«Journal of Kharkiv University», ¹1001, 2012 physical series «Nuclei, Particles, Fields», issue 2 /54/ O.S. Posukhov, V.Y. Semenenko... Modified absorption method... 135 ɍȾɄ 539.219.3 ɆɈȾɂɎɂɐɂɊɈȼȺɇɇɕɃ ȺȻɋɈɊȻɐɂɈɇɇɕɃ ɆȿɌɈȾ ɈɉɊȿȾȿɅȿɇɂə ɉȺɊȺɆȿɌɊɈȼ ȾɂɎɎɍɁɂɂ Ⱥ.ɋ. ɉɨɫɭɯɨɜ, ȼ.ȿ. ɋɟɦɟɧɟɧɤɨ, ɇ.Ƚ. ɋɬɟɪɜɨɟɞɨɜ, Ɍ.Ⱥ. Ʉɨɜɚɥɟɧɤɨ ɏɚɪɶɤɨɜɫɤɢɣ ɧɚɰɢɨɧɚɥɶɧɵɣ ɭɧɢɜɟɪɫɢɬɟɬ ɢɦɟɧɢ ȼ.ɇ. Ʉɚɪɚɡɢɧɚ 61108, ɩɪ. Ʉɭɪɱɚɬɨɜɚ, 31, ɝ. ɏɚɪɶɤɨɜ e-mail: posuhov@yandex.ru Received 3 May 2012, accepted 22 May 2012 ȼ ɪɚɛɨɬɟ ɩɪɟɞɫɬɚɜɥɟɧɵ ɦɨɞɢɮɢɰɢɪɨɜɚɧɧɵɣ ɚɛɫɨɪɛɰɢɨɧɧɵɣ ɦɟɬɨɞ ɞɥɹ ɢɫɫɥɟɞɨɜɚɧɢɹ ɞɢɮɮɭɡɢɢ ɜ ɦɟɬɚɥɥɚɯ ɢ ɫɩɥɚɜɚɯ ɢ ɫɬɪɭɤɬɭɪɚ ɩɪɢɛɨɪɧɨɝɨ ɢɡɦɟɪɢɬɟɥɶɧɨɝɨ ɤɨɦɩɥɟɤɫɚ ɞɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɟɟ ɩɚɪɚɦɟɬɪɨɜ. Ɋɚɡɪɚɛɨɬɚɧ ɫɩɨɫɨɛ ɝɪɚɞɢɟɧɬɧɵɯ ɢɡɦɟɪɟɧɢɣ, ɫ ɩɨɦɨɳɶɸ ɤɨɬɨɪɵɯ ɪɟɚɥɢɡɭɟɬɫɹ ɨɩɪɟɞɟɥɟɧɢɟ ɷɧɟɪɝɢɢ ɚɤɬɢɜɚɰɢɢ ȿ ɢ ɩɪɟɞɷɤɫɩɨɧɟɧɰɢɚɥɶɧɨɝɨ ɦɧɨɠɢɬɟɥɹ Do ɡɚ ɨɞɢɧ ɰɢɤɥ ɞɢɮɮɭɡɢɨɧɧɨɝɨ ɨɬɠɢɝɚ. ɉɪɨɜɟɞɟɧɵ ɤɨɧɬɪɨɥɶɧɵɟ ɢɡɦɟɪɟɧɢɹ ɩɚɪɚɦɟɬɪɨɜ ɞɢɮɮɭɡɢɢ ɧɚ ɫɩɥɚɜɚɯ ɧɢɤɟɥɹ ɢ ɚɥɸɦɢɧɢɹ, ɩɨɥɭɱɟɧɧɵɯ ɧɚɩɪɚɜɥɟɧɧɨɣ ɤɪɢɫɬɚɥɥɢɡɚɰɢɟɣ. ɉɨɥɭɱɟɧɧɵɟ ɪɟɡɭɥɶɬɚɬɵ ɩɨ ɩɚɪɚɦɟɬɪɚɦ ɞɢɮɮɭɡɢɢ ɯɨɪɨɲɨ ɫɨɝɥɚɫɭɸɬɫɹ ɫ ɢɡɜɟɫɬɧɵɦɢ ɥɢɬɟɪɚɬɭɪɧɵɦɢ ɞɚɧɧɵɦɢ. ɄɅɘɑȿȼɕȿ ɋɅɈȼȺ: ɞɢɮɮɭɡɢɹ, ɦɨɞɢɮɢɰɢɪɨɜɚɧɧɵɣ ɚɛɫɨɪɛɰɢɨɧɧɵɣ ɦɟɬɨɞ, ɝɪɚɞɢɟɧɬ ɬɟɦɩɟɪɚɬɭɪɵ MODIFIED ABSORPTION METHOD OF DIFFUSION PARAMETERS DETERMINATION O.S. Posukhov, V.Y. Semenenko, M.G. Styervoyedov, T.O. Kovalenko Karazin Kharkov National University 61108, Kurchatova ave, 31, Kharkov, Ukraine Both the modified method for the study of diffusion in metals and alloys and the structure of instrumental measuring complex has been presented. The new method for the determination of activation energy E and preexponential factor Do for one cycle of the diffusion annealing has been developed. The results obtained for the diffusion parameters are in good agreement with published data. KEY WODS: diffusion, modified absorption method, temperature gradient ɆɈȾɂɎȱɄɈȼȺɇɂɃ ȺȻɋɈɊȻɐȱɃɇɂɃ ɆȿɌɈȾ ȼɂɁɇȺɑȿɇɇə ɉȺɊȺɆȿɌɊȱȼ ȾɂɎɍɁȱȲ Ɉ.ɋ. ɉɨɫɭɯɨɜ, ȼ.ȯ. ɋɟɦɟɧɟɧɤɨ, Ɇ.Ƚ. ɋɬɽɪɜɨɽɞɨɜ, Ɍ.Ɉ. Ʉɨɜɚɥɟɧɤɨ ɏɚɪɤɿɜɫɶɤɢɣ ɧɚɰɿɨɧɚɥɶɧɢɣ ɭɧɿɜɟɪɫɢɬɟɬ ɿɦɟɧɿ ȼ.ɇ. Ʉɚɪɚɡɿɧɚ 61108, ɩɪ. Ʉɭɪɱɚɬɨɜɚ, 31, ɦ. ɏɚɪɤɿɜ ɍ ɪɨɛɨɬɿ ɩɪɟɞɫɬɚɜɥɟɧɨ ɦɨɞɢɮɿɤɨɜɚɧɢɣ ɚɛɫɨɪɛɰɿɣɧɢɣ ɦɟɬɨɞ ɞɥɹ ɞɨɫɥɿɞɠɟɧɧɹ ɞɢɮɭɡɿʀ ɭ ɦɟɬɚɥɚɯ ɬɚ ɫɩɥɚɜɚɯ, ɚ ɬɚɤɨɠ ɫɬɪɭɤɬɭɪɭ ɩɪɢɥɚɞɨɜɨɝɨ ɜɢɦɿɪɸɜɚɥɶɧɨɝɨ ɤɨɦɩɥɟɤɫɭ ɞɥɹ ɜɢɡɧɚɱɟɧɧɹ ʀʀ ɩɚɪɚɦɟɬɪɿɜ. Ɋɨɡɪɨɛɥɟɧɨ ɫɩɨɫɿɛ ɝɪɚɞɿɽɧɬɧɢɯ ɜɢɦɿɪɸɜɚɧɶ, ɡɚ ɞɨɩɨɦɨɝɨɸ ɹɤɢɯ ɪɟɚɥɿɡɭɽɬɶɫɹ ɜɢɡɧɚɱɟɧɧɹ ɟɧɟɪɝɿʀ ɚɤɬɢɜɚɰɿʀ ȿ ɬɚ ɩɟɪɟɞɟɤɫɩɨɧɟɧɰɿɚɥɶɧɨɝɨ ɦɧɨɠɧɢɤɚ Do ɡɚ ɨɞɢɧ ɰɢɤɥ ɞɢɮɭɡɿɣɧɨɝɨ ɜɿɞɩɚɥɭ. ɉɪɨɜɟɞɟɧɨ ɤɨɧɬɪɨɥɶɧɿ ɜɢɦɿɪɸɜɚɧɧɹ ɩɚɪɚɦɟɬɪɿɜ ɞɢɮɭɡɿʀ ɧɚ ɫɩɥɚɜɚɯ ɧɿɤɟɥɸ ɬɚ ɚɥɸɦɿɧɿɸ, ɨɬɪɢɦɚɧɢɯ ɧɚɩɪɚɜɥɟɧɨɸ ɤɪɢɫɬɚɥɿɡɚɰɿɽɸ. Ɉɬɪɢɦɚɧɿ ɪɟɡɭɥɶɬɚɬɢ ɡɚ ɩɚɪɚɦɟɬɪɚɦɢ ɞɢɮɭɡɿʀ ɞɨɛɪɟ ɫɩɿɜɩɚɞɚɸɬɶ ɡ ɜɿɞɨɦɢɦɢ ɥɿɬɟɪɚɬɭɪɧɢɦɢ ɞɚɧɢɦɢ. ɄɅɘɑɈȼȱ ɋɅɈȼȺ: ɞɢɮɭɡɿɹ, ɦɨɞɢɮɿɤɨɜɚɧɢɣ ɚɛɫɨɪɛɰɿɣɧɢɣ ɦɟɬɨɞ, ɝɪɚɞɿɽɧɬ ɬɟɦɩɟɪɚɬɭɪɢ Ⱦɢɮɮɭɡɢɹ ɹɜɥɹɟɬɫɹ ɮɢɡɢɱɟɫɤɢɦ ɩɪɨɰɟɫɫɨɦ, ɨɩɪɟɞɟɥɹɸɳɢɦ ɫɬɚɛɢɥɶɧɨɫɬɶ ɢ ɢɡɦɟɧɟɧɢɟ ɮɢɡɢɤɨɦɟɯɚɧɢɱɟɫɤɢɯ ɫɜɨɣɫɬɜ ɦɟɬɚɥɥɨɜ ɢ ɫɩɥɚɜɨɜ ɩɪɢ ɤɪɢɬɢɱɟɫɤɢɯ ɪɟɠɢɦɚɯ ɷɤɫɩɥɭɚɬɚɰɢɢ – ɜɨɡɞɟɣɫɬɜɢɢ ɜɵɫɨɤɢɯ ɬɟɦɩɟɪɚɬɭɪ, ɦɟɯɚɧɢɱɟɫɤɢɯ ɧɚɝɪɭɡɨɤ, ɪɚɞɢɚɰɢɨɧɧɨɝɨ ɨɛɥɭɱɟɧɢɹ, ɫɢɥɶɧɵɯ ɷɥɟɤɬɪɢɱɟɫɤɢɯ ɢ ɦɚɝɧɢɬɧɵɯ ɩɨɥɟɣ. Ɂɧɚɧɢɟ ɱɢɫɥɟɧɧɵɯ ɡɧɚɱɟɧɢɣ ɨɫɧɨɜɧɵɯ ɩɚɪɚɦɟɬɪɨɜ ɞɢɮɮɭɡɢɢ - ɷɧɟɪɝɢɢ ɚɤɬɢɜɚɰɢɢ ȿ ɢ ɩɪɟɞɷɫɤɩɨɧɟɧɰɢɚɥɶɧɨɝɨ ɦɧɨɠɢɬɟɥɹ Do ɜ ɡɚɜɢɫɢɦɨɫɬɢ ɤɨɷɮɮɢɰɢɟɧɬɚ ɞɢɮɮɭɡɢɢ D ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ Ɍ ɩɪɢ ɪɚɡɥɢɱɧɵɯ ɫɢɥɨɜɵɯ ɜɨɡɞɟɣɫɬɜɢɹɯ ɧɚ ɨɛɪɚɡɟɰ: (1) D = Do exp(- ȿ / RT), ɝɞɟ R – ɩɨɫɬɨɹɧɧɚɹ Ɋɢɞɛɟɪɝɚ, ɩɨɡɜɨɥɹɟɬ ɨɩɪɟɞɟɥɢɬɶ, ɜ ɤɨɧɟɱɧɨɦ ɫɱɟɬɟ, ɜɨɡɦɨɠɧɨɫɬɶ ɩɪɢɦɟɧɟɧɢɹ ɫɩɥɚɜɚ ɜ ɬɪɟɛɭɟɦɵɯ ɫɥɨɠɧɵɯ ɭɫɥɨɜɢɹɯ. ɗɬɢ ɞɚɧɧɵɟ ɩɨɥɭɱɚɸɬ ɢɡ ɝɪɚɮɢɤɨɜ ɡɚɜɢɫɢɦɨɫɬɢ ɥɨɝɚɪɢɮɦɚ ɤɨɷɮɮɢɰɢɟɧɬɚ ɞɢɮɮɭɡɢɢ ɨɬ ɨɛɪɚɬɧɨɣ ɬɟɦɩɟɪɚɬɭɪɵ. Ʉɨɷɮɮɢɰɢɟɧɬɵ ɞɢɮɮɭɡɢɢ ɜ ɞɢɚɩɚɡɨɧɟ ɬɟɦɩɟɪɚɬɭɪ ɦɨɝɭɬ ɛɵɬɶ ɩɨɥɭɱɟɧɵ ɦɧɨɝɢɦɢ ɦɟɬɨɞɚɦɢ, ɜ ɬɨɦ ɱɢɫɥɟ ɢ ɦɟɬɨɞɨɦ ɪɚɞɢɨɚɤɬɢɜɧɨɣ ɦɟɬɤɢ. Ɉɞɧɢɦ ɢɡ ɜɵɫɨɤɨɱɭɜɫɬɜɢɬɟɥɶɧɵɯ ɧɟɪɚɡɪɭɲɚɸɳɢɯ ɦɟɬɨɞɨɜ ɹɜɥɹɟɬɫɹ ɚɛɫɨɪɛɰɢɨɧɧɵɣ ɦɟɬɨɞ, ɩɨɡɜɨɥɹɸɳɢɣ ɫ ɜɵɫɨɤɨɣ ɬɨɱɧɨɫɬɶɸ ɨɩɪɟɞɟɥɢɬɶ ɨɫɧɨɜɧɵɟ ɩɚɪɚɦɟɬɪɵ ɞɢɮɮɭɡɢɢ ɩɨ ɢɡɦɟɧɟɧɢɸ ɚɤɬɢɜɧɨɫɬɢ ɪɚɞɢɨɚɤɬɢɜɧɨɝɨ ɢɡɨɬɨɩɚ ɧɚ ɩɨɜɟɪɯɧɨɫɬɢ ɢɫɫɥɟɞɭɟɦɨɝɨ ɨɛɪɚɡɰɚ ɞɨ ɢ ɩɨɫɥɟ ɞɢɮɮɭɡɢɨɧɧɨɝɨ ɨɬɠɢɝɚ. Ɉɞɧɚɤɨ, ɷɬɨɬ ɦɟɬɨɞ ɬɪɟɛɭɟɬ ɞɥɹ ɢɫɫɥɟɞɨɜɚɧɢɹ ɧɚɥɢɱɢɹ ɛɨɥɶɲɨɝɨ ɤɨɥɢɱɟɫɬɜɚ ɨɞɢɧɚɤɨɜɨ ɩɨɞɝɨɬɨɜɥɟɧɧɵɯ ɨɛɪɚɡɰɨɜ, ɤɚɠɞɵɣ ɢɡ ɤɨɬɨɪɵɯ ɨɬɠɢɝɚɟɬɫɹ ɜ ɜɵɫɨɤɨɦ ɜɚɤɭɭɦɟ ɨɩɪɟɞɟɥɟɧɧɨɟ ɜɪɟɦɹ t ɩɪɢ ɡɚɞɚɧɧɨɣ ɬɟɦɩɟɪɚɬɭɪɟ T. ɉɪɢ ɷɬɨɦ ɧɚɛɟɝɚɟɬ ɡɧɚɱɢɬɟɥɶɧɨɟ ɫɭɦɦɚɪɧɨɟ ɜɪɟɦɹ ɢɫɫɥɟɞɨɜɚɧɢɹ, ɚ ɬɚɤɠɟ ɩɪɨɹɜɥɹɸɬɫɹ ɩɨɝɪɟɲɧɨɫɬɢ, ɫɜɹɡɚɧɧɵɟ ɫ ɧɟɢɞɟɧɬɢɱɧɨɫɬɶɸ ɩɨɞɝɨɬɨɜɥɟɧɧɵɯ ɨɛɪɚɡɰɨɜ, ɤɨɧɟɱɧɵɦ ɜɪɟɦɟɧɟɦ ɩɨɞɴɟɦɚ ɬɟɦɩɟɪɚɬɭɪɵ ɞɨ ɡɚɞɚɧɧɨɝɨ ɞɥɹ ɤɚɠɞɨɝɨ ɨɛɪɚɡɰɚ ɭɪɨɜɧɹ, ɢɡɦɟɧɟɧɢɹ ɩɨɜɟɪɯɧɨɫɬɧɨɣ ɚɤɬɢɜɧɨɫɬɢ ɡɚ ɫɱɟɬ ɦɚɥɨɝɨ ɩɟɪɢɨɞɚ ɩɨɥɭɪɚɫɩɚɞɚ ɩɪɢɦɟɧɹɟɦɨɝɨ ɢɡɨɬɨɩɚ ɢ ɞɪɭɝɢɟ ɫɨɫɬɚɜɥɹɸɳɢɟ, ɜɥɢɹɸɳɢɟ ɧɚ ɬɨɱɧɨɫɬɶ ɷɤɫɩɟɪɢɦɟɧɬɨɜ. ɐɟɥɶɸ ɧɚɫɬɨɹɳɟɣ ɪɚɛɨɬɵ ɹɜɢɥɨɫɶ ɭɜɟɥɢɱɟɧɢɟ ɷɤɫɩɪɟɫɫɧɨɫɬɢ ɢɡɦɟɪɟɧɢɣ ɫ ɨɞɧɨɜɪɟɦɟɧɧɵɦ ɭɥɭɱɲɟɧɢɟɦ © Posukhov O.S., Semenenko V.Y., Styervoyedov M.G., Kovalenko T.O., 2012 136 «Journal of Kharkiv University», ¹ 1001, 2012 O.S. Posukhov, V.Y. Semenenko... ɬɨɱɧɨɫɬɢ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɯ ɢɫɫɥɟɞɨɜɚɧɢɣ ɞɢɮɮɭɡɢɢ ɚɛɫɨɪɛɰɢɨɧɧɵɦ ɦɟɬɨɞɨɦ ɫ ɢɫɩɨɥɶɡɨɜɚɧɢɟɦ ɪɚɞɢɨɚɤɬɢɜɧɵɯ ɢɡɨɬɨɩɨɜ, ɚ ɰɟɥɶɸ - ɪɚɡɪɚɛɨɬɤɚ ɫɩɨɫɨɛɚ ɝɪɚɞɢɟɧɬɧɵɯ ɢɡɦɟɪɟɧɢɣ, ɫ ɩɨɦɨɳɶɸ ɤɨɬɨɪɵɯ ɦɨɠɧɨ ɪɟɚɥɢɡɨɜɚɬɶ ɨɩɪɟɞɟɥɟɧɢɟ ɷɧɟɪɝɢɢ ɚɤɬɢɜɚɰɢɢ ȿ ɢ ɩɪɟɞɷɫɤɩɨɧɟɧɰɢɚɥɶɧɨɝɨ ɦɧɨɠɢɬɟɥɹ Do ɡɚ ɨɞɢɧ ɰɢɤɥ ɞɢɮɮɭɡɢɨɧɧɨɝɨ ɨɬɠɢɝɚ, ɚ ɬɚɤɠɟ ɟɝɨ ɪɟɚɥɢɡɚɰɢɹ ɜ ɜɢɞɟ ɩɪɢɛɨɪɧɨɝɨ ɤɨɦɩɥɟɤɫɚ. ɉɈɋɌȺɇɈȼɄȺ ɗɄɋɉȿɊɂɆȿɇɌȺ ȼ ɨɫɧɨɜɭ ɩɪɟɞɥɚɝɚɟɦɨɝɨ ɫɩɨɫɨɛɚ ɢɡɦɟɪɟɧɢɣ ɜɡɹɬ ɤɥɚɫɫɢɱɟɫɤɢɣ ɚɛɫɨɪɛɰɢɨɧɧɵɣ ɦɟɬɨɞ ɨɩɪɟɞɟɥɟɧɢɹ ɩɚɪɚɦɟɬɪɨɜ ɞɢɮɮɭɡɢɢ ɫ ɩɨɦɨɳɶɸ ɪɚɞɢɨɚɤɬɢɜɧɵɯ ɢɡɨɬɨɩɨɜ [1]. Ɉɛɪɚɡɟɰ ɞɥɹ ɢɫɫɥɟɞɨɜɚɧɢɹ ɢɡɝɨɬɚɜɥɢɜɚɟɬɫɹ ɜ ɜɢɞɟ ɩɪɹɦɨɭɝɨɥɶɧɨɣ ɩɥɚɫɬɢɧɵ, ɬɨɥɳɢɧɚ ɤɨɬɨɪɨɣ l ɦɧɨɝɨ ɛɨɥɶɲɟ ɧɚɧɨɫɢɦɨɝɨ ɬɨɧɤɨɝɨ ɫɥɨɹ ɞɢɮɮɭɧɞɢɪɭɸɳɟɝɨ ɷɥɟɦɟɧɬɚ h, (h<