optimal values (2) (solid linein fig.4). Therelation d(L) between the geometrical parameters
L, d of the segparate conducting elements is linear (fig.5). Comparative analysis of the data for
Morus Alba (fig.2-5), Cotinus obovatus (Kizilova 2003) as well as for some other |leaves
(Kizilova 2000) and mammal vascular systems (Zamir 1984, 1986) shows, that both transport
structures are charecterized by a similar kind of statistical deperdences. It means that
construction of long-distance transport systems governs by the same design principles in animals
and high plants. The conclusion is quite amazing for the developmental ways of the plants and
animals have been departed since the earliest stages of evolution at single-cellular level.

3. Model of an optimal bifurcation of the tubes with permeable walls. Axisymmetric steady
motion of a viscous fluid through a single bifurcation (fig.1) of vessels with permeable walls is
considered. Each vessel is represented as a thin long round tube (dj /Lj <<l1,j=0-2). At

Re <<1 themass and impulse continuity conditions in the cylindrical coordinate system (r, J ,X)
that is connected with the tube are the followings
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where p ispressure, V = (V,,0,Vy) isvelocity, n isviscosity of the fluid. The boundary
conditions are defined as:
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Vy
V =0, =0,
X|r:R qIr r20
Vel 2 =0, Vil g =W 4
Ply=g = PL. Ply=, = P2 (5)

where w is the outflow speed. By integrating (3) with respect to r taking into account (4), we
shal receive:
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and the equation for the pressure field:
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Pressure is obtained from (7), (5) as
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a w=2wp(- y),where y = x/L or, in other form
PV =p1- ZP(Qy- Fy2/2), pPx=p1- ZP(@Q- F(y2- v*/3)
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where  Q =2p (yVx(r,0)dr , zP :128rTL/(pd4), F =Swg. In both cases of w distribution
0

along the wall the full outflow F = pdLwg remains the same. Substitution (8), (9) in (6) gives

the velocity fields. Hence it follows that the hydraulic resistance Z = (pg - p(L))/Q of the tube
is z® =zPa- Fi2q), zd =zP@a- 2F /(3Q))

For a symmetrical bifurcation (Ly = Ly, dp =d1) of the tubes with diameters L,, and lengths
dp1, Poiseuille’s law for the tubesin abifurcationis py - pp =Q1Z;, p2- p3 =Q2Zy,
where Qp, Q2 =(Q1- F1)/2, Z;, are the volumetric rates at the inlet and the hydraulic
resistances of thetubeswith i =1 and i =2, p; = p(0), p2 = p(L1), p3=p(L; +Ly). Thex
axis is continuous along two tubes and x1 [0,L4] for the first-order tube and x1 [L;, L, +L,]

for the second-order ones. Hence it follows for the total hydraulic resistance Z = (p, - p;)/Q;
of the bifurcation:
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Here Z=Z(L,,,R,, Wy, Q;) at the constant w,,Q; depends on the bifurcation geometry
only. The extreme problem for a bifurcation can be considered in the form of

Z(L12,R12)® mn,  G(Lyp,Ry2)=const (10)

where G isageometrical restriction. Problem (10) for G :{V,S, D} , Where V - full volume, S-
full lateral surface, D - full dissipation in the system, and a few other criteria was solved for a
single tube and a bifurcation of tubes with non-permeable walls as applied to the arterial vessels.
As aresult the criteria G = {V} fit the experimental data best of all. Problem (10) with a number
of criteria G was solved for a single tube with permeable walls as applied to plant leaves and the
same result was obtained (Kizilova 2000, 2003). Taking into account this conclusion, we
consider here the problem (10) with G={v} as applied to the hifurcation of tubes with

permeable walls. The Lagrange function is W=Z +| G. The conditions \/\//L1 =0 bring

2Ry 2
finaly to the nonlinear system of equations {f,(r,1) =0}, where r =dg/dq, 1 =L,/L,. In
contrast to the tubes with nonpermeable walls the relative diameters and lengths are not
independent here. The results of the numerical solution of this system are presented in Fig.6.
Different curves correspond to the different pairs (Z,,V) of optimal criteriain (10), where j =0

correspond to the motion in the tube with nonpermeable walls, j =12 — the tube with

permeable walls at w=w, =const and w=2w,(1- y) respectively. Two solid lines in fig.6
correspond to the upper and lower boundaries of the measured data (r1 [1.351.89],
| T [0.25;2.97] (Kizilova 2000)) for a number of leaves with different \enation types including
Morus Alba lesf.

The models of the optimal bifurcation of the tubes with permeable walls both at constant
and linearly decreasing functions w agree closely with the measured data. Two cases of wW(y)
dlightly differ. For comparison the results of solution of the problem (10) at G =S are presented
in fig.6 as well. All these curves lie closely to parameters of the optimal bifurcation of tubes with

impermeable walls and do not agree with the real data. Consequently the model of optimal
bifurcation of the tubes with permeable walls, which deliver the liquid with a minimal hydraulic



resstance at a given volume is best suited to the measured data This model perfectly
corresponds to physics of the sap motion through the vein systems of the leaves.

d = Conclusons.  The branching
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Figure 6. The dependences r (1) for different optimal mathematical model of sap

symmetrical bifurcations.

motion in plant vessels and the
solution of the optimization

problem. The solutions for the optimal pipelines which deliver water a minimal hydraulic
resistance at a given total volume of the pipelinewith either permeable or impermeable walls lie
quite close each other and approximate the measured data perfectly.
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