. . [544.252.23+532.783]-022.532 02.00.03 – – 2020 « « » : , , , : , , . . , , , . 1600 , 4, . 7-79) , ; 18 . ( 2021 64.051.14 , 61022, . , . . , , 4) « 06 » 2021 . ( , 61022, 1 . , . ( ( . , (OLED), . ( ) , , , (1,5–6 ) . : 5–30 ) , ). ( , ) , SSFLC , (Surface Stabilized Ferroelectric Liquid Crystal, SSFLC), ( ), . , , , , (<2 ), . , – (Deformed Helix DHFLC , . , , , , , , , , DHFLC ( ~ p02). , » , . , SSFLC ( , Ferroelectric Liquid Crystal, DHFLC), , . . , ), DHFLC , , 300–500 . , « « 2 , , 100—110 , , — 300–350 DHFLC, . . , » . , . , , , — , , « , 100 . , : », 2012–2016 0112U002186; « », 2017–2018 », 2017 . . 0117U001684; « 0117U001282; « », 2018 ) . , . 0118U000755. ( . . » . : ; , ; 1,1,1, ; 1,1,1-2-2; 1,1,1- 3 ( , . : , ; O ; . : , . : ( ), ( ( . : 1,1,1, -2, ; ; ; , 1,1,12,2,2C* , , ; (R,S)1,1,1-2(S)-1,1,1-2; , -2l , , (S)(R) -22,2,2-1; ), ) ( , , ), , ( ) , , ; , , , , ) , ; , (S)-1,1,1- -1- 4 , , . . C* (R); , (S)-1,1,1- -2- ; , , ; – . , , . , . . ., . .; 1 , . . . . . . .; . .; . ., . . . . . ., . ., . ., « « » (2013, 2015, 2017), XXV «International Liquid Crystal Conference» ( , , 2014), V «Nanotechnology and nanomaterials» ( , , 2016), XVI «International Conference on Ferroelectric Liquid Crystals» ( , , 2017). . 10 , 4 , Scopus, 3 3 . . 184 , , , (160 ); 16 , 75 18 . 5 , , . , . , . : p0 – ( 150 2 . , , ( , ), 1/p0 = C, , – 60 (PS) . . , -1 (1): (1) ; , ). , : 1) , , ; 2) PS , , PS; 3) ; 4) ; 5) . , 1 1,1,1. 1). 2, -2– 3. , , , , , , , 6 1: R = CnH2n+1, n = 4—8 2: R = -C6H4CH3 SR-3, SS-3: n = 5—10 .1 1—3, . 1—3 4, 5 6 . 2), 7( 1). n = 4 ( ), 5 ( ), 6 ( ), 7 ( ), 8 ( ), 9 ( ), 10 ( ) R-4 S-4 R-5 .2 O F3C + OAlk R MgBr R = CnH2n+1, Alk = Et: Et2O, rt CF3 , -80 oC 6 7 R = p-C6H4CH3, Alk = i-Pr: Et2O, To HO R 4, 5 1 R-4, R-5 R-4 R-5 2). , . 8 S-8/R-8, R-5, (S)- ( 4, 5 8 R-4, R-5 S-8/R-8 2 R-4, R-5 . , ( ) ( ) 4 . 9( . . 3), , 10—12 l (13). 9, X = OH, Cl 10 11 12 13 .3 9—13 7 (RS) 14 ( 3) ( (R/S) 1). 9—13 4, 5 14 , : ( , , 5) 0.25 %. , rac-4, 5 1). 4, 5 RS; , (R),l 3 (10—12) 14 (13) ( : , ) 9, R( 1, . 1). 1 9–13 Rs – 0 0 0 1,40 1,84 2,39 2,53 3,18 R/S – – – – 49:51 51:49 49:51 50:50 50:50 Rs 2,30 0 0 0 1,20 1,29 1,38 1,32 1,81 : R-4, R-5 ( R-4, (92—96 %) R-4 ( . 1, 3, 5). S-8 4), , R-4 . 2), R/S 72:28 – – – 51:49 49:51 49:51 50:50 50:50 2). 1 2 3 4 5 6 7 8 9 13 9 10 11 12 13 13 13 13 13 racracracracracracracracrac-5 (R)2) 8( . R-4 (S)S-4 (R)- S-8/R-8 ( 2, R-8). S-8 S-4 S-8/R-8 R-4/S-4 4 8 2 4, 5 , ,% 1 2 3 4 5 6 7 8 9 10 11 12 RSRSRSRSRRRR-5 99,8 99,1 99,4 99,4 99,7 99,0 99,6 99,6 97,8 98,8 78,8 90,4 1, 2 5), % 75 27 83 22 60 29 78 25 61 74 41 77 , 25 [ ]d ,° ,% 99,8 >99,5 99,2 >99,5 >99,5 >99,5 96,2 >99,5 — — 44,0 >99,5 >99,5 99,4 >99,5 >99,5 >99,5 96,0 >99,5 94,0 99,4 95,4 — 4, 5 +27,0 –29,1 +26,5 –30,3 +25,0 –28,0 +25,1 –28,2 +25,0 +23,0 +22,5 –31,8 (15). 4, 5 15 1-3 17 4 16 5 19 ( , 17 ( =Et) : 18 , , 5, TBDMS. 3( ), . 6 =Et) 20 . 21, , , ; . , 16 17 5) 17 ( a) 17 ( =Et) 4, 6), 3 ( 9 : . , 16 M = Et, PG = Bn PhCH2Br, Ag 2O, Et 2O CH 3 HO (S) 20 i O O M . 17 M = Et: PhCH2OH, [PTSA] CH 3 HO (S) O O Br O Ph CH 3 PG = Bn: [PTSA] PG O (S) OEt O PG = TBDMS: TBDMS-Cl, , NEt3, 93% , CH2Cl 2 CH3 , PG = Bn: PG = TBDMS: KOH (aq.), LiOH (aq.), MeOH, THF, rt CH 3 PG O (S) CF3 OH M = Et: [PTSA] HO O O Br H2 , [Pd/C], EtOAc O CF3 HO (R) C 6H 13 CH 3 PG O (S) HO (R) C 6H 13 M = Ca: [H2SO 4] , (S) O O Ph 78% , CH2 Cl2 20 H 2, [Pd/C] , -BuOH MeOH O H3C O (S) O (R) C6 H13 PG = TBDMS: TBAF, CH3 OCH3 O 18 O CF3 O (S) PG = Bn: H2 (30 .), [Pd/C], EtOAc 64% CH 3 O Br (S) 21 OH KHSO4 (aq.), MeOH HO O (R) C 6H 13 19 O CF3 16 O 6 3. , (16 19) . 1 . 1–3 , . 22 , ( , 23 ) . 4). ( ) ( , . 80,3 mol % C 6H 13 N N N 19,7 mol % C8 H17 N C 7H 15 C 5H 11 ). 50 mol % C8H17 N N N N 57 oC OC 8H17 22 159 oC 99 oC 23 50 mol % C8 H17 6 oC 69 oC 64 oC OC10 H 21 I so N SmC 35 oC Cr1 Cr2 I so N SmA SmC <16 oC Cr . 4 22 23 10 1 . , , , 1e (n=6) . 1, SmC* 2 1 2 60 º , . 2. ( ) T, ( C) 120 100 80 60 40 20 0 o , 3 (SR, 1 3 , 1 22 22 .5 ). 1 22, , 20 2 1, 2 . 6) 2 . SmC* , — (2/22), , 22, .% ), , SmC* SmC* . . , (BP). Iso N* SmA* ( ) T, ( C) 160 140 120 100 80 60 40 20 N Iso BP N* SmA* SmC* Cr+SmC* o SmC* SmC Cr 4 5 6 n in FOTDA-n 7 8 0 0 5 10 15 20 25 C FOTDA-Ar, ( . %) . 5 1 ) 2 SmC* SR1, 1, i- (SmC*FI) SR-3e 14 (22 . %) SSSmC*A (29 , . .% . %) . SS , SSSR, 22 ( ). 22 22 SmC* . , , . ~25 . % 22 ( ). 33 . % (SmC*A) , SmC*FI , SS 11 . (p0) (2 ) p0 = max SmC* N* max max/n (2 ) : p0 = , 22 .6 ( ) -1 ) 50 40 30 20 10 3 4 5 6 7 8 max/2n, SmC* (2 ) – max (2 ) ;n– 1,6. . ( ) ) p 0,( 500 400 300 200 100 20 30 40 50 60 o T, ( C) 70 6.0 11.8 18.3 22.0 .% .% .% .% 80 90 100 , ( n . 6 ( ) 0, /22. . 0, 25 .( ) – (n = 4–8) 23 ( ) 3 ( ) 1 –, 22, 23 –1 , 22 N* SmC* 6 — +22 4 << 8 –18 5 –32 6 –36 7 –46 8 –47 -C6H4CH3 |31| –29 . – . 24 n Ar 23 SmC* — –11 –18 –22 –25 –27 –19 22 ( ) ( ) (1). 2, 24 , p0 22 24, 1 . 2 . 3. 1 2 3 4 5 6 7 S-24 R-1 R-1 R-1 R-1 R-1 R-2 . 2–6) 25 º , ( 3 17 , . %). SmC* i 12 ( .1 4) F3 Ps. , , , : ( 2 54 . – SmC*, N* ( ) . ( ) . 7). SmC* ( 4, . 7) , N* . 2–6). 2 , , , , , CH3 , , . 7 , SR-3 ( . 8 ). 22. /22. ( ) -1 ( ) ( ) (1/ 0) SR8 6 ), -1 .8 80 60 , ( ) -1 8 6 ), 80 60 40 20 0 0 5 10 15 20 25 30 35 -20 ) , ( 0 -1 , -1 -1 -1 ,( ) , -1 ,( ( 0 4 2 0 0 -2 5 10 16,8 17,6 40 20 0 4 2 0 -2 0 15 20 25 -20 0 ( ), .% ( ), .% .8 22 ( ) SR-3 ( ) ( ) ( ) 13 1 22 SR-3 . , :… , , SmC* SmCA* . T SmC* 16.8—17.6 , , , 18,6 SSFLC, 24 >d ( . % ). 3 , , ), , , 0 p0 SmCA*. SR-3, , SR-3 . SRSR1. , 0 , . , 1, 22 12 . %, , . . , , 1 SR1 (Ps, ) ( r)) . (SmC*) 22 (SmC*FI SmC*A) – ( ), , SR-3 . –, 14 , , ( DHFLC), , . ) ) ) ) ) ( 50 ) 1500:1 ( . 9), e, 1. p0 = 218 . 9 ( ) 25 ( ) 33 .% .% p0 = 118 ( , ( ) 24 S-1e . . % SR- p0 85 p0 65 p0 64 1,7 . % : , , ( ) 33 22) . % , ( ) 33 4:3 .% 36 40 . S-1e/SR-3 22 SmCA* 15 . %, , 36 % DHAFLC (400 , S-1e, 35 . %. , – ( , . – (PS/ ), SR. , PS, 3 4). SmC*A . ( ) , SRSR, . , PS) SR, 15 . %, 2 36 0 22 ), (70 (1000:1). , ) . SmC*A. ( , ( off)) SmCA* SmC* . 1. 15 , -/ . 12 .% R-1 SR-3 4 22 R, 1 2 RSR46 >90 –1 SRPS/ , /( 2 6,2 10,1 3, , , 25. ( , TFLA) TFLA 25. . %) , 3,1 2,1 off, 43 25 7). 25 7 . , . , 16 . , . . 1. ), . : ( ( ). 2. l , – , . 3. (R)-1,1,1Lipase MY. 2(R)(S)4. : (S). 41,4, 1,1,15. ( n-C5–C9), , 1,1,1, (20–33 . 15 6. -2- -2. (S,R)-1,1,1, 79- , . %) SmC* -2. -2, -2>99.5% (S)-1,1,1Lipase MY 30 % 85% , . ) 17 : . , , , , . 16-18 SS- .% . . 7. 1,1,1-21,1,115 100 8. -2, (1:1500), , . ( 20—40 ), –1 , -2- -2. % , . 1,1,1- . , : 1. Syntheses of (R)- and (S)-enantiomeric 1,1,1-trifluoromethyl-2-alkanols with high enantiomeric purity controlled through derivatization with L-menthyl phthalate / V. Mikhailenko, D. Yedamenko, G. Vlasenko, A. Krivoshey, V. Vashchenko // Tetrahedron Lett. – 2015. – Vol. 56, Is. 43. – P. 5956–5959. (Scopus Web of Science). , , , , . 2. Ultrashort helix pitch antiferroelectric liquid crystals based on chiral esters of terphenyldicarboxylic acid / E. P. Pozhidaev, V. V. Vashchenko, V. V. Mikhailenko, A. I. Krivoshey, V. A. Barbashov, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok // Journal of Materials Chemistry C. – 2016. – Vol. 4, Is. 43. – P. 10339–10346. (Scopus). , , . 3. The nano-scale pitch ferroelectric liquid crystal materials for modern display and photonic application employing highly effective chiral components: trifluoromethylalkyl 1,1,1- 18 diesters of p-terphenyldicarboxylic acid / V. Mikhailenko, A. Krivoshey, E. Pozhidaev, E. Popova, A. Fedoryako, S. Gamzaeva, V. Barbashov, A. K. Srivastava, H. S. Kwok, V. Vashchenko // Journal of Molecular Liquids. – 2019. – Vol. 281. – P. 186–195. (Scopus Web of Science). , , . 4. Tandem crystallization strategies for resolution of trifluorolactic acid [CF3CH(OH)COOH] by chiral benzylamines / L. W-Y. Wong, E. V. Vashchenko, Y. Zhao, H. H-Y. Sung, V.V. Vashchenko, V. Mikhailenko, A.I. Krivoshey, I. D. Williams // Chirality. – 2019. – Vol. 31, Is. 11. – P. 979–991. (Scopus Web of Science). . 5. . 113595 . 1,1,1-2/ . ., . ., . . – 2016 00112 ; . 04.01.16 ; . 10.02.17, . 3. – 7 c. . 6. . 113594 . / . ., . ., . ., . ., . .– 2016 00060 ; . 04.01.16 ; . 10.02.17, . 3. – 8 c. . 7. . 119903 . ((S)-1-(((S)-2)-4,4''((S)-1-(((R)-2)-4,4''i i / . ., . ., . .– 2017 08371 ; . 14.08.17 ; . 27.08.19, . 16. – 19 c. , , . , : 8. Mikhailenko V. V. Esters of p-terphenyldicarboxylic acid and chiral trifluoromethyl alcohols as chiral dopants for short-pitch induced ferroelectric liquid crystals / V. V. Mikhailenko, A. I. Krivoshey, V. V. Vashchenko // 25rd International Liquid Crystal Conference, 29 June – 4 Jule 2014 : abstr. – Dublin, 2014. – P. 104. , . 9. Induced helical nanostructures in ferroelectric liquid crystals / V. Mikhailenko, E. Popova, S. Gamzaeva, E. Pozhidaev, V. Vashchenko // International Conference NANO-2016, 24–27 August 2016 : abstr. – Lviv, 2016. – P. 103. , 19 . 10. Chiral trifluoromethylalkyl esters of terphenyldicarboxylic acid – highly effective conponents for short-pitch FLC mixtures / V. V. Mikhailenko, A. I. Krivoshey, E. P. Pozhidaev, E. V. Popova, A. P. Fedoryako, V. G. Chigrinov, H. S. Kwok, V. V. Vashchenko // 16th International Conference on Ferroelectric Liquid Crystals, 4–7 December 2017 : abstr. – Hong Kong, 2017. – P. 64. , , . . . .– 02.00.03 – . . .– ,– , 2020. . . . , , 1,1,1, 1,1,1-2, 2,2,2-2. (R). . . . – . , , : , , , . , (S), 1,1,1-2-1- . 20 ABSTRACT Mikhailenko V. V. Chiral diesters of p-terphenyl dicarboxylic acid and fluorinated alcohols as effective components of ferroelectric liquid crystals with a small helical pitch. – Manuscript. Thesis for a Candidate Degree in Chemistry, Speciality 02.00.03 – Organic chemistry. – V. N. Karazin Kharkiv National University of the Ministry of Education and Science of Ukraine, – Kharkiv, 2020. Ferroelectric liquid crystal (FLC) materials are promising alternative to nematic LCs, due to their fast switching in the range of hundreds to microseconds under moderate driving voltages. For the realization of modern electro-optical effects from FLC materials, it is required to induce a nanoscale pitch of the helicoid and high spontaneous polishing. We have stated suitability criteria of chiral organic compounds for practical use in the short-pitch FLC materials: first one is high helical twisting power (HTP) which is characteristic of CCs and is inversely proportional to a value of the pitch of a supramolecular helix. HTP is to be not less than 35 m–1. Second, effective induction of spontaneous polarization (PS) in a FLC at the level at least 150 nC/cm2 should take place. Relying on some regularities found in literature, we have stated primary structural criteria which may affect effectivity of chiral components intended for use in the short-pitch FLC materials: (1) presence of two flexible polar groups separated by p-terphenyl core in a CC molecule; (2) presence of polar trifluoromethyl groups at chiral centers; (3) presence of two flexible terminal alkyl substitutes which may take an effect by strengthening interaction between molecules in adjacent smectic layers; (4) substitution of an alkyl at the chiral center with more polarizable aryl moiety; (5) introduction of a bifunctional lactate moiety to CC molecules. The thesis is aimed at synthesis and study of new efficient fluorine-containing chiral components of ferroelectric LC materials with short helical pitch. Preparative synthetic methods for new chiral diesters of p-terphenyldicarboxylic acid and fluorine-containing alcohols are developed. Systematic series of chiral symmetric of p-terphenyldicarboxylic acid diesters containing 1,1,1-trifluoroalkane-2-olic and 2,2,2-trifluoro-1-p-tolylethanolic residues as well as combination of chiral lactate and 1,1,1-trifluoroalkane-2-ol fragments are obtained. New chiral derivatizing reagent l-methylphthalate is proposed for determining enantiomeric purity of chiral secondary fluorine-containing alcohols being key intermediates for the synthesis of the target diesters. Using l-menthylphthalate, synthetic methods for enatiomerically pure (R)- and (S)-enantiomeric 1,1,1trifluoroalkane-2-ols are developed. Properties of the target compounds as chiral components of ferroelectric LC materials are investigated. The effect of molecular structure of chiral diesters of p-terphenyldicarboxylic acid on the properties of short-helix FLCs is obtained. Based on the new chiral components, FLC materials for use in modern photonic devices were developed. An effective method for the resolution of racemic trifluorolactic acid is proposed. Key words: liquid crystals, ferroelectric liquid crystalline materials, smectic- C mesophase, chiral components, chiral symmetric diesters, helical pitch, helical twisting power.