75 «Â³ñíèê Õàðê³âñüêîãî óí³âåðñèòåòó», ¹ 880, 2009 ñåð³ÿ ô³çè÷íà «ßäðà, ÷àñòèíêè, ïîëÿ», âèï. 4 /44/ Â.À. Ëèñîâñêèé, Í.Ä. Õàð÷åíêî... Íîðìàëüíûé ðåæèì ðàçðÿäà... ɍȾɄ 533. 915 ɇɈɊɆȺɅɖɇɕɃ ɊȿɀɂɆ ɊȺɁɊəȾȺ ɉɈɋɌɈəɇɇɈȽɈ ɌɈɄȺ ȼ ȺɁɈɌȿ ɇɂɁɄɈȽɈ ȾȺȼɅȿɇɂə ȼ.Ⱥ. Ʌɢɫɨɜɫɤɢɣ, ɇ.Ⱦ. ɏɚɪɱɟɧɤɨ, Ɋ.ɇ. Ɏɚɬɟɟɜ ɏɚɪɶɤɨɜɫɤɢɣ ɧɚɰɢɨɧɚɥɶɧɵɣ ɭɧɢɜɟɪɫɢɬɟɬ 61077, ɩɥ. ɋɜɨɛɨɞɵ 4, ɏɚɪɶɤɨɜ, ɍɤɪɚɢɧɚ e-mail: _nadine_@list.ru ɉɨɫɬɭɩɢɥɚ ɜ ɪɟɞɚɤɰɢɸ 14 ɨɤɬɹɛɪɹ 2009 ɝ. Ɋɚɛɨɬɚ ɩɨɫɜɹɳɟɧɚ ɢɡɭɱɟɧɢɸ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ ɬɥɟɸɳɟɝɨ ɪɚɡɪɹɞɚ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ ɜ ɚɡɨɬɟ. ȼ ɪɟɡɭɥɶɬɚɬɟ ɩɪɨɜɟɞɟɧɧɵɯ ɷɤɫɩɟɪɢɦɟɧɬɨɜ ɞɜɭɦɹ ɪɚɡɥɢɱɧɵɦɢ ɦɟɬɨɞɚɦɢ ɩɨɤɚɡɚɧɨ, ɱɬɨ ɫɭɳɟɫɬɜɭɟɬ ɩɟɪɟɯɨɞɧɚɹ ɨɛɥɚɫɬɶ ɞɚɜɥɟɧɢɣ ɚɡɨɬɚ (ɨɬ ɩɨɪɨɝɨɜɨɝɨ ɞɚɜɥɟɧɢɹ ɩɨɹɜɥɟɧɢɹ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ ɩɪɢ ɪ ≈ 0,3 −0,4 Ɍɨɪɪ ɞɨ ɩɪɢɦɟɪɧɨ ɪ ≈ 2 Ɍɨɪɪ), ɜ ɩɪɟɞɟɥɚɯ ɤɨɬɨɪɨɣ ɧɨɪɦɚɥɶɧɚɹ ɩɥɨɬɧɨɫɬɶ ɬɨɤɚ, ɞɟɥɟɧɧɚɹ ɧɚ ɞɚɜɥɟɧɢɟ ɝɚɡɚ ɜ ɤɜɚɞɪɚɬɟ jn/p2 , ɧɟ ɨɫɬɚɟɬɫɹ ɩɨɫɬɨɹɧɧɨɣ ɜɟɥɢɱɢɧɨɣ, ɚ ɭɦɟɧɶɲɚɟɬɫɹ ɫ ɪɨɫɬɨɦ ɪɚɡɪɹɞɧɨɝɨ ɬɨɤɚ ɢ ɞɚɜɥɟɧɢɹ ɝɚɡɚ. ɗɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ ɩɨɥɭɱɟɧɵ ɡɧɚɱɟɧɢɹ ɜɟɥɢɱɢɧ jn/p2 ɞɥɹ ɪɚɡɥɢɱɧɵɯ ɦɚɬɟɪɢɚɥɨɜ ɤɚɬɨɞɨɜ ɢ ɪɚɡɥɢɱɧɵɯ ɞɚɜɥɟɧɢɣ ɚɡɨɬɚ. ɉɪɨɜɟɞɟɧɵ ɢɡɦɟɪɟɧɢɹ ɪɚɞɢɚɥɶɧɨɝɨ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ ɩɨ ɩɥɨɳɚɞɢ ɤɚɬɨɞɚ ɜ ɧɨɪɦɚɥɶɧɨɦ ɢ ɚɧɨɦɚɥɶɧɨɦ ɪɟɠɢɦɚɯ ɪɚɡɪɹɞɚ ɜ ɚɡɨɬɟ ɩɪɢ ɧɢɡɤɨɦ ɞɚɜɥɟɧɢɢ. ɍɫɬɚɧɨɜɥɟɧɨ, ɱɬɨ ɪɚɞɢɚɥɶɧɵɟ ɩɪɨɮɢɥɢ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ ɜ ɧɨɪɦɚɥɶɧɨɦ ɪɟɠɢɦɟ ɢɦɟɸɬ ɮɨɪɦɭ ɤɨɥɨɤɨɥɚ, ɩɪɢɧɢɦɚɹ ɦɚɤɫɢɦɚɥɶɧɨɟ ɡɧɚɱɟɧɢɟ ɜ ɰɟɧɬɪɟ ɪɚɡɪɹɞɧɨɝɨ ɩɹɬɧɚ. ɉɪɢ ɷɬɨɦ ɬɨɥɳɢɧɚ ɤɚɬɨɞɧɨɝɨ ɫɥɨɹ ɢɡɦɟɧɹɟɬɫɹ ɜ ɪɚɞɢɚɥɶɧɨɦ ɧɚɩɪɚɜɥɟɧɢɢ ɪɚɡɪɹɞɧɨɝɨ ɩɹɬɧɚ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ. Ɉɧɚ ɩɪɢɧɢɦɚɟɬ ɛóɥɶɲɢɟ ɡɧɚɱɟɧɢɹ ɜɛɥɢɡɢ ɤɪɚɟɜ ɩɹɬɧɚ, ɨɞɧɨɜɪɟɦɟɧɧɨ ɜ ɷɬɢɯ ɨɛɥɚɫɬɹɯ ɧɚɛɥɸɞɚɟɬɫɹ ɩɨɧɢɠɟɧɧɚɹ ɩɥɨɬɧɨɫɬɶ ɬɨɤɚ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫ ɰɟɧɬɪɨɦ ɪɚɡɪɹɞɧɨɝɨ ɩɹɬɧɚ. ɄɅɘɑȿȼɕȿ ɋɅɈȼȺ: ɪɚɡɪɹɞ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ, ɧɨɪɦɚɥɶɧɵɣ ɪɟɠɢɦ, ɪɚɞɢɚɥɶɧɚɹ ɫɬɪɭɤɬɭɪɚ, ɧɢɡɤɨɟ ɞɚɜɥɟɧɢɟ, ɚɡɨɬ. ɇɈɊɆȺɅɖɇɂɃ ɊȿɀɂɆ ɊɈɁɊəȾɍ ɉɈɋɌȱɃɇɈȽɈ ɋɌɊɍɆɍ ɍ ɇȱɌɊɈȽȿɇȱ ɇɂɁɖɄɈȽɈ ɌɂɋɄɍ ȼ.Ɉ. Ʌɿɫɨɜɫɶɤɢɣ, ɇ.Ⱦ. ɏɚɪɱɟɧɤɨ, Ɋ.ɇ. Ɏɚɬɽɽɜ ɏɚɪɶɤɿɜɫɶɤɢɣ ɧɚɰɿɨɧɚɥɶɧɵɣ ɭɧɿɜɟɪɫɢɬɟɬ 61077, ɏɚɪɤɿɜ, ɩɥ. ɋɜɨɛɨɞɢ 4, ɍɤɪɚʀɧɚ ɐɸ ɪɨɛɨɬɭ ɩɪɢɫɜɹɱɟɧɨ ɜɢɜɱɟɧɧɸ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɭ ɩɨɫɬɿɣɧɨɝɨ ɫɬɪɭɦɭ ɭ ɧɿɬɪɨɝɟɧɿ. Ⱦɜɨɦɚ ɪɿɡɧɢɦɢ ɦɟɬɨɞɚɦɢ ɩɨɤɚɡɚɧɨ, ɳɨ ɿɫɧɭɽ ɩɟɪɟɯɿɞɧɢɣ ɞɿɚɩɚɡɨɧ ɬɢɫɤɿɜ ɧɿɬɪɨɝɟɧɭ (ɜɿɞ ɝɪɚɧɢɱɧɨɝɨ ɬɢɫɤɭ, ɞɟ ɡ’ɹɜɥɹɽɬɶɫɹ ɧɨɪɦɚɥɶɧɢɣ ɪɟɠɢɦ, ɜ ɭɦɨɜɚɯ ɪ ≈ 0,3 −0,4 Ɍɨɪɪ ɞɨ ɩɪɢɛɥɢɡɧɨ ɪ ≈ 2 Ɍɨɪɪ), ɜ ɦɟɠɚɯ ɹɤɨɝɨ ɧɨɪɦɚɥɶɧɚ ɝɭɫɬɢɧɚ ɫɬɪɭɦɭ, ɩɨɞɿɥɟɧɚ ɧɚ ɬɢɫɤ ɝɚɡɭ ɜ ɤɜɚɞɪɚɬɿ jn/p2, ɧɟ ɡɚɥɢɲɚɽɬɶɫɹ ɫɬɚɥɨɸ, ɚ ɡɦɟɧɲɭɽɬɶɫɹ ɡɿ ɡɛɿɥɶɲɟɧɧɹɦ ɪɨɡɪɹɞɧɨɝɨ ɫɬɭɦɭ ɿ ɬɢɫɤɭ ɝɚɡɭ. ȿɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ ɨɬɪɢɦɚɧɿ ɡɧɚɱɟɧɧɹ ɜɟɥɢɱɢɧ jn/p2 ɞɥɹ ɪɿɡɧɨɦɚɧɿɬɧɢɯ ɦɚɬɟɪɿɚɥɿɜ ɤɚɬɨɞɿɜ ɬɚ ɪɿɡɧɢɯ ɬɢɫɤɿɜ ɝɚɡɿɜ. ɉɪɨɜɟɞɟɧɨ ɜɢɦɿɪɸɜɚɧɧɹ ɪɚɞɿɚɥɶɧɢɯ ɪɨɡɩɨɞɿɥɿɜ ɝɭɫɬɢɧɢ ɫɬɪɭɦɭ ɩɨ ɩɥɨɳɿ ɤɚɬɨɞɭ ɜ ɧɨɪɦɚɥɶɧɨɦɭ ɬɚ ɚɧɨɦɚɥɶɧɨɦɭ ɪɟɠɢɦɚɯ ɪɨɡɪɹɞɭ ɜ ɧɿɬɪɨɝɟɧɿ ɧɢɡɶɤɨɝɨ ɬɢɫɤɭ. ȼɫɬɚɧɨɜɥɟɧɨ, ɳɨ ɪɚɞɿɚɥɶɧɿ ɩɪɨɮɿɥɿ ɝɭɫɬɢɧɢ ɫɬɪɭɦɭ ɜ ɧɨɪɦɚɥɶɧɨɦɭ ɪɟɠɢɦɿ ɦɚɸɬɶ ɮɨɪɦɭ ɞɡɜɨɧɚ, ɩɪɢɣɦɚɸɱɢ ɧɚɣɛɿɥɶɲɟ ɡɧɚɱɟɧɧɹ ɭ ɰɟɧɬɪɿ ɪɨɡɪɹɞɧɨʀ ɩɥɹɦɢ. ɉɪɢ ɰɶɨɦɭ ɬɨɜɳɢɧɚ ɤɚɬɨɞɧɨɝɨ ɲɚɪɭ ɡɦɿɧɸɽɬɶɫɹ ɭ ɪɚɞɿɚɥɶɧɨɦɭ ɧɚɩɪɹɦɤɭ ɪɨɡɪɹɞɧɨʀ ɩɥɹɦɢ ɭ ɧɨɪɦɚɥɶɧɨɦɭ ɪɟɠɢɦɿ. ȼɨɧɚ ɩɪɢɣɦɚɽ ɛɿɥɶɲɿ ɡɧɚɱɟɧɧɹ ɩɨɛɥɢɡɭ ɝɪɚɧɢɰɶ ɪɨɡɪɹɞɧɨʀ ɩɥɹɦɢ, ɨɞɧɨɱɚɫɧɨ ɜ ɰɢɯ ɨɛɥɚɫɬɹɯ ɫɩɨɫɬɟɪɿɝɚɽɬɶɫɹ ɡɧɢɠɟɧɚ ɝɭɫɬɢɧɚ ɫɬɪɭɦɭ ɜ ɩɨɪɿɜɧɹɧɧɿ ɡ ɰɟɧɬɪɨɦ ɪɨɡɪɹɞɧɨʀ ɩɥɹɦɢ. ɄɅɘɑɈȼȱ ɋɅɈȼȺ: ɪɨɡɪɹɞ ɩɨɫɬɿɣɧɨɝɨ ɫɬɪɭɦɭ, ɧɨɪɦɚɥɶɧɢɣ ɪɟɠɢɦ, ɪɚɞɿɚɥɶɧɚ ɫɬɪɭɤɬɭɪɚ, ɧɢɡɶɤɢɣ ɬɢɫɤ, ɧɿɬɪɨɝɟɧ. NORMAL MODE OF THE DC DISCHARGE IN LOW PRESSURE NITROGEN V.A. Lisovskiy, N.D. Kharchenko, R.N. Fateev Kharkov National University 61077, Svobody sq., 4, Kharkov Ukraine This work is devoted to investigation of the normal mode of DC glowing discharge in nitrogen. As a result of the experiments we made by two different methods it is shown that the transition area of the nitrogen pressure exist (from the threshold pressure of the normal mode appearance ɪ ≈ 0.3 −0.4 Ɍɨrr to ɪ ≈ 2 Ɍɨrr) where the normal current density divided to the squared gas pressure jn/p2 doesn’t remain constant and decreases with the discharge current increasing. Magnitudes jn/p2 for different cathode materials and gas pressures were obtained experimentally. The experiments on the investigation of the radial current density distribution across the cathode area in normal and abnormal modes were made. It is obtained that radial current density profile in normal mode has a form of a bell and possesses a maximum in the center of the discharge spot. Thickness of the cathode sheath changes in the radial direction of the discharge spot. It takes maxima values near the spot boarders; at the same time in this area lower current density compared to the center of the discharge spot is observed. KEY WORS: DC discharge, normal mode, radial structure, low pressure, nitrogen. ɂɡɜɟɫɬɧɨ, ɱɬɨ ɬɥɟɸɳɢɣ ɪɚɡɪɹɞ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ ɦɨɠɟɬ ɝɨɪɟɬɶ ɜ ɧɨɪɦɚɥɶɧɨɦ ɢ ɚɧɨɦɚɥɶɧɨɦ ɪɟɠɢɦɚɯ. ɉɨɫɬɨɹɧɫɬɜɨ ɤɚɬɨɞɧɨɝɨ ɩɚɞɟɧɢɹ, ɢɦɟɸɳɟɟ ɦɟɫɬɨ ɜ ɧɨɪɦɚɥɶɧɨɦ ɬɥɟɸɳɟɦ ɪɚɡɪɹɞɟ ɜ ɞɨɜɨɥɶɧɨ ɲɢɪɨɤɨɦ ɢɧɬɟɪɜɚɥɟ ɬɨɤɨɜ, ɢɫɩɨɥɶɡɭɟɬɫɹ ɜ ɬɚɤɢɯ ɩɪɢɛɨɪɚɯ ɬɥɟɸɳɟɝɨ ɪɚɡɪɹɞɚ, ɤɚɤ ɝɚɡɨɪɚɡɪɹɞɧɵɟ ɫɬɚɛɢɥɢɡɚɬɨɪɵ ɧɚɩɪɹɠɟɧɢɹ (ɫɬɚɛɢɥɢɬɪɨɧɵ), ɚ ɬɚɤɠɟ ɜɵɩɪɹɦɢɬɟɥɢ ɫ ɬɥɟɸɳɢɦ ɪɚɡɪɹɞɨɦ ɢ ɞɪ [1]. Ⱦɥɹ ɬɨɝɨ ɱɬɨɛɵ ɤɨɪɪɟɤɬɧɨ ɩɪɢɦɟɧɹɬɶ ɧɨɪɦɚɥɶɧɵɣ ɪɟɠɢɦ ɬɥɟɸɳɟɝɨ ɪɚɡɪɹɞɚ, ɧɟɨɛɯɨɞɢɦɨ ɡɧɚɬɶ ɭɫɥɨɜɢɹ ɟɝɨ ɫɭɳɟɫɬɜɨɜɚɧɢɹ ɜ ɪɚɡɥɢɱɧɵɯ ɝɚɡɚɯ, ɩɪɢ ɪɚɡɥɢɱɧɵɯ ɞɚɜɥɟɧɢɹɯ ɢ ɦɚɬɟɪɢɚɥɚɯ ɤɚɬɨɞɚ, ɩɨɷɬɨɦɭ ɷɬɨɬ ɜɨɩɪɨɫ ɭɠɟ ɞɚɜɧɨ ɢɫɫɥɟɞɭɟɬɫɹ ɪɚɡɧɵɦɢ ɚɜɬɨɪɚɦɢ [2-27]. ɋ ɭɜɟɥɢɱɟɧɢɟɦ ɫɢɥɵ ɬɨɤɚ ɜ ɧɨɪɦɚɥɶɧɨɦ ɪɟɠɢɦɟ ɩɨɜɟɪɯɧɨɫɬɶ, ɡɚɧɢɦɚɟɦɚɹ ɪɚɡɪɹɞɨɦ, ɜɨɡɪɚɫɬɚɟɬ, ɩɪɢ ɷɬɨɦ 76 «Â³ñíèê Õàðê³âñüêîãî óí³âåðñèòåòó», ¹ 880, 2009 Â.À. Ëèñîâñêèé, Í.Ä. Õàð÷åíêî... ɩɥɨɬɧɨɫɬɶ ɬɨɤɚ ɨɫɬɚɟɬɫɹ ɩɨɫɬɨɹɧɧɨɣ [3]. Ⱦɥɹ ɩɚɪɚɦɟɬɪɨɜ ɧɨɪɦɚɥɶɧɨɝɨ ɬɥɟɸɳɟɝɨ ɪɚɡɪɹɞɚ (ɤɚɬɨɞɧɨɝɨ ɩɚɞɟɧɢɹ ɩɨɬɟɧɰɢɚɥɚ Un ɢ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ jn) ɜ ɫɥɭɱɚɟ ɝɟɨɦɟɬɪɢɱɟɫɤɢ ɩɨɞɨɛɧɵɯ ɬɪɭɛɨɤ, ɡɚɩɨɥɧɟɧɧɵɯ ɨɞɧɢɦ ɢ ɬɟɦ ɠɟ ɝɚɡɨɦ, ɩɪɢ ɨɞɧɨɦ ɢ ɬɨɦ ɠɟ ɦɚɬɟɪɢɚɥɟ ɷɥɟɤɬɪɨɞɨɜ, ɞɨɥɠɧɵ ɜɵɩɨɥɧɹɬɫɹ ɫɥɟɞɭɸɳɢɟ ɡɚɤɨɧɵ ɩɨɞɨɛɢɹ: ɚ) Un = const ɢ ɧɟ ɡɚɜɢɫɢɬ ɨɬ ɫɢɥɵ ɬɨɤɚ ɧɨɪɦɚɥɶɧɨɝɨ ɬɥɟɸɳɟɝɨ ɪɚɡɪɹɞɚ ɢ ɞɚɜɥɟɧɢɹ ɝɚɡɚ, ɛ) jn/p2 = const, ɜ) ɩɪɨɢɡɜɟɞɟɧɢɟ ɞɚɜɥɟɧɢɹ ɝɚɡɚ ɢ ɞɥɢɧɵ ɩɪɢɤɚɬɨɞɧɨɝɨ ɫɥɨɹ (pln) = const [4, 5]. ɉɪɢ ɞɚɜɥɟɧɢɢ ɧɟɨɧɚ ɛɨɥɶɲɟ 10 Ɍɨɪɪ ɨɛɧɚɪɭɠɟɧɵ ɨɬɤɥɨɧɟɧɢɹ ɜ ɩɨɜɟɞɟɧɢɢ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ ɨɬ ɡɚɤɨɧɨɜ ɩɨɞɨɛɢɹ, ɤɨɬɨɪɵɟ ɨɛɴɹɫɧɹɸɬɫɹ ɜɨɡɧɢɤɧɨɜɟɧɢɟɦ ɩɪɨɰɟɫɫɨɜ ɫɬɭɩɟɧɱɚɬɨɣ ɢɨɧɢɡɚɰɢɢ ɜ ɤɚɬɨɞɧɨɣ ɨɛɥɚɫɬɢ ɧɨɪɦɚɥɶɧɨɝɨ ɬɥɟɸɳɟɝɨ ɪɚɡɪɹɞɚ [4]. Ⱥɜɬɨɪɨɦ ɪɚɛɨɬɵ [4] ɩɨɞɬɜɟɪɠɞɚɟɬɫɹ ɜɵɩɨɥɧɟɧɢɟ ɡɚɤɨɧɨɜ ɩɨɞɨɛɢɹ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ ɩɪɢ ɛɨɥɟɟ ɧɢɡɤɢɯ ɞɚɜɥɟɧɢɹɯ ɧɟɨɧɚ, ɚ ɬɚɤɠɟ ɜ ɞɪɭɝɢɯ ɝɚɡɚɯ. ȼ ɪɚɛɨɬɟ [5] ɩɨɤɚɡɚɧɨ, ɱɬɨ ɭɜɟɥɢɱɟɧɢɟ ɩɨɥɧɨɝɨ ɬɨɤɚ ɜ ɷɥɟɤɬɪɢɱɟɫɤɨɣ ɰɟɩɢ ɧɟ ɩɪɢɜɨɞɢɬ ɤ ɪɨɫɬɭ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ, ɚ ɜɵɡɵɜɚɟɬ ɭɜɟɥɢɱɟɧɢɟ ɩɥɨɳɚɞɢ, ɡɚɧɢɦɚɟɦɨɣ ɪɚɡɪɹɞɨɦ ɧɚ ɤɚɬɨɞɟ. ɉɨɫɥɟ ɬɨɝɨ, ɤɚɤ ɜɫɹ ɩɨɜɟɪɯɧɨɫɬɶ ɤɚɬɨɞɚ ɨɤɚɡɵɜɚɟɬɫɹ ɩɨɤɪɵɬɨɣ ɪɚɡɪɹɞɨɦ, ɧɚɛɥɸɞɚɟɬɫɹ ɩɟɪɟɯɨɞ ɤ ɚɧɨɦɚɥɶɧɨɦɭ ɪɟɠɢɦɭ ɝɨɪɟɧɢɹ, ɜ ɤɨɬɨɪɨɦ ɫɨɛɥɸɞɚɸɬɫɹ ɢɧɵɟ ɡɚɤɨɧɵ ɩɨɞɨɛɢɹ: U = f1 (j/p2), pl = f2 (j/p2) [3, 5]. ȼ ɪɚɛɨɬɟ [6] ɩɪɢɜɟɞɟɧɚ ɦɨɞɟɥɶ, ɤɨɬɨɪɚɹ ɨɩɢɫɵɜɚɟɬ ɩɨɜɟɞɟɧɢɟ ɜɟɥɢɱɢɧɵ j/p2 ɜ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɜɟɥɢɱɢɧɵ ɤɚɬɨɞɧɨɝɨ ɩɚɞɟɧɢɹ ɩɨɬɟɧɰɢɚɥɚ. Ⱥɜɬɨɪ [7] ɫ ɩɨɦɨɳɶɸ ɱɢɫɥɟɧɧɨɝɨ ɦɨɞɟɥɢɪɨɜɚɧɢɹ ɩɨɤɚɡɚɥ, ɱɬɨ ɫɭɳɟɫɬɜɭɟɬ ɩɨɫɬɨɹɧɧɨɟ ɡɧɚɱɟɧɢɟ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ ɜ ɧɨɪɦɚɥɶɧɨɦ ɬɥɟɸɳɟɦ ɪɚɡɪɹɞɟ, ɤɨɬɨɪɨɟ ɨɛɟɫɩɟɱɢɜɚɟɬ ɨɩɬɢɦɚɥɶɧɵɣ ɭɪɨɜɟɧɶ ɢɨɧɢɡɚɰɢɢ ɜ ɤɚɬɨɞɧɨɦ ɫɥɨɟ, ɱɬɨ ɦɨɝɥɨ ɛɵ ɨɛɴɹɫɧɢɬɶ ɩɨɫɬɨɹɧɫɬɜɨ ɡɧɚɱɟɧɢɹ ɧɨɪɦɚɥɶɧɨɝɨ ɧɚɩɪɹɠɟɧɢɹ, ɛɥɚɝɨɞɚɪɹ ɤɨɬɨɪɨɦɭ ɪɚɡɪɹɞɧɨɟ ɩɹɬɧɨ ɫ ɭɜɟɥɢɱɟɧɢɟɦ ɬɨɤɚ ɪɚɫɲɢɪɹɟɬɫɹ ɧɚ ɤɚɬɨɞɟ. Ɉɞɧɚɤɨ ɜ ɪɹɞɟ ɪɚɛɨɬ ɨɩɢɫɚɧɵ ɬɚɤɠɟ ɨɬɤɥɨɧɟɧɢɹ ɧɨɪɦɚɥɶɧɨɝɨ ɬɥɟɸɳɟɝɨ ɪɚɡɪɹɞɚ ɨɬ ɡɚɤɨɧɨɜ ɩɨɞɨɛɢɹ [8, 9]. Ⱥɜɬɨɪɚɦɢ [8] ɨɛɧɚɪɭɠɟɧɨ ɭɜɟɥɢɱɟɧɢɟ ɪɚɡɪɹɞɧɨɝɨ ɬɨɤɚ ɩɪɢ ɩɨɫɬɨɹɧɧɨɦ ɧɚɩɪɹɠɟɧɢɢ, ɱɬɨ ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɧɨɪɦɚɥɶɧɨɦɭ ɪɟɠɢɦɭ. Ⱥɜɬɨɪɨɦ [9] ɩɭɬɟɦ ɦɨɞɟɥɢɪɨɜɚɧɢɹ ɩɨɤɚɡɚɧɨ, ɱɬɨ ɭɦɟɧɶɲɟɧɢɟ ɧɨɪɦɚɥɶɧɨɣ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ ɧɚ ɤɚɬɨɞɟ ɜ ɧɨɪɦɚɥɶɧɨɦ ɪɟɠɢɦɟ ɬɥɟɸɳɟɝɨ ɪɚɡɪɹɞɚ ɩɨɜɵɲɚɟɬ ɩɨɪɨɝɨɜɨɟ ɧɚɩɪɹɠɟɧɢɟ ɤɨɧɬɪɚɤɰɢɢ. Ⱦɥɹ ɬɨɝɨ ɱɬɨɛɵ ɞɨɫɬɢɱɶ ɷɬɨɝɨ ɷɮɮɟɤɬɚ, ɩɪɟɞɥɨɠɟɧɨ ɞɨɛɚɜɥɹɬɶ ɜ ɩɥɚɡɦɭ ɜɛɥɢɡɢ ɤɚɬɨɞɚ ɧɟɛɨɥɶɲɨɟ ɤɨɥɢɱɟɫɬɜɨ ɚɬɨɦɨɜ ɫ ɧɢɡɤɢɦ ɩɨɬɟɧɰɢɚɥɨɦ ɢɨɧɢɡɚɰɢɢ. ȼ ɪɹɞɟ ɪɚɛɨɬ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ ɢ ɫ ɩɨɦɨɳɶɸ ɱɢɫɥɟɧɧɨɝɨ ɦɨɞɟɥɢɪɨɜɚɧɢɹ ɢɡɭɱɚɥɨɫɶ ɧɨɪɦɚɥɶɧɨɟ ɤɚɬɨɞɧɨɟ ɩɚɞɟɧɢɟ ɧɚɩɪɹɠɟɧɢɹ Un [10-15]. ȼ ɪɚɛɨɬɟ [10] ɢɫɫɥɟɞɨɜɚɥɢɫɶ ɡɚɜɢɫɢɦɨɫɬɢ ɧɨɪɦɚɥɶɧɨɝɨ ɤɚɬɨɞɧɨɝɨ ɩɚɞɟɧɢɹ ɩɨɬɟɧɰɢɚɥɚ ɨɬ ɞɚɜɥɟɧɢɹ ɢɧɟɪɬɧɵɯ ɝɚɡɨɜ ɜ ɞɢɚɩɚɡɨɧɟ ɨɬ 3 ɞɨ 40 Ɍɨɪɪ, ɩɪɢɜɟɞɟɧɨ ɫɪɚɜɧɟɧɢɟ ɢɯ ɫ ɜɟɥɢɱɢɧɚɦɢ, ɩɨɥɭɱɟɧɧɵɦɢ ɪɚɧɧɟɟ ɞɪɭɝɢɦɢ ɚɜɬɨɪɚɦɢ. ȼ ɪɚɛɨɬɚɯ [11, 13] ɩɪɢ ɩɨɦɨɳɢ ɦɨɞɟɥɢɪɨɜɚɧɢɹ ɦɟɬɨɞɨɦ Ɇɨɧɬɟ Ʉɚɪɥɨ ɩɨɥɭɱɟɧɵ ɡɧɚɱɟɧɢɹ ɤɚɬɨɞɧɨɝɨ ɩɚɞɟɧɢɹ ɩɨɬɟɧɰɢɚɥɚ ɜ ɧɨɪɦɚɥɶɧɨɦ ɬɥɟɸɳɟɦ ɪɚɡɪɹɞɟ ɜ ɝɟɥɢɢ. ȼ ɪɚɛɨɬɟ [12] ɪɚɡɪɚɛɨɬɚɧɚ ɦɨɞɟɥɶ ɧɟɥɨɤɚɥɶɧɨɝɨ ɪɚɡɦɧɨɠɟɧɢɹ ɷɥɟɤɬɪɨɧɨɜ ɞɥɹ ɱɢɫɥɟɧɧɨɝɨ ɦɨɞɟɥɢɪɨɜɚɧɢɹ ɝɚɡɨɜɨɝɨ ɪɚɡɪɹɞɚ ɜ ɤɚɬɨɞɧɨɣ ɨɛɥɚɫɬɢ. Ɉɧɚ ɨɫɧɨɜɚɧɚ ɧɚ ɝɢɞɪɨɞɢɧɚɦɢɱɟɫɤɨɦ ɨɩɢɫɚɧɢɢ ɷɥɟɤɬɪɨɧɧɵɯ ɩɭɱɤɨɜ, ɤɨɬɨɪɵɟ ɢɫɩɭɫɤɚɸɬɫɹ ɫ ɩɨɜɟɪɯɧɨɫɬɢ ɤɚɬɨɞɚ. Ⱥɜɬɨɪɨɦ [13] ɩɭɬɟɦ ɦɨɞɟɥɢɪɨɜɚɧɢɹ ɩɨɤɚɡɚɧɨ ɥɢɧɟɣɧɨɟ ɩɨɜɟɞɟɧɢɟ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɩɨɥɹ ɜ ɤɚɬɨɞɧɨɦ ɫɥɨɟ. Ʉɪɨɦɟ ɬɨɝɨ, ɞɨɤɚɡɵɜɚɟɬɫɹ ɩɨɫɬɨɹɧɫɬɜɨ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɧɨɪɦɚɥɶɧɨɣ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ ɫ ɰɟɥɶɸ ɩɨɞɞɟɪɠɚɧɢɹ ɨɩɬɢɦɚɥɶɧɨɝɨ ɭɪɨɜɧɹ ɢɨɧɢɡɚɰɢɢ, ɛɥɚɝɨɞɚɪɹ ɱɟɦɭ ɢ ɞɨɫɬɢɝɚɟɬɫɹ ɩɨɫɬɨɹɧɫɬɜɨ ɩɚɞɟɧɢɹ ɧɚɩɪɹɠɟɧɢɹ ɧɚ ɤɚɬɨɞɧɨɦ ɫɥɨɟ, ɚ ɬɚɤɠɟ ɭɦɟɧɶɲɟɧɢɟ ɩɥɨɳɚɞɢ ɩɹɬɧɚ ɫ ɭɦɟɧɶɲɟɧɢɟɦ ɪɚɡɪɹɞɧɨɝɨ ɬɨɤɚ ɜ ɧɨɪɦɚɥɶɧɨɦ ɪɟɠɢɦɟ. Ⱥɜɬɨɪɚɦɢ [14] ɜɜɟɞɟɧɚ ɫɨɛɫɬɜɟɧɧɚɹ ɤɥɚɫɫɢɮɢɤɚɰɢɹ ɪɟɠɢɦɨɜ ɝɨɪɟɧɢɹ ɬɥɟɸɳɟɝɨ ɪɚɡɪɹɞɚ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ: ɩɪɨɫɬɟɣɲɢɣ, ɧɨɪɦɚɥɶɧɵɣ ɢ ɩɥɨɬɧɵɣ ɜ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɬɨɤɚ ɪɚɡɪɹɞɚ ɢ ɩɪɨɢɡɜɟɞɟɧɢɹ ɞɚɜɥɟɧɢɹ ɝɚɡɚ ɢ ɞɥɢɧɵ ɪɚɡɪɹɞɧɨɝɨ ɩɪɨɦɟɠɭɬɤɚ. ȼ ɧɨɪɦɚɥɶɧɨɦ ɪɟɠɢɦɟ ɧɚɛɥɸɞɚɥɨɫɶ, ɱɬɨ ɫ ɭɜɟɥɢɱɟɧɢɟɦ ɬɨɤɚ ɧɚɩɪɹɠɟɧɢɟ ɧɚ ɪɚɡɪɹɞɟ ɫɨɯɪɚɧɹɟɬɫɹ ɩɨɫɬɨɹɧɧɵɦ ɜ ɨɞɧɨɦ ɢ ɬɨɦ ɠɟ ɫɨɪɬɟ ɝɚɡɚ ɢ ɩɪɢ ɨɞɧɨɦ ɢ ɬɨɦ ɠɟ ɦɚɬɟɪɢɚɥɟ ɤɚɬɨɞɚ. Ɉɞɧɚɤɨ, ɞɚɧɧɚɹ ɤɥɚɫɫɢɮɢɤɚɰɢɹ ɧɟ ɧɚɲɥɚ ɲɢɪɨɤɨɝɨ ɩɪɢɦɟɧɟɧɢɹ ɜ ɪɚɛɨɬɚɯ ɞɪɭɝɢɯ ɚɜɬɨɪɨɜ. ȼ ɪɚɛɨɬɟ [15] ɩɪɟɞɫɬɚɜɥɟɧɵ ɪɟɡɭɥɶɬɚɬɵ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɯ ɢɡɦɟɪɟɧɢɣ ɪɚɡɥɢɱɧɵɯ ɩɚɪɚɦɟɬɪɨɜ ɩɥɚɡɦɵ ɬɥɟɸɳɟɝɨ ɪɚɡɪɹɞɚ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ ɜ ɪɚɡɥɢɱɧɵɯ ɫɨɪɬɚɯ ɝɚɡɨɜ, ɜ ɬɨɦ ɱɢɫɥɟ ɜɟɥɢɱɢɧɵ ɧɨɪɦɚɥɶɧɨɝɨ ɤɚɬɨɞɧɨɝɨ ɩɚɞɟɧɢɹ ɧɚɩɪɹɠɟɧɢɹ. ɂɦɟɟɬɫɹ ɪɹɞ ɪɚɛɨɬ, ɩɨɫɜɹɳɟɧɧɵɯ ɢɡɭɱɟɧɢɸ ɪɚɞɢɚɥɶɧɨɣ ɫɬɪɭɤɬɭɪɵ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ ɪɚɡɪɹɞɚ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ [16-22]. ȼ ɪɚɛɨɬɟ [16] ɩɨɞɪɨɛɧɨ ɪɚɫɫɦɚɬɪɢɜɚɸɬɫɹ ɩɪɨɰɟɫɫɵ, ɩɪɨɢɫɯɨɞɹɳɢɟ ɧɚ ɝɪɚɧɢɰɟ ɪɚɡɪɹɞɧɨɝɨ ɩɹɬɧɚ ɜ ɧɨɪɦɚɥɶɧɨɦ ɪɟɠɢɦɟ. ɗɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ ɩɨɤɚɡɚɧɨ, ɱɬɨ ɤɨɷɮɮɢɰɢɟɧɬ ɪɚɡɦɧɨɠɟɧɢɹ ɷɥɟɤɬɪɨɧɨɜ ɦɚɤɫɢɦɚɥɟɧ ɧɚ ɤɪɚɸ ɪɚɡɪɹɞɧɨɝɨ ɩɹɬɧɚ, ɝɪɚɧɢɱɚɳɟɝɨ ɫ ɛɟɫɬɨɤɨɜɨɣ ɨɛɥɚɫɬɶɸ. Ɉɞɧɚɤɨ, ɚɜɬɨɪɵ [16] ɢɡɦɟɪɹɥɢ ɩɥɨɬɧɨɫɬɶ ɬɨɤɚ ɢɨɧɨɜ, ɩɪɢɯɨɞɹɳɢɯ ɧɚ ɤɚɬɨɞ, ɫ ɩɨɦɨɳɶɸ ɨɞɧɨɝɨ ɤɨɥɥɟɤɬɨɪɚ, ɢ ɞɥɹ ɢɡɦɟɪɟɧɢɹ ɪɚɞɢɚɥɶɧɨɝɨ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ ɢɡɦɟɧɹɥɢ ɩɨɥɧɵɣ ɬɨɤ (ɩɪɟɞɩɨɥɚɝɚɹ, ɱɬɨ ɩɥɨɬɧɨɫɬɶ ɬɨɤɚ ɜ ɧɨɪɦɚɥɶɧɨɦ ɪɟɠɢɦɟ ɨɫɬɚɟɬɫɹ ɩɨɫɬɨɹɧɧɨɣ). Ʉɚɤ ɛɭɞɟɬ ɩɨɤɚɡɚɧɨ ɧɚɦɢ ɧɢɠɟ, ɬɚɤɨɟ ɩɪɟɞɩɨɥɨɠɟɧɢɟ ɧɟ ɨɩɪɚɜɞɚɧɨ, ɩɨɷɬɨɦɭ ɪɚɞɢɚɥɶɧɵɟ ɩɪɨɮɢɥɢ, ɢɡɦɟɪɟɧɧɵɟ ɚɜɬɨɪɚɦɢ [16] ɧɟ ɤɨɪɪɟɤɬɧɵ. ȼ ɪɚɛɨɬɟ [17] ɬɟɨɪɟɬɢɱɟɫɤɢ ɢɡɭɱɚɥɚɫɶ ɜɟɥɢɱɢɧɚ ɩɥɨɳɚɞɢ ɬɨɤɨɜɨɝɨ ɩɹɬɧɚ ɫ ɢɡɦɟɧɟɧɢɟɦ ɬɨɤɚ ɧɚ ɧɟɡɚɩɨɥɧɟɧɧɨɦ ɤɚɬɨɞɟ ɜ ɧɨɪɦɚɥɶɧɨɦ ɪɟɠɢɦɟ ɬɥɟɸɳɟɝɨ ɪɚɡɪɹɞɚ ɩɪɢ ɞɚɜɥɟɧɢɢ ɝɚɡɚ 5 Ɍɨɪɪ. ɉɨɤɚɡɚɧɨ, ɱɬɨ ɜ ɬɚɤɢɯ ɭɫɥɨɜɢɹɯ ɩɥɨɬɧɨɫɬɶ ɬɨɤɚ ɩɨ ɪɚɞɢɭɫɭ ɩɹɬɧɚ ɭɦɟɧɶɲɚɟɬɫɹ. ɇɚɢɛɨɥɶɲɟɟ ɡɧɚɱɟɧɢɟ ɪɚɡɪɹɞɧɨɝɨ ɬɨɤɚ ɧɚɛɥɸɞɚɟɬɫɹ ɜ ɰɟɧɬɪɟ ɪɚɡɪɹɞɧɨɝɨ ɩɹɬɧɚ, ɩɪɢɱɟɦ ɰɟɧɬɪɚɥɶɧɚɹ ɱɚɫɬɶ ɟɝɨ ɤɜɚɡɢɨɞɧɨɪɨɞɧɚ. ɉɪɢ ɩɪɢɛɥɢɠɟɧɢɢ ɤ ɤɪɚɸ ɩɹɬɧɚ ɩɥɨɬɧɨɫɬɶ ɬɨɤɚ ɦɨɧɨɬɨɧɧɨ ɫɩɚɞɚɥɚ. Ⱥɜɬɨɪɚɦɢ [18] ɛɵɥɨ ɩɨɤɚɡɚɧɨ, ɱɬɨ ɫɬɚɛɢɥɶɧɨɫɬɶ ɪɚɡɪɹɞɚ, ɝɨɪɹɳɟɝɨ ɜ ɧɨɪɦɚɥɶɧɨɦ ɪɟɠɢɦɟ, ɦɨɠɟɬ ɛɵɬɶ ɨɛɴɹɫɧɟɧɚ ɧɚɥɢɱɢɟɦ ɪɚɞɢɚɥɶɧɨɝɨ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɩɨɥɹ ɧɚ ɝɪɚɧɢɰɟ ɩɥɚɡɦɚ-ɫɥɨɣ, ɛɥɚɝɨɞɚɪɹ ɤɨɬɨɪɨɦɭ ɷɥɟɤɬɪɨɧɵ ɭɞɟɪɠɢɜɚɸɬɫɹ ɜ ɩɥɚɡɦɟɧɧɨɦ ɫɬɨɥɛɟ. Ⱦɥɹ ɢɫɫɥɟɞɨɜɚɧɢɹ ɫɚɦɨɫɬɨɹɬɟɥɶɧɵɯ ɪɚɡɪɹɞɨɜ ɚɜɬɨɪɨɦ [19] ɛɵɥɚ ɪɚɡɪɚɛɨɬɚɧɚ ɞɜɭɦɟɪɧɚɹ ɦɨɞɟɥɶ, ɨɩɢɫɵɜɚɸɳɚɹ ɪɚɡɪɹɞ ɜ ɝɟɥɢɢ. ɇɟɫɦɨɬɪɹ ɧɚ ɧɟɤɨɬɨɪɵɟ ɨɝɪɚɧɢɱɟɧɢɹ ɜ ɢɫɩɨɥɶɡɨɜɚɧɢɢ, ɦɨɞɟɥɶ ɞɨɜɨɥɶɧɨ ɯɨɪɨɲɨ ɨɬɨɛɪɚɠɚɟɬ ɯɚɪɚɤɬɟɪɧɵɟ ɱɟɪɬɵ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ ɢ ɩɟɪɟɯɨɞ ɨɬ ɧɨɪɦɚɥɶɧɨɝɨ ɤ ɚɧɨɦɚɥɶɧɨɦɭ ɪɟɠɢɦɭ ɝɨɪɟɧɢɹ ɬɥɟɸɳɟɝɨ ɪɚɡɪɹɞɚ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ, ɭɱɢɬɵɜɚɹ ɜɥɢɹɧɢɟ ɪɚɞɢɚɥɶɧɨɝɨ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɩɨɥɹ. ȼ ɪɚɛɨɬɟ [19] ɩɨɤɚɡɚɧɨ, ɱɬɨ ɪɚɞɢɚɥɶɧɨɟ ɷɥɟɤɬɪɢɱɟɫɤɨɟ ɩɨɥɟ, ɤɨɬɨɪɨɟ 77 ñåð³ÿ ô³çè÷íà «ßäðà, ÷àñòèíêè, ïîëÿ», âèï. 4 /44/ Íîðìàëüíûé ðåæèì ðàçðÿäà... ɨɛɪɚɡɭɟɬɫɹ ɧɚ ɝɪɚɧɢɰɟ ɩɥɚɡɦɚ – ɫɥɨɣ, ɧɚɩɪɚɜɥɹɟɬ ɷɥɟɤɬɪɨɧɵ ɤ ɰɟɧɬɪɭ ɨɬɪɢɰɚɬɟɥɶɧɨɝɨ ɫɜɟɱɟɧɢɹ ɪɚɡɪɹɞɚ, ɚ ɢɨɧɵ - ɨɬ ɰɟɧɬɪɚ. ɋɭɳɟɫɬɜɨɜɚɧɢɟ ɪɚɞɢɚɥɶɧɨɝɨ ɩɨɥɹ ɨɛɟɫɩɟɱɢɜɚɟɬ ɫɬɚɛɢɥɶɧɨɫɬɶ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ [18]. Ⱥɜɬɨɪɵ [20] ɬɚɤɠɟ ɦɨɞɟɥɢɪɨɜɚɥɢ ɧɨɪɦɚɥɶɧɵɣ ɬɥɟɸɳɢɣ ɪɚɡɪɹɞ ɜ ɝɟɥɢɢ, ɭɱɢɬɵɜɚɹ ɢɡɨɬɪɨɩɧɨɟ ɪɚɫɫɟɹɧɢɟ ɢ ɨɬɪɚɠɟɧɢɟ ɷɥɟɤɬɪɨɧɨɜ ɨɬ ɷɥɟɤɬɪɨɞɨɜ, ɚ ɬɚɤɠɟ ɨɛɪɚɬɧɨɟ ɪɚɫɫɟɹɧɢɟ ɜ ɫɬɨɪɨɧɭ ɤɚɬɨɞɚ. ɉɨɥɭɱɟɧɧɵɟ ɜ ɪɚɛɨɬɟ [20] ɞɚɧɧɵɟ ɯɨɪɨɲɨ ɫɨɝɥɚɫɭɸɬɫɹ ɫ ɪɟɡɭɥɶɬɚɬɚɦɢ ɪɚɫɱɟɬɚ [19]. Ⱥɜɬɨɪɚɦɢ [21] ɪɚɡɪɚɛɨɬɚɧɚ ɦɨɞɟɥɶ, ɤɨɬɨɪɚɹ ɨɩɢɫɵɜɚɟɬ ɧɨɪɦɚɥɶɧɵɣ ɢ ɚɧɨɦɚɥɶɧɵɣ ɬɥɟɸɳɢɟ ɪɚɡɪɹɞɵ ɜ ɝɟɥɢɢ. ɍɱɟɬ ɚɧɢɡɨɬɪɨɩɢɢ ɪɚɫɫɟɹɧɢɹ ɷɥɟɤɬɪɨɧɨɜ ɜ ɷɬɨɣ ɪɚɛɨɬɟ ɡɧɚɱɢɬɟɥɶɧɨ ɭɥɭɱɲɚɟɬ ɫɨɨɬɜɟɬɫɬɜɢɟ ɬɟɨɪɟɬɢɱɟɫɤɢɯ ɪɟɡɭɥɶɬɚɬɨɜ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɦ. ȼ ɪɚɛɨɬɟ [22] ɩɪɢ ɩɨɦɨɳɢ ɦɨɞɟɥɢɪɨɜɚɧɢɹ ɦɟɬɨɞɨɦ Ɇɨɧɬɟ Ʉɚɪɥɨ ɢɡɭɱɚɥɢɫɶ ɧɨɪɦɚɥɶɧɵɣ ɢ ɚɧɨɦɚɥɶɧɵɣ ɪɟɠɢɦɵ ɬɥɟɸɳɟɝɨ ɪɚɡɪɹɞɚ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ, ɩɪɢɜɟɞɟɧɵ ɨɫɟɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɪɚɡɥɢɱɧɵɯ ɩɚɪɚɦɟɬɪɨɜ ɩɥɚɡɦɵ ɞɥɹ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ ɜ ɫɪɚɜɧɟɧɢɟ ɫ ɚɧɨɦɚɥɶɧɵɦ. ɇɚɛɥɸɞɚɥɢɫɶ ɡɧɚɱɢɬɟɥɶɧɵɟ ɤɨɥɢɱɟɫɬɜɟɧɧɵɟ ɪɚɡɥɢɱɢɹ ɩɚɪɚɦɟɬɪɨɜ ɩɥɚɡɦɵ ɜ ɞɜɭɯ ɪɟɠɢɦɚɯ. Ɋɹɞ ɪɚɛɨɬ ɩɨɫɜɹɳɟɧ ɢɡɭɱɟɧɢɸ ɭɫɥɨɜɢɣ ɩɨɹɜɥɟɧɢɹ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ ɪɚɡɪɹɞɚ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ [23-26]. Ⱥɜɬɨɪɵ [23] ɨɩɪɟɞɟɥɢɥɢ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɤɚɬɨɞɧɨɝɨ ɫɥɨɹ ɪɚɡɪɹɞɚ ɜ ɚɪɝɨɧɟ ɢ ɚɡɨɬɟ, ɚ ɬɚɤɠɟ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ ɩɨɤɚɡɚɥɢ, ɱɬɨ ɧɨɪɦɚɥɶɧɵɣ ɪɟɠɢɦ ɝɨɪɟɧɢɹ ɦɨɠɟɬ ɧɚɛɥɸɞɚɬɶɫɹ ɬɨɥɶɤɨ ɫɩɪɚɜɚ ɨɬ ɬɨɱɤɢ ɩɟɪɟɝɢɛɚ ɤɪɢɜɨɣ ɡɚɠɢɝɚɧɢɹ ɬɥɟɸɳɟɝɨ ɪɚɡɪɹɞɚ. ȼ ɪɚɛɨɬɟ [24] ɫ ɩɨɦɨɳɶɸ ɩɪɨɫɬɨɣ ɦɨɞɟɥɢ ɨɛɴɹɫɧɹɟɬɫɹ, ɩɨɱɟɦɭ ɧɨɪɦɚɥɶɧɵɣ ɪɟɠɢɦ ɜ ɤɨɪɨɬɤɢɯ ɪɚɡɪɹɞɧɵɯ ɬɪɭɛɤɚɯ ɩɨɹɜɥɹɟɬɫɹ ɫɩɪɚɜɚ ɨɬ ɬɨɱɤɢ ɩɟɪɟɝɢɛɚ ɤɪɢɜɨɣ ɡɚɠɢɝɚɧɢɹ ɪɚɡɪɹɞɚ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ. Ⱥɜɬɨɪɵ ɪɚɛɨɬɵ [25] ɚɧɚɥɢɬɢɱɟɫɤɢ ɩɨɤɚɡɚɥɢ, ɱɬɨ ɧɚ ɩɪɚɜɨɣ ɜɟɬɜɢ ɤɪɢɜɨɣ ɉɚɲɟɧɚ ɫɩɪɚɜɚ ɨɬ ɬɨɱɤɢ ɩɟɪɟɝɢɛɚ ɨɬɧɨɫɢɬɟɥɶɧɨ ɦɚɥɨɟ ɜɨɡɦɭɳɟɧɢɟ ɨɞɧɨɪɨɞɧɨɫɬɢ ɩɨɥɹ, ɨɛɭɫɥɨɜɥɟɧɧɨɟ ɩɪɨɫɬɪɚɧɫɬɜɟɧɧɵɦ ɡɚɪɹɞɨɦ, ɩɪɢɜɨɞɢɬ ɤ ɩɚɞɚɸɳɟɣ ɜɨɥɶɬ-ɚɦɩɟɪɧɨɣ ɯɚɪɚɤɬɟɪɢɫɬɢɤɟ ɬɚɭɧɫɟɧɞɨɜɫɤɨɝɨ ɪɚɡɪɹɞɚ ɢ, ɤɚɤ ɫɥɟɞɫɬɜɢɟ, ɤ ɟɝɨ ɧɟɭɫɬɨɣɱɢɜɨɫɬɢ. ɗɬɨ ɩɪɢɜɨɞɢɬ ɤ ɲɧɭɪɨɜɚɧɢɸ ɪɚɡɪɹɞɚ ɢ ɭɫɬɚɧɨɜɥɟɧɢɸ ɧɨɪɦɚɥɶɧɨɣ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ, ɩɪɢ ɤɨɬɨɪɨɣ ɪɚɡɪɹɞ ɡɚɧɢɦɚɟɬ ɬɨɥɶɤɨ ɱɚɫɬɶ ɩɨɜɟɪɯɧɨɫɬɢ ɤɚɬɨɞɚ. ȼ ɪɚɛɨɬɟ [26] ɩɨɫɬɪɨɟɧɚ ɦɚɬɟɦɚɬɢɱɟɫɤɚɹ ɦɨɞɟɥɶ, ɩɪɢ ɩɨɦɨɳɢ ɤɨɬɨɪɨɣ ɩɨɥɭɱɟɧɵ ɜɨɥɶɬ - ɚɦɩɟɪɧɵɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ, ɨɩɢɫɵɜɚɸɳɢɟ ɪɚɡɥɢɱɧɵɟ ɮɨɪɦɵ ɝɨɪɟɧɢɹ ɬɥɟɸɳɟɝɨ ɪɚɡɪɹɞɚ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ. ȼ ɪɚɛɨɬɟ [27] ɨɛɴɹɫɧɹɟɬɫɹ ɧɚɥɢɱɢɟ ɦɢɧɢɦɭɦɚ ɧɚɩɪɹɠɟɧɢɹ ɧɚ ɜɨɥɶɬ– ɚɦɩɟɪɧɨɣ ɯɚɪɚɤɬɟɪɢɫɬɢɤɟ ɤɚɬɨɞɧɨɝɨ ɫɥɨɹ ɢ ɫɭɳɟɫɬɜɨɜɚɧɢɟ ɧɨɪɦɚɥɶɧɨɣ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ ɛɥɚɝɨɞɚɪɹ ɞɜɭɦ ɤɨɧɤɭɪɢɪɭɸɳɢɦ ɦɟɠɞɭ ɫɨɛɨɣ ɩɪɢɱɢɧɚɦ. Ɉɞɧɚ ɢɡ ɧɢɯ ɫɨɫɬɨɢɬ ɜ ɬɨɦ, ɱɬɨ ɜɟɥɢɱɢɧɚ ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ ɡɚɬɪɚɬ ɧɚ ɩɪɨɢɡɜɨɞɫɬɜɨ ɨɞɧɨɝɨ ɢɨɧɚ ɩɚɞɚɟɬ ɫ ɪɨɫɬɨɦ ɩɨɥɹ, ɚ ɜɬɨɪɚɹ – ɜ ɬɨɦ, ɱɬɨ ɫ ɭɜɟɥɢɱɟɧɢɟɦ ɬɨɤɚ ɪɚɡɪɹɞɚ ɢ ɭɦɟɧɶɲɟɧɢɟɦ ɬɨɥɳɢɧɵ ɤɚɬɨɞɧɨɝɨ ɫɥɨɹ ɤɨɷɮɮɢɰɢɟɧɬ ɪɚɡɦɧɨɠɟɧɢɹ ɷɥɟɤɬɪɨɧɨɜ ɫɧɢɠɚɟɬɫɹ, ɚ ɤɚɬɨɞɧɨɟ ɩɚɞɟɧɢɟ ɧɚɩɪɹɠɟɧɢɹ ɪɚɫɬɟɬ. Ɉɛɡɨɪɧɚɹ ɪɚɛɨɬɚ [28] ɩɨɫɜɹɳɟɧɚ ɨɛɨɛɳɟɧɢɸ ɪɟɡɭɥɶɬɚɬɨɜ ɦɨɞɟɥɢɪɨɜɚɧɢɹ ɝɚɡɨɜɵɯ ɪɚɡɪɹɞɨɜ ɧɢɡɤɨɝɨ ɞɚɜɥɟɧɢɹ ɢ, ɜ ɱɚɫɬɧɨɫɬɢ, ɢɡɭɱɟɧɢɸ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ. ȼ ɛɨɥɶɲɢɧɫɬɜɟ ɪɚɛɨɬ ɧɨɪɦɚɥɶɧɵɣ ɬɥɟɸɳɢɣ ɪɚɡɪɹɞ ɢɫɫɥɟɞɨɜɚɥɫɹ ɜ ɞɢɚɩɚɡɨɧɟ ɞɚɜɥɟɧɢɣ ɛɨɥɟɟ 2 Ɍɨɪɪ, ɢ ɧɟɞɨɫɬɚɬɨɱɧɨ ɢɫɫɥɟɞɨɜɚɧ ɩɪɢ ɧɢɡɤɢɯ ɞɚɜɥɟɧɢɹɯ. ɉɨɷɬɨɦɭ ɨɞɧɨɣ ɢɡ ɡɚɞɚɱ, ɤɨɬɨɪɚɹ ɪɟɲɚɥɚɫɶ ɜ ɯɨɞɟ ɞɚɧɧɨɣ ɪɚɛɨɬɵ, ɹɜɥɹɟɬɫɹ ɢɫɫɥɟɞɨɜɚɧɢɟ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ ɝɨɪɟɧɢɹ ɪɚɡɪɹɞɚ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ ɩɪɢ ɞɚɜɥɟɧɢɹɯ ɚɡɨɬɚ ɦɟɧɟɟ 2 Ɍɨɪɪ, ɚ ɬɚɤɠɟ ɩɪɨɜɟɪɤɚ ɡɚɤɨɧɨɜ ɩɨɞɨɛɢɹ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ ɞɥɹ ɪɚɡɥɢɱɧɵɯ ɦɚɬɟɪɢɚɥɨɜ ɤɚɬɨɞɚ. Ʉɪɨɦɟ ɬɨɝɨ, ɜ ɥɢɬɟɪɚɬɭɪɟ ɩɪɚɤɬɢɱɟɫɤɢ ɧɟɬ ɞɨɫɬɨɜɟɪɧɵɯ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɯ ɞɚɧɧɵɯ ɨ ɪɚɫɩɪɟɞɟɥɟɧɢɢ ɪɚɡɥɢɱɧɵɯ ɩɚɪɚɦɟɬɪɨɜ ɩɥɚɡɦɵ ɩɨ ɩɥɨɳɚɞɢ ɪɚɡɪɹɞɧɨɝɨ ɩɹɬɧɚ ɜ ɧɨɪɦɚɥɶɧɨɦ ɪɟɠɢɦɟ. ȼ ɫɜɹɡɢ ɫ ɷɬɢɦ ɧɚɦɢ ɛɵɥɚ ɩɨɫɬɚɜɥɟɧɚ ɫɥɟɞɭɸɳɚɹ ɰɟɥɶ ɞɥɹ ɞɚɧɧɨɣ ɪɚɛɨɬɵ: ɢɡɭɱɢɬɶ ɪɚɞɢɚɥɶɧɨɟ ɪɚɫɩɪɟɞɟɥɟɧɢɟ ɩɥɨɬɧɨɫɬɢ ɪɚɡɪɹɞɧɨɝɨ ɬɨɤɚ ɩɨ ɩɥɨɳɚɞɢ ɤɚɬɨɞɚ ɜ ɧɨɪɦɚɥɶɧɨɦ ɢ ɚɧɨɦɚɥɶɧɨɦ ɪɟɠɢɦɚɯ, ɭɬɨɱɧɢɬɶ ɡɚɤɨɧɵ ɩɨɞɨɛɢɹ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ ɩɪɢ ɞɚɜɥɟɧɢɹɯ ɚɡɨɬɚ ɜ ɤɚɦɟɪɟ ɦɟɧɟɟ 2 Ɍɨɪɪ ɢ ɪɚɡɥɢɱɧɵɯ ɦɚɬɟɪɢɚɥɚɯ ɤɚɬɨɞɨɜ. ɍɋɅɈȼɂə ɗɄɋɉȿɊɂɆȿɇɌɈȼ Ⱦɥɹ ɢɡɭɱɟɧɢɹ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ ɝɨɪɟɧɢɹ ɪɚɡɪɹɞɚ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ ɜ ɚɡɨɬɟ ɢɫɩɨɥɶɡɨɜɚɧɚ ɪɚɡɪɹɞɧɚɹ ɬɪɭɛɤɚ ɫ ɤɚɬɨɞɨɦ, ɫɨɞɟɪɠɚɳɢɦ ɜɫɬɪɨɟɧɧɵɟ ɤɨɥɥɟɤɬɨɪɵ. ɇɚ ɪɢɫ. 1 ɩɨɤɚɡɚɧɚ ɫɯɟɦɚ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨɣ ɭɫɬɚɧɨɜɤɢ. Ʉɜɚɪɰɟɜɚɹ ɬɪɭɛɤɚ ɜɚɤɭɭɦɧɨ ɭɩɥɨɬɧɹɥɚɫɶ ɦɟɠɞɭ ɷɥɟɤɬɪɨɞɚɦɢ, ɞɢɚɦɟɬɪ ɤɨɬɨɪɵɯ ɫɨɫɬɚɜɥɹɥ 56 ɦɦ. ɂɫɫɥɟɞɨɜɚɧɢɹ ɩɪɨɜɨɞɢɥɢɫɶ ɩɪɢ ɪɚɫɫɬɨɹɧɢɹɯ ɦɟɠɞɭ ɷɥɟɤɬɪɨɞɚɦɢ ɢɡ ɧɟɪɠɚɜɟɸɳɟɣ ɫɬɚɥɢ 50 ɦɦ ɢ 400 ɦɦ. Ⱥɡɨɬ ɩɨɞɚɜɚɥɫɹ ɜ ɤɚɦɟɪɭ ɫ ɩɨɦɨɳɶɸ ɫɢɫɬɟɦɵ ɧɚɩɭɫɤɚ ɝɚɡɚ ɱɟɪɟɡ ɦɧɨɠɟɫɬɜɨ ɦɚɥɟɧɶɤɢɯ ɨɬɜɟɪɫɬɢɣ ɜ ɚɧɨɞɟ. Ɋɚɡɪɹɞɧɚɹ ɤɚɦɟɪɚ ɨɬɤɚɱɢɜɚɥɚɫɶ ɱɟɪɟɡ ɫɢɫɬɟɦɭ ɨɬɜɟɪɫɬɢɣ ɜ ɷɬɨɦ ɠɟ ɷɥɟɤɬɪɨɞɟ. Ⱦɥɹ ɪɟɝɢɫɬɪɚɰɢɢ ɞɚɜɥɟɧɢɹ ɝɚɡɚ ɜ ɞɢɚɩɚɡɨɧɟ ɨɬ 10-3 Ɍɨɪɪ ɞɨ ɚɬɦɨɫɮɟɪɧɨɝɨ ɢɫɩɨɥɶɡɨɜɚɥɫɹ ɜɚɤɭɭɦɧɵɣ ɬɟɪɦɨɷɥɟɤɬɪɢɱɟɫɤɢɣ ɞɚɬɱɢɤ 13ȼɌ3-003. Ɉɬɤɚɱɤɚ ɝɚɡɚ ɩɪɨɢɡɜɨɞɢɥɚɫɶ ɬɭɪɛɨɦɨɥɟɤɭɥɹɪɧɵɦ ɧɚɫɨɫɨɦ ɫ ɩɪɟɞɟɥɶɧɵɦ ɜɚɤɭɭɦɨɦ ɩɨɪɹɞɤɚ 10−6 Ɍɨɪɪ. ɂɫɬɨɱɧɢɤ ɩɨɫɬɨɹɧɧɨɝɨ ɧɚɩɪɹɠɟɧɢɹ ɩɨɞɤɥɸɱɚɥɫɹ ɤ ɚɧɨɞɭ, ɚ ɤɚɬɨɞ ɛɵɥ ɡɚɡɟɦɥɟɧ. ɉɨ ɞɢɚɦɟɬɪɭ ɤɚɬɨɞɚ ɜɞɨɥɶ ɨɞɧɨɣ ɥɢɧɢɢ ɪɚɫɩɨɥɚɝɚɥɢɫɶ 9 ɤɨɥɥɟɤɬɨɪɨɜ ɬɨɤɚ ɞɢɚɦɟɬɪɨɦ 3 ɦɦ. ɋɨɛɢɪɚɸɳɚɹ ɩɨɜɟɪɯɧɨɫɬɶ ɤɨɥɥɟɤɬɨɪɨɜ ɧɚɯɨɞɢɥɚɫɶ ɜ ɨɞɧɨɣ ɩɥɨɫɤɨɫɬɢ ɫ ɩɨɜɟɪɯɧɨɫɬɶɸ ɤɚɬɨɞɚ. ȼɵɜɨɞɵ ɤɨɥɥɟɤɬɨɪɨɜ ɛɵɥɢ ɡɚɡɟɦɥɟɧɵ ɱɟɪɟɡ ɪɟɡɢɫɬɨɪɵ 1 ɤɈɦ. ɉɚɞɟɧɢɹ ɧɚɩɪɹɠɟɧɢɹ ɧɚ ɫɨɩɪɨɬɢɜɥɟɧɢɹɯ ɨɰɢɮɪɨɜɵɜɚɥɢɫɶ ɢ ɩɨɞɚɜɚɥɢɫɶ ɧɚ ɩɟɪɫɨɧɚɥɶɧɵɣ ɤɨɦɩɶɸɬɟɪ. Ɍɨɤɢ ɧɚ ɜɫɟ ɤɨɥɥɟɤɬɨɪɵ ɢɡɦɟɪɹɥɢɫɶ ɨɞɧɨɜɪɟɦɟɧɧɨ, ɩɪɢ ɷɬɨɦ ɢɡɦɟɪɟɧɢɹ ɩɪɨɜɨɞɢɥɢɫɶ 20 ɪɚɡ ɢ ɩɨɥɭɱɟɧɧɵɟ ɪɟɡɭɥɶɬɚɬɵ ɭɫɪɟɞɧɹɥɢɫɶ. ȼɟɥɢɱɢɧɚ ɪɚɡɪɹɞɧɨɝɨ ɬɨɤɚ ɪɟɝɢɫɬɪɢɪɨɜɚɥɚɫɶ ɰɢɮɪɨɜɵɦ ɚɦɩɟɪɦɟɬɪɨɦ, ɚ ɧɚɩɪɹɠɟɧɢɟ ɧɚ ɪɚɡɪɹɞɟ – ɰɢɮɪɨɜɵɦ ɜɨɥɶɬɦɟɬɪɨɦ. ȼ ɪɚɡɪɹɞɧɭɸ ɰɟɩɶ ɩɨɞɤɥɸɱɚɥɨɫɶ ɜɧɟɲɧɟɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɜɟɥɢɱɢɧɨɣ 50 ɤɈɦ, ɤɨɬɨɪɨɟ ɨɝɪɚɧɢɱɢɜɚɥɨ ɬɨɤ ɢ ɩɪɟɩɹɬɫɬɜɨɜɚɥɨ ɜɨɡɧɢɤɧɨɜɟɧɢɸ ɤɚɬɨɞɧɵɯ ɩɹɬɟɧ. Ⱦɥɹ ɢɡɭɱɟɧɢɹ ɪɚɞɢɚɥɶɧɨɣ ɫɬɪɭɤɬɭɪɵ ɪɚɡɪɹɞɚ ɢɫɩɨɥɶɡɨɜɚɥɚɫɶ Ɍ-ɨɛɪɚɡɧɚɹ ɪɚɡɪɹɞɧɚɹ ɬɪɭɛɤɚ. ɋɯɟɦɚɬɢɱɟɫɤɨɟ ɢɡɨɛɪɚɠɟɧɢɟ ɷɤɫɩɟɪɢɦɟɧɬɚ ɩɪɢɜɟɞɟɧɨ ɧɚ ɪɢɫ. 2. ɉɨɫɬɨɹɧɧɨɟ ɧɚɩɪɹɠɟɧɢɟ ɩɨɞɚɜɚɥɨɫɶ ɧɚ ɤɚɬɨɞ, ɚ ɚɧɨɞ ɛɵɥ ɡɚɡɟɦɥɟɧ. ɇɚɩɭɫɤ ɢ ɨɬɤɚɱɤɚ ɢɫɫɥɟɞɭɟɦɨɝɨ ɝɚɡɚ ɩɪɨɢɡɜɨɞɢɥɢɫɶ ɱɟɪɟɡ ɡɚɡɟɦɥɟɧɧɵɣ ɷɥɟɤɬɪɨɞ. Ʉɚɬɨɞ ɪɚɫɩɨɥɚɝɚɥɫɹ ɜ ɨɞɧɨɦ ɢɡ ɛɨɤɨɜɵɯ (ɝɨɪɢɡɨɧɬɚɥɶɧɵɯ) ɬɨɪɰɨɜ Ɍ-ɨɛɪɚɡɧɨɣ ɬɪɭɛɤɢ, ɚ ɚɧɨɞ - ɜ ɧɢɠɧɟɣ ɟɟ ɱɚɫɬɢ. ɇɚ 78 «Â³ñíèê Õàðê³âñüêîãî óí³âåðñèòåòó», ¹ 880, 2009 Â.À. Ëèñîâñêèé, Í.Ä. Õàð÷åíêî... Ɋɢɫ.2. ɋɯɟɦɚ ɪɚɡɪɹɞɧɨɣ ɤɚɦɟɪɵ T-ɨɛɪɚɡɧɨɣ ɮɨɪɦɵ. ɩɪɨɬɢɜɨɩɨɥɨɠɧɨɦ ɤɨɧɰɟ ɨɬ ɤɚɬɨɞɚ ɛɵɥɨ ɪɚɫɩɨɥɨɠɟɧɨ ɫɦɨɬɪɨɜɨɟ ɨɤɧɨ, ɱɟɪɟɡ ɤɨɬɨɪɨɟ ɩɪɨɢɡɜɨɞɢɥɨɫɶ ɮɨɬɨɝɪɚɮɢɪɨɜɚɧɢɟ ɪɚɡɪɹɞɚ ɜɛɥɢɡɢ ɤɚɬɨɞɚ. Ɋɚɫɫɬɨɹɧɢɟ ɦɟɠɞɭ ɫɦɨɬɪɨɜɵɦ ɨɤɧɨɦ Ɍ-ɨɛɪɚɡɧɨɣ ɬɪɭɛɤɢ ɢ ɤɚɬɨɞɨɦ ɫɨɫɬɚɜɥɹɥɨ 400 ɦɦ, ɪɚɫɫɬɨɹɧɢɟ ɨɬ ɚɧɨɞɚ ɞɨ ɨɫɢ ɤɚɬɨɞɚ – 200 ɦɦ, ɞɢɚɦɟɬɪ ɷɥɟɤɬɪɨɞɨɜ – 56 ɦɦ. ȼ ɯɨɞɟ ɷɤɫɩɟɪɢɦɟɧɬɨɜ ɛɵɥɚ ɫɞɟɥɚɧɚ ɫɟɪɢɹ ɮɨɬɨɝɪɚɮɢɣ ɪɚɡɪɹɞɚ ɜ ɚɡɨɬɟ ɜ ɧɨɪɦɚɥɶɧɨɦ ɪɟɠɢɦɟ. ɉɪɢ ɩɨɥɭɱɟɧɢɢ ɤɚɠɞɨɝɨ ɫɧɢɦɤɚ Ɋɢɫ.1. ɋɯɟɦɚ ɪɚɡɪɹɞɧɨɣ ɤɚɦɟɪɵ, ɫɨɞɟɪɠɚɳɟɣ ɤɚɬɨɞ ɮɢɤɫɢɪɨɜɚɥɨɫɶ ɫɨɨɬɜɟɬɫɬɜɭɸɳɟɟ ɡɧɚɱɟɧɢɟ ɪɚɡɪɹɞɧɨɝɨ ɬɨɤɚ. ɫ ɤɨɥɥɟɤɬɨɪɚɦɢ. Ɏɨɬɨɝɪɚɮɢɢ ɜɵɩɨɥɧɹɥɢɫɶ ɰɢɮɪɨɜɨɣ ɮɨɬɨɤɚɦɟɪɨɣ Canon IXUS 500. ɋɟɪɢɢ ɮɨɬɨɝɪɚɮɢɣ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ ɛɵɥɢ ɫɞɟɥɚɧɵ ɞɥɹ ɪɚɡɥɢɱɧɵɯ ɦɚɬɟɪɢɚɥɨɜ ɤɚɬɨɞɚ – ɧɟɪɠɚɜɟɸɳɟɣ ɫɬɚɥɢ, ɫɟɪɟɛɪɚ, ɦɟɞɢ ɢ ɦɚɝɧɢɹ. ɗɤɫɩɟɪɢɦɟɧɬɵ ɩɪɨɜɨɞɢɥɢɫɶ ɩɪɢ ɞɚɜɥɟɧɢɹɯ ɚɡɨɬɚ p = 0,1 – 2 Ɍɨɪɪ ɜ ɞɢɚɩɚɡɨɧɟ ɩɨɫɬɨɹɧɧɨɝɨ ɧɚɩɪɹɠɟɧɢɹ Udc ≤ 600 ȼ ɜ ɫɥɭɱɚɟ ɤɚɦɟɪɵ ɫ ɤɨɥɥɟɤɬɨɪɚɦɢ ɢ Udc ≤ 2000 ɞɥɹ Ɍ-ɨɛɪɚɡɧɨɣ ɪɚɡɪɹɞɧɨɣ ɬɪɭɛɤɢ. ɗɄɋɉȿɊɂɆȿɇɌȺɅɖɇɕȿ ɊȿɁɍɅɖɌȺɌɕ Ⱦɥɹ ɢɡɭɱɟɧɢɹ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ ɩɪɟɞɜɚɪɢɬɟɥɶɧɨ ɨɩɪɟɞɟɥɹɥɢɫɶ ɝɪɚɧɢɰɵ ɟɝɨ ɫɭɳɟɫɬɜɨɜɚɧɢɹ. ɇɚ ɪɢɫ. 3 ɩɪɢɜɟɞɟɧɵ ɜɨɥɶɬ-ɚɦɩɟɪɧɵɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɪɚɡɪɹɞɚ ɞɥɹ ɪɚɡɥɢɱɧɵɯ ɮɢɤɫɢɪɨɜɚɧɧɵɯ ɞɚɜɥɟɧɢɣ ɚɡɨɬɚ ɫ ɪɚɫɫɬɨɹɧɢɟɦ ɦɟɠɞɭ ɷɥɟɤɬɪɨɞɚɦɢ 50 ɦɦ. ɂɡ ɪɢɫ. 3 ɜɢɞɧɨ, ɱɬɨ ɧɨɪɦɚɥɶɧɵɣ ɪɟɠɢɦ ɩɪɢ ɞɚɜɥɟɧɢɹɯ ɚɡɨɬɚ ɪ = 0,1÷ 0,3 Ɍɨɪɪ ɧɟ ɧɚɛɥɸɞɚɟɬɫɹ. ɇɨɪɦɚɥɶɧɵɣ ɪɟɠɢɦ ɪɟɚɥɢɡɭɟɬɫɹ ɬɨɥɶɤɨ ɧɚ ɩɪɚɜɨɣ p = 2 Topp ɜɟɬɜɢ ɤɪɢɜɨɣ ɡɚɠɢɝɚɧɢɹ ɩɪɢ ɞɚɜɥɟɧɢɹɯ 30 1.5 Topp ɩɪɢɛɥɢɡɢɬɟɥɶɧɨ ɜ ɬɪɢ ɪɚɡɚ ɛɨɥɶɲɢɯ, ɱɟɦ ɞɚɜɥɟɧɢɟ 1 Topp ɜ ɦɢɧɢɦɭɦɟ ɤɪɢɜɨɣ ɡɚɠɢɝɚɧɢɹ ɞɥɹ ɞɚɧɧɨɣ 0.8 Topp 25 ɪɚɡɪɹɞɧɨɣ ɤɚɦɟɪɵ [23-25]. ɉɪɢ ɞɚɥɶɧɟɣɲɟɦ 0.6 Topp 0.3 Topp ɭɜɟɥɢɱɟɧɢɢ ɞɚɜɥɟɧɢɹ ɝɚɡɚ ɧɚɱɢɧɚɟɬ ɩɨɹɜɥɹɬɶɫɹ 20 0.1 Topp ɧɨɪɦɚɥɶɧɵɣ ɪɟɠɢɦ ɝɨɪɟɧɢɹ ɬɥɟɸɳɟɝɨ ɪɚɡɪɹɞɚ (ɩɪɢ ɞɚɜɥɟɧɢɹɯ ɪ • 0,6 Ɍɨɪɪ). ɑɟɦ ɜɵɲɟ ɞɚɜɥɟɧɢɟ 15 ɚɡɨɬɚ, ɬɟɦ ɜ ɛɨɥɟɟ ɲɢɪɨɤɨɦ ɞɢɚɩɚɡɨɧɟ ɬɨɤɨɜ ɧɚɛɥɸɞɚɟɬɫɹ ɷɬɨɬ ɪɟɠɢɦ ɝɨɪɟɧɢɹ. ɉɨɫɥɟ ɡɚɠɢɝɚɧɢɹ 10 ɪɚɡɪɹɞ ɫɧɚɱɚɥɚ ɡɚɧɢɦɚɟɬ ɬɨɥɶɤɨ ɱɚɫɬɶ ɩɨɜɟɪɯɧɨɫɬɢ ɤɚɬɨɞɚ. Ɂɚɬɟɦ ɫ ɪɨɫɬɨɦ ɪɚɡɪɹɞɧɨɝɨ ɬɨɤɚ ɪɚɡɪɹɞɧɨɟ 5 ɩɹɬɧɨ ɧɚ ɤɚɬɨɞɟ ɭɜɟɥɢɱɢɜɚɟɬɫɹ ɞɨ ɬɟɯ ɩɨɪ, ɩɨɤɚ ɧɟ ɡɚɩɨɥɧɢɬ ɜɟɫɶ ɤɚɬɨɞ. ɉɪɢ ɷɬɨɦ ɧɚɩɪɹɠɟɧɢɟ ɧɚ 0 ɪɚɡɪɹɞɟ ɨɫɬɚɟɬɫɹ ɩɪɢɛɥɢɡɢɬɟɥɶɧɨ ɩɨɫɬɨɹɧɧɵɦ, ɱɬɨ 300 400 500 600 700 ɫɨɝɥɚɫɭɟɬɫɹ ɫ ɞɚɧɧɵɦɢ, ɩɨɥɭɱɟɧɧɵɦɢ ɞɪɭɝɢɦɢ ɚɜɬɨɪɚɦɢ [10-15]. ɉɨɫɥɟ ɩɨɤɪɵɬɢɹ ɪɚɡɪɹɞɨɦ ɜɫɟɣ Udc , ȼ ɩɨɜɟɪɯɧɨɫɬɢ ɤɚɬɨɞɚ ɞɚɥɶɧɟɣɲɟɟ ɭɜɟɥɢɱɟɧɢɟ Ɋɢɫ.3. ȼɨɥɶɬ-ɚɦɩɟɪɧɵɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɪɚɡɪɹɞɚ ɩɨɫɬɨɹɧɧɨɝɨ ɪɚɡɪɹɞɧɨɝɨ ɬɨɤɚ ɫɨɩɪɨɜɨɠɞɚɟɬɫɹ ɪɨɫɬɨɦ ɬɨɤɚ ɞɥɹ ɪɚɡɥɢɱɧɵɯ ɞɚɜɥɟɧɢɣ ɚɡɨɬɚ (ɪɚɫɫɬɨɹɧɢɟ ɦɟɠɞɭ ɧɚɩɪɹɠɟɧɢɹ ɧɚ ɷɥɟɤɬɪɨɞɚɯ, ɪɚɡɪɹɞ ɩɟɪɟɯɨɞɢɬ ɜ ɷɥɟɤɬɪɨɞɚɦɢ 50 ɦɦ). ɚɧɨɦɚɥɶɧɵɣ ɪɟɠɢɦ ɝɨɪɟɧɢɹ. ɇɨɪɦɚɥɶɧɵɣ ɪɟɠɢɦ ɯɚɪɚɤɬɟɪɢɡɭɟɬɫɹ ɧɨɪɦɚɥɶɧɵɦ ɩɚɞɟɧɢɟɦ ɧɚɩɪɹɠɟɧɢɹ ɧɚ ɤɚɬɨɞɧɨɦ ɫɥɨɟ. ȼ ɧɚɲɢɯ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɯ ɭɫɥɨɜɢɹɯ ɫɪɟɞɧɢɟ ɡɧɚɱɟɧɢɹ ɧɨɪɦɚɥɶɧɨɝɨ ɩɚɞɟɧɢɹ ɧɚɩɪɹɠɟɧɢɹ ɧɚ ɷɥɟɤɬɪɨɞɚɯ ɛɵɥɢ Udc = 320÷ 340 ȼ. ɇɭɠɧɨ ɨɬɦɟɬɢɬɶ, ɱɬɨ ɞɥɹ ɜɫɟɯ ɡɧɚɱɟɧɢɣ ɞɚɜɥɟɧɢɹ ɚɡɨɬɚ ɩɪɢ ɭɦɟɧɶɲɟɧɢɢ ɬɨɤɚ ɧɚɛɥɸɞɚɥɨɫɶ ɧɟɛɨɥɶɲɨɟ ɩɨɜɵɲɟɧɢɟ ɧɨɪɦɚɥɶɧɨɝɨ ɧɚɩɪɹɠɟɧɢɹ ɧɚ ɪɚɡɪɹɞɟ. Ⱦɟɬɚɥɶɧɨ ɷɬɨɬ ɮɚɤɬ ɩɨɤɚɡɚɧ ɧɚ ɪɢɫ. 4. I, ɦA 79 ñåð³ÿ ô³çè÷íà «ßäðà, ÷àñòèíêè, ïîëÿ», âèï. 4 /44/ Íîðìàëüíûé ðåæèì ðàçðÿäà... ɪ = 2 Ɍɨɪɪ ɗɬɨ ɦɨɠɧɨ ɨɛɴɹɫɧɢɬɶ, ɢɫɩɨɥɶɡɭɹ ɡɚɤɨɧ 25 1,5 Ɍɨɪɪ Ɉɦɚ ɞɥɹ ɩɨɥɧɨɣ ɰɟɩɢ U = İ - I·R, ɝɞɟ İ – ɗȾɋ 1 Ɍɨɪɪ ɢɫɬɨɱɧɢɤɚ ɩɢɬɚɧɢɹ, I – ɪɚɡɪɹɞɧɵɣ ɬɨɤ, R – 20 0,8 Ɍɨɪɪ ɜɧɟɲɧɟɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɰɟɩɢ. ɉɨɧɢɠɟɧɢɟ ɬɨɤɚ ɩɪɢɜɨɞɢɬ ɤ ɭɜɟɥɢɱɟɧɢɸ ɧɚɩɪɹɠɟɧɢɹ ɧɚ ɷɥɟɤɬɪɨɞɚɯ, ɱɬɨ ɢ ɜɢɞɧɨ ɧɚ ɪɢɫ. 4. 15 ɇɚ ɪɢɫ. 5 ɩɪɢɜɟɞɟɧɵ ɪɚɞɢɚɥɶɧɵɟ ɡɚɜɢɫɢɦɨɫɬɢ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ ɞɥɹ ɪɚɡɥɢɱɧɵɯ 10 ɡɧɚɱɟɧɢɣ ɪɚɡɪɹɞɧɨɝɨ ɬɨɤɚ Idc ɩɪɢ ɞɚɜɥɟɧɢɢ ɚɡɨɬɚ ɪ = 0,6 Ɍɨɪɪ. Ʉɚɤ ɜɢɞɧɨ ɢɡ ɪɢɫɭɧɤɚ, ɩɪɢ 5 ɭɜɟɥɢɱɟɧɢɢ ɪɚɡɪɹɞɧɨɝɨ ɬɨɤɚ ɜɨ ɜɫɟɦ ɞɢɚɩɚɡɨɧɟ Idc ɩɥɨɬɧɨɫɬɶ ɬɨɤɚ ɭɜɟɥɢɱɢɜɚɥɚɫɶ. ɉɪɢ ɡɧɚɱɟɧɢɹɯ Idc < 1,74 ɦȺ ɪɚɡɪɹɞ ɝɨɪɢɬ ɜ 0 320 340 360 380 400 ɧɨɪɦɚɥɶɧɨɦ ɪɟɠɢɦɟ. ɉɪɢ ɷɬɨɦ ɦɚɤɫɢɦɭɦ ɧɨɪɦɚɥɶɧɨɣ ɩɥɨɬɧɨɫɬɢ ɪɚɡɪɹɞɧɨɝɨ ɬɨɤɚ jn Udc , ȼ ɧɚɛɥɸɞɚɟɬɫɹ ɜ ɰɟɧɬɪɟ ɪɚɡɪɹɞɧɨɝɨ ɩɹɬɧɚ, ɚ ɩɪɢ Ɋɢɫ. 4. ȼɨɥɶɬ-ɚɦɩɟɪɧɵɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɪɚɡɪɹɞɚ ɩɨɫɬɨɹɧɧɨɝɨ ɭɞɚɥɟɧɢɢ ɨɬ ɰɟɧɬɪɚ jn ɛɵɫɬɪɨ ɭɦɟɧɶɲɚɟɬɫɹ. ɗɬɢ ɬɨɤɚ ɞɥɹ ɞɚɜɥɟɧɢɣ ɚɡɨɬɚ, ɩɪɢ ɤɨɬɨɪɵɯ ɧɚɛɥɸɞɚɟɬɫɹ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɟ ɞɚɧɧɵɟ ɪɚɫɯɨɞɹɬɫɹ ɫ ɧɨɪɦɚɥɶɧɵɣ ɪɟɠɢɦ ɪɚɡɪɹɞɚ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ (ɪɚɫɫɬɨɹɧɢɟ ɨɛɳɟɩɪɢɧɹɬɵɦ ɦɧɟɧɢɟɦ ɨ ɩɨɫɬɨɹɧɫɬɜɟ ɦɟɠɞɭ ɷɥɟɤɬɪɨɞɚɦɢ 50 ɦɦ). ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ ɜ ɪɚɡɪɹɞɧɨɦ ɩɹɬɧɟ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ [4-9]. ɇɭɠɧɨ p = 0.6 Topp ɨɬɦɟɬɢɬɶ, ɱɬɨ ɞɥɹ ɞɚɜɥɟɧɢɹ ɚɡɨɬɚ 0,6 Ɍɨɪɪ 0,6 Idc=0.83 ɦȺ ɩɥɨɬɧɨɫɬɶ ɬɨɤɚ ɜ ɦɚɤɫɢɦɭɦɟ ɩɹɬɧɚ ɜ 1.11 ɦȺ 0,5 ɧɨɪɦɚɥɶɧɨɦ ɪɟɠɢɦɟ ɫɥɚɛɨ ɦɟɧɹɟɬɫɹ ɫ ɪɨɫɬɨɦ 1.74 ɦȺ ɪɚɡɪɹɞɧɨɝɨ ɬɨɤɚ, ɢ ɩɨ ɜɟɥɢɱɢɧɟ ɛɥɢɡɤɚ ɤ 2.11 ɦȺ 0,4 2.89 ɦȺ jn = 0,1 ɦȺ/ɫɦ2. ȼ ɛɟɫɬɨɤɨɜɨɣ ɨɛɥɚɫɬɢ 4.35 ɦȺ (r • 10 ɦɦ), ɝɞɟ ɜɢɡɭɚɥɶɧɨ ɪɚɡɪɹɞ ɧɟ 0,3 6.38 ɦȺ ɧɚɛɥɸɞɚɟɬɫɹ, ɧɚ ɝɪɚɮɢɤɟ (ɪɢɫ. 5) ɞɥɹ 8.31 ɦȺ 0,2 ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɯ ɤɨɨɪɞɢɧɚɬ ɧɚ ɤɚɬɨɞɟ 11.5 ɦȺ ɩɥɨɬɧɨɫɬɶ ɬɨɤɚ ɪɚɜɧɚ ɧɭɥɸ. ɉɪɢ ɜɟɥɢɱɢɧɟ 0,1 ɪɚɡɪɹɞɧɨɝɨ ɬɨɤɚ Idc • 1,74 ɦȺ ɪɚɡɪɹɞ ɝɨɪɢɬ ɜ ɚɧɨɦɚɥɶɧɨɦ ɪɟɠɢɦɟ, ɢ ɡɧɚɱɟɧɢɹ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ 0,0 ɩɪɚɤɬɢɱɟɫɤɢ ɧɟ ɦɟɧɹɸɬɫɹ ɩɨ ɪɚɞɢɭɫɭ ɪɚɡɪɹɞɧɨɣ -30 -20 -10 0 10 20 30 ɤɚɦɟɪɵ ɞɥɹ ɨɞɧɨɝɨ ɢ ɬɨɝɨ ɠɟ ɡɧɚɱɟɧɢɹ ɬɨɤɚ. r, ɦɦ ɉɪɢ ɞɚɜɥɟɧɢɹɯ ɚɡɨɬɚ ɪ ” 1 Ɍɨɪɪ ɧɨɪɦɚɥɶɧɵɣ Ɋɢɫ. 5. Ɋɚɞɢɚɥɶɧɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ ɞɥɹ ɪɟɠɢɦ ɫɭɳɟɫɬɜɭɟɬ ɜ ɧɟɛɨɥɶɲɨɦ ɞɢɚɩɚɡɨɧɟ ɪɚɡɥɢɱɧɵɯ ɡɧɚɱɟɧɢɣ ɪɚɡɪɹɞɧɨɝɨ ɬɨɤɚ ɩɪɢ ɞɚɜɥɟɧɢɢ ɚɡɨɬɚ ɪɚɡɪɹɞɧɵɯ ɬɨɤɨɜ, ɩɨɷɬɨɦɭ ɩɪɨɫɥɟɞɢɬɶ ɪ = 0,6 Ɍɨɪɪ. ɞɢɧɚɦɢɤɭ ɢɡɦɟɧɟɧɢɹ ɧɨɪɦɚɥɶɧɨɣ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ ɪɚɡɪɹɞɚ ɞɨɜɨɥɶɧɨ ɫɥɨɠɧɨ. Ɉɛɵɱɧɨ p = 1 Topp ɪɚɡɪɹɞɧɨɟ ɩɹɬɧɨ ɪɚɫɩɨɥɚɝɚɟɬɫɹ ɧɟ ɜ ɰɟɧɬɪɟ Idc=1,92 ɦȺ 1,2 ɷɥɟɤɬɪɨɞɚ, ɚ ɫɦɟɳɟɧɨ ɤ ɫɬɟɧɤɟ ɪɚɡɪɹɞɧɨɣ 2,9 ɦȺ ɬɪɭɛɤɢ. ɉɨ-ɜɢɞɢɦɨɦɭ, ɫɬɟɧɤɢ ɬɪɭɛɤɢ 3,85 ɦȺ 1,0 ɨɤɚɡɵɜɚɸɬ ɫɬɚɛɢɥɢɡɢɪɭɸɳɟɟ ɞɟɣɫɬɜɢɟ ɧɚ 5,15 ɦȺ 8,1 ɦȺ ɪɚɡɪɹɞɧɵɣ ɲɧɭɪ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ. 0,8 12,4 ɦȺ ɗɥɟɤɬɪɨɧɵ, ɭɲɟɞɲɢɟ ɧɚ ɫɬɟɧɤɢ ɬɪɭɛɤɢ, 16,1 ɦȺ 0,6 ɡɚɪɹɠɚɸɬ ɟɟ ɩɨɜɟɪɯɧɨɫɬɶ ɨɬɪɢɰɚɬɟɥɶɧɨ ɞɨ 20 ɦȺ ɧɟɤɨɬɨɪɨɝɨ ɩɨɬɟɧɰɢɚɥɚ Uw. ɂɡ-ɡɚ ɷɬɨɝɨ 0,4 ɩɨɜɟɪɯɧɨɫɬɢ ɪɚɡɪɹɞɧɨɣ ɬɪɭɛɤɢ ɦɨɝɭɬ ɞɨɫɬɢɱɶ ɬɨɥɶɤɨ ɫɚɦɵɟ ɛɵɫɬɪɵɟ ɷɥɟɤɬɪɨɧɵ, ɷɧɟɪɝɢɹ 0,2 ɤɨɬɨɪɵɯ İe • eUw. Ɇɟɞɥɟɧɧɵɟ ɷɥɟɤɬɪɨɧɵ 0,0 ɜɨɡɜɪɚɳɚɸɬɫɹ ɨɛɪɚɬɧɨ ɜ ɪɚɡɪɹɞɧɵɣ ɲɧɭɪ. ȼ ɬɨ ɠɟ ɜɪɟɦɹ ɷɥɟɤɬɪɨɧɵ, ɜɵɧɨɫɢɦɵɟ ɜɫɥɟɞɫɬɜɢɟ -30 -20 -10 0 10 20 30 ɚɦɛɢɩɨɥɹɪɧɨɣ ɞɢɮɮɭɡɢɢ ɢɡ ɪɚɡɪɹɞɚ ɜ r, ɦɦ ɛɟɫɬɨɤɨɜɭɸ ɨɛɥɚɫɬɶ, ɛɨɥɶɲɟ ɧɟ ɭɱɚɫɬɜɭɸɬ ɜ Ɋɢɫ.6. Ɋɚɞɢɚɥɶɧɵɟ ɡɚɜɢɫɢɦɨɫɬɢ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ ɞɥɹ ɪɚɡɥɢɱɧɵɯ ɩɨɞɟɪɠɚɧɢɢ ɪɚɡɪɹɞɚ ɢ ɬɟɪɹɸɬɫɹ ɜɫɥɟɞɫɬɜɢɟ ɡɧɚɱɟɧɢɣ ɪɚɡɪɹɞɧɨɝɨ ɬɨɤɚ ɩɪɢ ɞɚɜɥɟɧɢɢ ɚɡɨɬɚ ɪɟɤɨɦɛɢɧɚɰɢɢ ɫ ɩɨɥɨɠɢɬɟɥɶɧɵɦɢ ɢɨɧɚɦɢ ɢ ɪ = 1 Ɍɨɪɪ. ɞɪɟɣɮɨɜɨɝɨ ɭɯɨɞɚ ɧɚ ɚɧɨɞ. ɉɨɷɬɨɦɭ ɪɚɡɪɹɞɧɵɣ ɲɧɭɪ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ ɨɛɵɱɧɨ ɩɪɢɠɢɦɚɟɬɫɹ ɤ ɫɬɟɧɤɟ ɬɪɭɛɤɢ (ɫɦ., ɧɚɩɪɢɦɟɪ, ɪɢɫ.9), ɚ ɧɟ ɪɚɫɩɨɥɚɝɚɟɬɫɹ ɜɛɥɢɡɢ ɨɫɢ ɤɚɦɟɪɵ. j, ɦA/cɦ 2 j, ɦA/cɦ 2 I, ɦA 80 «Â³ñíèê Õàðê³âñüêîãî óí³âåðñèòåòó», ¹ 880, 2009 Â.À. Ëèñîâñêèé, Í.Ä. Õàð÷åíêî... ɇɚ ɪɢɫ. 6 ɩɪɟɞɫɬɚɜɥɟɧɵ ɪɚɞɢɚɥɶɧɵɟ 1,4 p = 2 Ɍɨɪɪ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ ɩɪɢ ɞɚɜɥɟɧɢɢ Idc = 3.25 ɦȺ 1,2 ɚɡɨɬɚ ɪ = 1 Ɍɨɪɪ. ɉɪɢ ɡɧɚɱɟɧɢɹɯ ɬɨɤɨɜ 7.44 ɦȺ Idc ” 3,85 ɦȺ ɪɚɡɪɹɞ ɝɨɪɢɬ ɜ ɧɨɪɦɚɥɶɧɨɦ 10.35 ɦȺ 1,0 13 ɦȺ ɪɟɠɢɦɟ, ɚ ɡɚɬɟɦ ɩɪɢ ɭɜɟɥɢɱɟɧɢɢ ɬɨɤɚ ɩɟɪɟɯɨɞɢɬ 0,8 16.6 ɦȺ ɜ ɚɧɨɦɚɥɶɧɵɣ. ɇɚ ɪɢɫ. 6 ɞɥɹ ɧɨɪɦɚɥɶɧɨɝɨ 22.1 ɦȺ ɪɟɠɢɦɚ ɯɨɪɨɲɨ ɜɢɞɧɨ ɭɜɟɥɢɱɟɧɢɟ ɩɥɨɬɧɨɫɬɢ 0,6 25.2 ɦȺ ɬɨɤɚ ɩɨ ɪɚɞɢɭɫɭ ɤɚɦɟɪɵ ɫ ɪɨɫɬɨɦ ɪɚɡɪɹɞɧɨɝɨ 0,4 ɬɨɤɚ, ɱɬɨ ɫɜɢɞɟɬɟɥɶɫɬɜɭɟɬ ɨ ɪɚɫɲɢɪɟɧɢɢ ɩɥɚɡɦɟɧɧɨɝɨ ɫɬɨɥɛɚ. ɋɪɟɞɧɟɟ ɡɧɚɱɟɧɢɟ 0,2 ɧɨɪɦɚɥɶɧɨɣ ɩɥɨɬɧɨɫɬɢ ɪɚɡɪɹɞɧɨɝɨ ɬɨɤɚ 0,0 ɩɪɢɦɟɪɧɨ ɪɚɜɧɨ jn = 0,24 ɦȺ/ɫɦ2. -30 -20 -10 0 10 20 30 ɇɚ ɪɢɫ. 7 ɢɡɨɛɪɚɠɟɧɵ ɪɚɞɢɚɥɶɧɵɟ ɡɚɜɢɫɢɦɨɫɬɢ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ ɩɪɢ ɞɚɜɥɟɧɢɢ ɚɡɨɬɚ r, ɦɦ ɪ = 2 Ɍɨɪɪ. ȼ ɷɬɨɦ ɫɥɭɱɚɟ ɧɨɪɦɚɥɶɧɵɣ ɪɟɠɢɦ Ɋɢɫ. 7. Ɋɚɞɢɚɥɶɧɵɟ ɡɚɜɢɫɢɦɨɫɬɢ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ ɞɥɹ ɪɚɡɥɢɱɧɵɯ ɫɭɳɟɫɬɜɭɟɬ ɩɪɢ Idc ” 13 ɦȺ, ɜ ɧɚɢɛɨɥɶɲɟɦ ɡɧɚɱɟɧɢɣ ɪɚɡɪɹɞɧɨɝɨ ɬɨɤɚ ɩɪɢ ɞɚɜɥɟɧɢɢ ɚɡɨɬɚ ɞɢɚɩɚɡɨɧɟ ɬɨɤɨɜ ɢɡ ɜɫɟɯ ɢɫɫɥɟɞɨɜɚɧɧɵɯ ɧɚɦɢ ɪ = 2 Ɍɨɪɪ. ɡɧɚɱɟɧɢɣ ɞɚɜɥɟɧɢɹ. ɋɪɟɞɧɟɟ ɡɧɚɱɟɧɢɟ ɧɨɪɦɚɥɶɧɨɣ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ jn = 0,7 ɦȺ/ɫɦ2. ȿɫɥɢ ɩɪɨɞɨɥɠɚɬɶ ɩɨɜɵɲɚɬɶ ɬɨɤ, ɬɨ ɪɚɡɪɹɞ ɩɟɪɟɯɨɞɢɬ ɜ ɚɧɨɦɚɥɶɧɵɣ ɪɟɠɢɦ. ɇɭɠɧɨ ɨɬɦɟɬɢɬɶ, ɱɬɨ ɱɟɦ ɛɨɥɶɲɟ ɞɚɜɥɟɧɢɟ ɚɡɨɬɚ ɜ ɤɚɦɟɪɟ, ɬɟɦ ɦɟɧɶɲɟ ɦɨɝɭɬ ɛɵɬɶ ɪɚɡɦɟɪɵ ɪɚɡɪɹɞɧɵɯ ɩɹɬɟɧ, ɩɪɢ ɤɨɬɨɪɵɯ ɩɨɞɞɟɪɠɢɜɚɟɬɫɹ ɧɨɪɦɚɥɶɧɵɣ ɪɟɠɢɦ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ. ɉɪɢ ɛɨɥɶɲɢɯ ɡɧɚɱɟɧɢɹɯ ɞɚɜɥɟɧɢɣ ɝɚɡɚ ɧɨɪɦɚɥɶɧɵɣ ɪɟɠɢɦ ɧɚɛɥɸɞɚɟɬɫɹ ɜ ɛɨɥɟɟ ɲɢɪɨɤɨɦ ɞɢɚɩɚɡɨɧɟ ɪɚɡɪɹɞɧɵɯ ɬɨɤɨɜ. ɋɬɚɛɢɥɶɧɨɫɬɶ ɩɥɚɡɦɟɧɧɨɝɨ ɫɬɨɥɛɚ ɜ ɧɨɪɦɚɥɶɧɨɦ ɪɟɠɢɦɟ ɨɛɭɫɥɨɜɥɟɧɚ ɧɚɥɢɱɢɟɦ ɪɚɞɢɚɥɶɧɨɝɨ ɩɨɥɹ, ɤɨɬɨɪɨɟ ɮɨɪɦɢɪɭɟɬɫɹ ɧɚ ɝɪɚɧɢɰɟ ɩɥɚɡɦɟɧɧɨɝɨ ɫɬɨɥɛɚ ɜɛɥɢɡɢ ɤɚɬɨɞɚ ɛɥɚɝɨɞɚɪɹ ɧɟɨɞɧɨɪɨɞɧɨɫɬɢ ɫɢɥɨɜɵɯ ɥɢɧɢɣ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɩɨɥɹ ɜ ɷɬɨɣ ɨɛɥɚɫɬɢ [16, 17]. ɉɨɞ ɞɟɣɫɬɜɢɟɦ ɷɬɨɝɨ ɩɨɥɹ ɢɨɧɵ ɧɚ ɝɪɚɧɢɰɟ ɩɥɚɡɦɚ-ɫɥɨɣ ɜɵɬɟɫɧɹɸɬɫɹ ɢɡ ɩɪɢɤɚɬɨɞɧɨɣ ɨɛɥɚɫɬɢ ɪɚɡɪɹɞɚ, ɚ ɷɥɟɤɬɪɨɧɵ ɫɬɪɟɦɹɬɫɹ ɤ ɰɟɧɬɪɭ ɩɥɚɡɦɟɧɧɨɝɨ ɲɧɭɪɚ, ɬɟɦ ɫɚɦɵɦ, ɫɬɚɛɢɥɢɡɢɪɭɹ ɪɚɡɪɹɞ. ɉɨɫɤɨɥɶɤɭ ɩɥɨɬɧɨɫɬɶ ɡɚɪɹɠɟɧɧɵɯ ɱɚɫɬɢɰ ɩɪɢ ɛɨɥɶɲɟɦ ɞɚɜɥɟɧɢɢ ɜɵɲɟ, ɜ ɬɚɤɢɯ ɭɫɥɨɜɢɹɯ ɫɬɚɛɢɥɢɡɚɰɢɹ ɩɥɚɡɦɟɧɧɨɝɨ ɲɧɭɪɚ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɥɟɝɱɟ. Ʉɪɨɦɟ ɬɨɝɨ, ɩɪɢ ɩɨɜɵɲɟɧɧɨɦ ɞɚɜɥɟɧɢɢ ɝɚɡɚ ɚɦɛɢɩɨɥɹɪɧɵɣ ɭɯɨɞ ɡɚɪɹɠɟɧɧɵɯ ɱɚɫɬɢɰ ɢɡ ɩɥɚɡɦɟɧɧɨɝɨ ɲɧɭɪɚ ɧɢɠɟ, ɱɬɨ ɬɚɤɠɟ ɩɨɡɜɨɥɹɟɬ ɧɨɪɦɚɥɶɧɨɦɭ ɪɟɠɢɦɭ ɝɨɪɟɬɶ ɜ ɜɢɞɟ ɲɧɭɪɚ ɧɟɛɨɥɶɲɨɝɨ ɞɢɚɦɟɬɪɚ. ɉɥɨɬɧɨɫɬɶ ɬɨɤɚ ɜ ɤɚɬɨɞɧɨɦ ɫɥɨɟ (ɜ ɫɥɭɱɚɟ, ɤɨɝɞɚ ɢɨɧɵ ɞɜɢɠɭɬɫɹ ɜ ɫɥɨɟ, ɩɪɟɬɟɪɩɟɜɚɹ ɫɬɨɥɤɧɨɜɟɧɢɹ ɫ ɦɨɥɟɤɭɥɚɦɢ ɧɟɣɬɪɚɥɶɧɨɝɨ ɝɚɡɚ, ɫ ɩɨɫɬɨɹɧɧɨɣ ɩɨɞɜɢɠɧɨɫɬɶɸ µi, ɧɟ ɡɚɜɢɫɹɳɟɣ ɨɬ ɢɯ ɫɤɨɪɨɫɬɢ) ɨɩɪɟɞɟɥɹɟɬɫɹ ɫɨɨɬɧɨɲɟɧɢɟɦ [29]: j, ɦA/cɦ2 j= ɝɞɟ j – ɩɥɨɬɧɨɫɬɶ ɪɚɡɪɹɞɧɨɝɨ ɬɨɤɚ, Vc – ɩɚɞɟɧɢɟ ɧɚɩɪɹɠɟɧɢɹ ɧɚ ɤɚɬɨɞɧɨɦ ɫɥɨɟ, d – ɬɨɥɳɢɧɚ ɤɚɬɨɞɧɨɝɨ ɫɥɨɹ, γ − ɤɨɷɮɮɢɰɢɟɧɬ ɢɨɧ-ɷɥɟɤɬɪɨɧɧɨɣ ɷɦɢɫɫɢɢ ɫ ɩɨɜɟɪɯɧɨɫɬɢ ɤɚɬɨɞɚ. ɂɡ ɮɨɪɦɭɥɵ (1) ɜɢɞɧɨ, ɱɬɨ ɩɥɨɬɧɨɫɬɶ ɬɨɤɚ ɜ ɫɥɨɟ ɨɛɪɚɬɧɨ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɚ ɬɨɥɳɢɧɚ ɫɥɨɹ ɜ ɫɬɟɩɟɧɢ 3. ɇɚ ɪɢɫ.8 ɩɪɢɜɟɞɟɧɚ ɮɨɬɨɝɪɚɮɢɹ ɪɚɡɪɹɞɧɨɝɨ ɩɹɬɧɚ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ, ɝɨɪɹɳɟɝɨ ɜ ɧɨɪɦɚɥɶɧɨɦ ɪɟɠɢɦɟ, ɫɞɟɥɚɧɧɚɹ ɩɚɪɚɥɥɟɥɶɧɨ ɩɥɨɫɤɨɫɬɢ ɤɚɬɨɞɚ. ȼɢɞɧɨ, ɱɬɨ ɬɨɥɳɢɧɚ ɤɚɬɨɞɧɨɝɨ ɫɥɨɹ ɜ ɪɚɞɢɚɥɶɧɨɦ ɧɚɩɪɚɜɥɟɧɢɢ ɧɟ ɩɨɫɬɨɹɧɧɚ. ȿɟ ɡɧɚɱɟɧɢɟ ɦɢɧɢɦɚɥɶɧɨ ɜ ɰɟɧɬɪɟ ɪɚɡɪɹɞɧɨɝɨ ɩɹɬɧɚ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ ɢ ɭɜɟɥɢɱɢɜɚɟɬɫɹ ɩɨ ɦɟɪɟ ɩɪɢɛɥɢɠɟɧɢɹ ɤ ɤɪɚɸ ɩɹɬɧɚ. ɂɫɯɨɞɹ ɢɡ ɜɵɪɚɠɟɧɢɹ (1), ɩɪɢ ɭɜɟɥɢɱɟɧɢɢ ɬɨɥɳɢɧɵ ɤɚɬɨɞɧɨɝɨ ɫɥɨɹ ɩɥɨɬɧɨɫɬɶ ɬɨɤɚ ɪɚɡɪɹɞɚ ɞɨɥɠɧɚ ɩɚɞɚɬɶ. ɋɨɨɬɜɟɬɫɬɜɭɸɳɟɟ ɩɨɜɟɞɟɧɢɟ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ ɧɚɛɥɸɞɚɥɨɫɶ ɜ ɯɨɞɟ ɞɚɧɧɵɯ ɷɤɫɩɟɪɢɦɟɧɬɨɜ ɩɨ ɢɡɭɱɟɧɢɸ ɪɚɞɢɚɥɶɧɨɣ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ ɪɚɡɪɹɞɚ (ɫɦ. ɧɚɩɪɢɦɟɪ ɪɢɫ. 7, Idc = 7,44 ɦȺ). Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɢɡ ɫɨɨɬɧɨɲɟɧɢɹ (1) ɢ ɧɚɛɥɸɞɚɟɦɵɯ ɪɚɡɥɢɱɧɵɯ ɡɧɚɱɟɧɢɣ ɬɨɥɳɢɧɵ ɤɚɬɨɞɧɨɝɨ ɫɥɨɹ ɩɪɢ ɞɜɢɠɟɧɢɢ ɜɞɨɥɶ ɪɚɞɢɭɫɚ ɪɚɡɪɹɞɧɨɝɨ ɩɹɬɧɚ Ɋɢɫ. 8. Ɏɨɬɨɝɪɚɮɢɹ ɪɚɡɪɹɞɧɨɝɨ ɩɹɬɧɚ ɜ ɧɨɪɦɚɥɶɧɨɦ ɪɟɠɢɦɟ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ ɫɥɟɞɭɟɬ, ɱɬɨ ɩɥɨɬɧɨɫɬɶ ɬɨɤɚ ɩɚɪɚɥɥɟɥɶɧɨ ɩɥɨɫɤɨɫɬɢ ɤɚɬɨɞɚ (ɤɚɬɨɞ ɫɥɟɜɚ). ɞɨɥɠɧɚ ɛɵɬɶ ɦɚɤɫɢɦɚɥɶɧɨɣ ɜ ɰɟɧɬɪɟ ɪɚɡɪɹɞɧɨɝɨ ɩɹɬɧɚ ɢ ɭɦɟɧɶɲɚɬɶɫɹ ɩɪɢ ɩɪɢɛɥɢɠɟɧɢɢ ɤ ɟɝɨ ɤɪɚɸ. Ⱦɥɹ ɜɢɡɭɚɥɶɧɨɝɨ ɧɚɛɥɸɞɟɧɢɹ ɪɚɡɪɹɞɧɨɝɨ ɩɹɬɧɚ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ ɢɫɩɨɥɶɡɨɜɚɥɚɫɶ Ɍ-ɨɛɪɚɡɧɚɹ ɪɚɡɪɹɞɧɚɹ µi Vc2 (1 + γ ) , π d3 (1) 81 ñåð³ÿ ô³çè÷íà «ßäðà, ÷àñòèíêè, ïîëÿ», âèï. 4 /44/ Íîðìàëüíûé ðåæèì ðàçðÿäà... ɤɚɦɟɪɚ (ɪɢɫ. 2). ɑɟɪɟɡ ɨɤɨɲɤɨ Ɍ-ɨɛɪɚɡɧɨɣ ɬɪɭɛɤɢ ɩɪɨɢɡɜɨɞɢɥɨɫɶ ɮɨɬɨɝɪɚɮɢɪɨɜɚɧɢɟ ɫɜɟɱɟɧɢɹ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ ɜɛɥɢɡɢ ɤɚɬɨɞɚ (ɚ ɢɦɟɧɧɨ, ɨɬɪɢɰɚɬɟɥɶɧɨɝɨ ɫɜɟɱɟɧɢɹ ɪɚɡɪɹɞɚ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ) ɞɥɹ ɪɚɡɥɢɱɧɵɯ ɞɚɜɥɟɧɢɣ ɚɡɨɬɚ ɜ ɤɚɦɟɪɟ. Ɋɚɫɫɬɨɹɧɢɟ ɦɟɠɞɭ ɚɧɨɞɨɦ ɢ ɤɚɬɨɞɨɦ ɫɨɫɬɚɜɥɹɥɨ 400 ɦɦ. ɉɪɢ ɜɵɩɨɥɧɟɧɢɢ ɤɚɠɞɨɝɨ ɫɧɢɦɤɚ ɮɢɤɫɢɪɨɜɚɥɨɫɶ ɡɧɚɱɟɧɢɟ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ ɪɚɡɪɹɞɚ. Ɂɚɬɟɦ ɮɨɬɨɝɪɚɮɢɢ ɩɪɨɯɨɞɢɥɢ ɩɪɟɞɜɚɪɢɬɟɥɶɧɭɸ ɨɛɪɚɛɨɬɤɭ ɩɪɢ ɩɨɦɨɳɢ ɩɪɨɝɪɚɦɦɵ «Photoshop» (ɨɛɪɟɡɚɥɢɫɶ ɱɚɫɬɢ ɫɧɢɦɤɚ, ɜɵɯɨɞɹɳɢɟ ɡɚ ɝɪɚɧɢɰɵ ɤɚɬɨɞɚ). ɉɪɢɦɟɪ ɩɨɥɭɱɟɧɧɨɣ ɢ ɩɪɟɞɜɚɪɢɬɟɥɶɧɨ ɨɛɪɚɛɨɬɚɧɧɨɣ ɮɨɬɨɝɪɚɮɢɢ ɩɪɢɜɟɞɟɧ ɧɚ ɪɢɫ. 9ɚ. Ɂɚɬɟɦ ɩɪɨɝɪɚɦɦɧɵɦ ɨɛɪɚɡɨɦ ɜɵɱɢɫɥɹɥɚɫɶ ɩɥɨɳɚɞɶ, ɡɚɧɢɦɚɟɦɚɹ ɪɚɡɪɹɞɧɵɦ ɩɹɬɧɨɦ, ɫɨɨɬɜɟɬɫɬɜɭɸɳɚɹ ɤɚɠɞɨɦɭ ɮɨɬɨɫɧɢɦɤɭ. ɉɨɝɪɟɲɧɨɫɬɶ ɩɪɢ ɜɵɱɢɫɥɟɧɢɢ ɩɥɨɳɚɞɢ ɩɹɬɧɚ ɫɨɫɬɚɜɥɹɥɚ ɧɟ ɛɨɥɟɟ 15% ɢ ɫɜɹɡɚɧɚ ɫ ɬɟɦ, ɱɬɨ ɞɨɜɨɥɶɧɨ ɫɥɨɠɧɨ ɨɩɪɟɞɟɥɢɬɶ ɝɪɚɧɢɰɭ ɩɹɬɧɚ, ɨɫɨɛɟɧɧɨ ɩɪɢ ɧɢɡɤɢɯ ɞɚɜɥɟɧɢɹɯ ɚɡɨɬɚ, Ɋɢɫ. 9. ɉɪɢɦɟɪ ɮɨɬɨɝɪɚɮɢɢ, ɩɨɥɭɱɟɧɧɨɣ ɱɟɪɟɡ ɫɦɨɬɪɨɜɨɟ ɤɨɝɞɚ ɤɪɚɹ ɪɚɡɪɹɞɧɨɝɨ ɩɹɬɧɚ ɪɚɡɦɵɬɵɟ (ɫɦ. ɪɢɫ. 9ɛ). ɨɤɧɨ Ɍ-ɨɛɪɚɡɧɨɣ ɬɪɭɛɤɢ ɢ ɩɪɟɞɜɚɪɢɬɟɥɶɧɨ ɉɪɢ ɚɧɚɥɢɡɟ ɮɨɬɨɝɪɚɮɢɣ ɭɱɢɬɵɜɚɥɚɫɶ ɬɨɥɶɤɨ ɬɚ ɱɚɫɬɶ ɨɛɪɚɛɨɬɚɧɧɨɣ (ɚ), ɢ ɪɚɫɩɪɟɞɟɥɟɧɢɟ ɢɧɬɟɧɫɢɜɧɨɫɬɢ ɩɥɨɳɚɞɢ ɪɚɡɪɹɞɧɨɝɨ ɩɹɬɧɚ, ɜ ɩɪɟɞɟɥɚɯ ɤɨɬɨɪɨɣ ɫɜɟɱɟɧɢɹ ɩɨ ɞɢɚɦɟɬɪɭ ɤɚɬɨɞɚ (ɛ). ɪɚɡɪɹɞɧɨɟ ɫɜɟɱɟɧɢɟ ɧɚɢɛɨɥɟɟ ɢɧɬɟɧɫɢɜɧɨɟ ɢ ɪɚɫɩɪɟɞɟɥɟɧɨ ɩɨ ɩɨɜɟɪɯɧɨɫɬɢ ɩɹɬɧɚ ɧɚ ɤɚɬɨɞɟ ɩɪɢɦɟɪɧɨ ɨɞɧɨɪɨɞɧɨ. Ɂɧɚɹ ɩɥɨɳɚɞɶ, ɡɚɧɢɦɚɟɦɭɸ ɪɚɡɪɹɞɧɵɦ ɩɹɬɧɨɦ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ ɧɚ ɷɥɟɤɬɪɨɞɟ S ɢ ɫɨɨɬɜɟɬɫɬɜɭɸɳɟɟ ɡɧɚɱɟɧɢɟ ɪɚɡɪɹɞɧɨɝɨ ɬɨɤɚ I, ɦɨɠɟɦ ɜɵɱɢɫɥɢɬɶ ɡɧɚɱɟɧɢɟ ɧɨɪɦɚɥɶɧɨɣ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ jn ɞɥɹ ɤɚɠɞɨɝɨ ɮɨɬɨɫɧɢɦɤɚ ɩɨ ɮɨɪɦɭɥɟ: jn = ɇɚ ɪɢɫ. 10 ɩɪɢɜɟɞɟɧɵ ɡɚɜɢɫɢɦɨɫɬɢ ɧɨɪɦɚɥɶɧɨɣ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ ɨɬ ɜɟɥɢɱɢɧɵ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ ɪɚɡɪɹɞɚ ɞɥɹ ɪɚɡɥɢɱɧɵɯ ɮɢɤɫɢɪɨɜɚɧɧɵɯ ɡɧɚɱɟɧɢɣ ɞɚɜɥɟɧɢɹ ɚɡɨɬɚ, ɜɵɱɢɫɥɟɧɧɵɟ ɫ ɢɫɩɨɥɶɡɨɜɚɧɢɟɦ ɮɨɬɨɫɧɢɦɤɨɜ ɫɜɟɱɟɧɢɹ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ ɜɛɥɢɡɢ 1 p =0,4 Ɍɨɪɪ ɦɚɝɧɢɟɜɨɝɨ ɤɚɬɨɞɚ. ɂɡ ɪɢɫ. 10 ɜɢɞɧɨ, ɱɬɨ ɧɨɪɦɚɥɶɧɚɹ 0,5 Ɍɨɪɪ ɩɥɨɬɧɨɫɬɶ ɬɨɤɚ ɨɫɬɚɟɬɫɹ ɩɪɚɤɬɢɱɟɫɤɢ ɩɨɫɬɨɹɧɧɨɣ 0,6 Ɍɨɪɪ ɜɟɥɢɱɢɧɨɣ ɞɥɹ ɤɚɠɞɨɝɨ ɢɡ ɜɵɛɪɚɧɧɵɯ ɡɧɚɱɟɧɢɣ 0,8 Ɍɨɪɪ 1 Ɍɨɪɪ ɞɚɜɥɟɧɢɣ ɚɡɨɬɚ, ɨɞɧɚɤɨ, ɫɪɟɞɧɟɟ ɡɧɚɱɟɧɢɟ ɩɥɨɬɧɨɫɬɢ 2 Ɍɨɪɪ ɬɨɤɚ ɭɜɟɥɢɱɢɜɚɟɬɫɹ ɫ ɪɨɫɬɨɦ ɞɚɜɥɟɧɢɹ. Ⱥɧɚɥɨɝɢɱɧɨɟ ɚɧɨɦɚɥɶɧɵɣ ɩɨɜɟɞɟɧɢɟ ɞɥɹ ɫɪɟɞɧɢɯ ɡɧɚɱɟɧɢɣ ɧɨɪɦɚɥɶɧɨɣ ɪɟɠɢɦ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ ɧɚɛɥɸɞɚɥɨɫɶ ɜ ɷɤɫɩɟɪɢɦɟɧɬɚɯ ɜ 0,1 ɤɚɦɟɪɟ ɫ ɤɨɥɥɟɤɬɨɪɚɦɢ. ɉɪɢ ɩɟɪɟɯɨɞɟ ɪɚɡɪɹɞɚ ɜ 1 10 ɚɧɨɦɚɥɶɧɵɣ ɪɟɠɢɦ ɧɚɛɥɸɞɚɟɬɫɹ ɪɨɫɬ ɪɚɡɪɹɞɧɨɝɨ ɬɨɤɚ ɩɨ ɥɢɧɟɣɧɨɦɭ ɡɚɤɨɧɭ (ɷɬɨɝɨ ɧɟ ɩɪɢɜɟɞɟɧɨ ɧɚ ɞɚɧɧɨɦ I, ɦȺ ɝɪɚɮɢɤɟ, ɨɞɧɚɤɨ ɪɨɫɬ ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɩɪɹɦɨɣ, Ɋɢɫ. 10. Ɂɚɜɢɫɢɦɨɫɬɶ ɧɨɪɦɚɥɶɧɨɣ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ ɨɬ ɩɨɤɚɡɚɧɧɨɣ ɧɚ ɪɢɫ. 10). ɜɟɥɢɱɢɧɵ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ ɪɚɡɪɹɞɚ ɞɥɹ ɪɚɡɥɢɱɧɵɯ ɉɪɢ ɩɨɦɨɳɢ ɪɚɡɪɹɞɧɨɣ ɤɚɦɟɪɵ, ɫɨɞɟɪɠɚɳɟɣ ɮɢɤɫɢɪɨɜɚɧɧɵɯ ɡɧɚɱɟɧɢɣ ɚɡɨɬɚ, ɤɚɬɨɞ – ɦɚɝɧɢɣ, ɤɚɬɨɞ ɫ ɤɨɥɥɟɤɬɨɪɚɦɢ (ɫɦ. ɪɢɫ. 1), ɛɵɥɢ ɢɫɫɥɟɞɨɜɚɧɵ ɪɚɫɫɬɨɹɧɢɟ ɦɟɠɞɭ ɷɥɟɤɬɪɨɞɚɦɢ 400 ɦɦ. ɪɚɞɢɚɥɶɧɵɟ ɩɪɨɮɢɥɢ ɧɟ ɬɨɥɶɤɨ ɞɥɹ ɪɚɫɫɬɨɹɧɢɹ ɦɟɠɞɭ ɷɥɟɤɬɪɨɞɚɦɢ 50 ɦɦ, ɧɨ ɢ ɞɥɹ ɪɚɫɫɬɨɹɧɢɹ 400 ɦɦ. Ɉɛɳɟɩɪɢɡɧɚɧɧɵɦ ɹɜɥɹɟɬɫɹ ɦɧɟɧɢɟ, ɱɬɨ ɬɚɤɨɣ ɩɚɪɚɦɟɬɪ, ɤɚɤ jn/p2 (ɧɨɪɦɚɥɶɧɚɹ ɩɥɨɬɧɨɫɬɶ ɬɨɤɚ, ɞɟɥɟɧɧɚɹ ɧɚ ɞɚɜɥɟɧɢɟ ɝɚɡɚ ɜ ɤɜɚɞɪɚɬɟ), ɧɟ ɡɚɜɢɫɢɬ ɨɬ ɜɟɥɢɱɢɧɵ ɪɚɡɪɹɞɧɨɝɨ ɬɨɤɚ ɜ ɧɨɪɦɚɥɶɧɨɦ ɪɟɠɢɦɟ [4, 5]. Ⱦɥɹ ɩɪɨɜɟɪɤɢ ɞɚɧɧɨɝɨ ɭɬɜɟɪɠɞɟɧɢɹ ɛɵɥɚ ɩɪɨɜɟɞɟɧɚ ɫɥɟɞɭɸɳɚɹ ɫɟɪɢɹ ɷɤɫɩɟɪɢɦɟɧɬɨɜ. ɂɡ ɢɡɦɟɪɟɧɧɵɯ ɪɚɞɢɚɥɶɧɵɯ ɩɪɨɮɢɥɟɣ ɩɥɨɬɧɨɫɬɢ ɢɨɧɨɜ ɜ ɧɨɪɦɚɥɶɧɨɦ ɪɟɠɢɦɟ ɜ ɤɚɦɟɪɟ ɫ ɤɨɥɥɟɤɬɨɪɚɦɢ (ɫɦ. ɪɢɫ. 1) ɢ ɪɚɫɫɬɨɹɧɢɟɦ ɦɟɠɞɭ ɷɥɟɤɬɪɨɞɚɦɢ 400 ɦɦ ɛɵɥɢ ɜɡɹɬɵ ɦɚɤɫɢɦɚɥɶɧɵɟ ɡɧɚɱɟɧɢɹ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ ɞɥɹ ɤɚɠɞɨɝɨ ɢɡ ɜɵɛɪɚɧɧɵɯ ɡɧɚɱɟɧɢɣ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ ɪɚɡɪɹɞɚ, ɝɨɪɹɳɟɝɨ ɜ ɧɨɪɦɚɥɶɧɨɦ ɪɟɠɢɦɟ, ɩɪɢ ɪɚɡɥɢɱɧɵɯ ɮɢɤɫɢɪɨɜɚɧɧɵɯ ɞɚɜɥɟɧɢɹɯ ɚɡɨɬɚ. Ⱦɨɩɨɥɧɢɬɟɥɶɧɨ ɛɵɥ ɫɞɟɥɚɧ ɪɹɞ ɮɨɬɨɝɪɚɮɢɣ ɫɜɟɱɟɧɢɹ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ ɱɟɪɟɡ ɫɦɨɬɪɨɜɨɟ ɨɤɧɨ Ɍ-ɨɛɪɚɡɧɨɣ ɬɪɭɛɤɢ. Ɋɚɫɫɬɨɹɧɢɟ ɦɟɠɞɭ ɷɥɟɤɬɪɨɞɚɦɢ ɬɚɤɠɟ ɛɵɥɨ 400 ɦɦ, ɤɚɬɨɞ – ɬɚɤɠɟ, ɤɚɤ ɢ ɜ ɫɥɭɱɚɟ ɫ ɤɨɥɥɟɤɬɨɪɚɦɢ, ɢɡ ɧɟɪɠɚɜɟɸɳɟɣ ɫɬɚɥɢ, ɞɢɚɦɟɬɪ ɷɥɟɤɬɪɨɞɨɜ ɜ ɷɬɢɯ ɞɜɭɯ ɪɚɡɥɢɱɧɵɯ ɷɤɫɩɟɪɢɦɟɧɬɚɯ ɛɵɥ ɨɞɢɧɚɤɨɜ (56 ɦɦ). ɉɨɥɭɱɟɧɧɵɟ ɮɨɬɨɝɪɚɮɢɢ ɨɰɢɮɪɨɜɵɜɚɥɢɫɶ ɩɨ ɨɩɢɫɚɧɧɨɣ ɜɵɲɟ ɦɟɬɨɞɢɤɟ, ɢ ɞɥɹ ɤɚɠɞɨɣ ɢɡ ɧɢɯ ɜɵɱɢɫɥɹɥɨɫɶ ɡɧɚɱɟɧɢɟ ɧɨɪɦɚɥɶɧɨɣ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ jn. Ɂɚɬɟɦ ɞɥɹ ɤɚɠɞɨɝɨ I . S (2) jn, ɦȺ/ɫɦ2 82 «Â³ñíèê Õàðê³âñüêîãî óí³âåðñèòåòó», ¹ 880, 2009 Â.À. Ëèñîâñêèé, Í.Ä. Õàð÷åíêî... 0,8 jn/p2 , ɦȺ/(ɫɦ Ɍɨɪɪ)2 jn/p , ɦȺ/(ɫɦ Ɍɨɪɪ) 0,6 ɤɚɬɨɞ ɫ ɤɨɥɥɟɤɬɨɪɚɦɢ ɮɨɬɨɝɪɚɮɢɢ ɚɩɩɪɨɤɫɢɦɚɰɢɹ ɮɭɧɤɰɢɟɣ 2 2 j/p =0.61/(I-0.3) +0.31 0,8 2 0,6 Ag Cu Mg SSt 0,4 0,4 2 0,2 1 I, ɦȺ 10 0,2 1 I , ɦȺ 10 Ɋɢɫ. 11. ɗɤɫɩɟɪɢɦɟɧɬɚɥɶɧɚɹ ɡɚɜɢɫɢɦɨɫɬɶ jn/p2 ɨɬ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ ɪɚɡɪɹɞɚ ɜ ɚɡɨɬɟ ɩɪɢ ɪ = 0,4 ÷ 2 Ɍɨɪɪ, ɩɨɥɭɱɟɧɧɚɹ ɞɜɭɦɹ ɪɚɡɥɢɱɧɵɦɢ ɦɟɬɨɞɚɦɢ, ɤɚɬɨɞ – ɧɟɪɠɚɜɟɸɳɚɹ ɫɬɚɥɶ. Ɋɢɫ. 12. ɗɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɟ ɡɚɜɢɫɢɦɨɫɬɢ jn/p2 ɨɬ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ ɪɚɡɪɹɞɚ ɜ ɚɡɨɬɟ ɩɪɢ ɪ = 0,4 ÷ 2 Ɍɨɪɪ, ɩɨɥɭɱɟɧɧɵɟ ɢɡ ɮɨɬɨɝɪɚɮɢɣ ɫɜɟɱɟɧɢɹ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ ɞɥɹ ɪɚɡɥɢɱɧɵɯ ɦɚɬɟɪɢɚɥɨɜ ɤɚɬɨɞɚ. ɷɤɫɩɟɪɢɦɟɧɬɚ ɷɬɨ ɡɧɚɱɟɧɢɟ ɛɵɥɨ ɩɨɞɟɥɟɧɨ ɧɚ ɫɨɨɬɜɟɬɫɬɜɭɸɳɟɟ ɞɚɜɥɟɧɢɟ ɚɡɨɬɚ. Ɂɚɜɢɫɢɦɨɫɬɢ jn/p2 ɨɬ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ ɪɚɡɪɹɞɚ I, ɩɨɥɭɱɟɧɧɵɟ ɞɜɭɦɹ ɪɚɡɥɢɱɧɵɦɢ ɦɟɬɨɞɚɦɢ ɩɪɢɜɟɞɟɧɵ ɧɚ ɪɢɫ. 11. ɇɚ ɪɢɫ. 11 ɩɪɢɜɟɞɟɧɵ ɡɧɚɱɟɧɢɹ jn/p2 ɜ ɞɢɚɩɚɡɨɧɟ ɞɚɜɥɟɧɢɣ ɚɡɨɬɚ ɪ = 0,4 ÷ 2 Ɍɨɪɪ. Ɇɵ ɜɢɞɢɦ, ɱɬɨ ɡɧɚɱɟɧɢɹ jn/p2, ɢɡɦɟɪɟɧɧɵɟ ɷɬɢɦɢ ɞɜɭɦɹ ɦɟɬɨɞɚɦɢ, ɯɨɪɨɲɨ ɫɨɝɥɚɫɭɸɬɫɹ ɢ ɦɨɝɭɬ ɛɵɬɶ ɚɩɩɪɨɤɫɢɦɢɪɨɜɚɧɵ ɩɨ ɦɟɬɨɞɭ ɧɚɢɦɟɧɶɲɢɯ ɤɜɚɞɪɚɬɨɜ ɮɭɧɤɰɢɟɣ ɜɢɞɚ jn/p2 = 0,61/(I-0,3)2+0,31. Ɏɭɧɤɰɢɹ ɢɦɟɧɧɨ ɬɚɤɨɝɨ ɜɢɞɚ ɛɵɥɚ ɜɵɛɪɚɧɚ ɞɥɹ ɬɨɝɨ, ɱɬɨɛɵ ɧɚɝɥɹɞɧɨ ɩɨɤɚɡɚɬɶ, ɱɬɨ ɜɟɥɢɱɢɧɵ jn/p2 ɜ ɧɨɪɦɚɥɶɧɨɦ ɪɟɠɢɦɟ ɪɚɡɪɹɞɚ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ ɧɚ ɫɚɦɨɦ ɞɟɥɟ ɡɚɜɢɫɹɬ ɨɬ ɜɟɥɢɱɢɧɵ ɬɨɤɚ ɪɚɡɪɹɞɚ ɩɪɢ ɞɚɜɥɟɧɢɹɯ ɚɡɨɬɚ ɦɟɧɶɲɟ 2 Ɍɨɪɪ. ȼɚɠɧɨ ɡɚɦɟɬɢɬɶ, ɱɬɨ ɡɧɚɱɟɧɢɟ jn/p2, ɤ ɤɨɬɨɪɨɦɭ ɚɫɢɦɩɬɨɬɢɱɟɫɤɢ ɫɬɪɟɦɢɬɫɹ ɧɚɲɚ ɮɭɧɤɰɢɹ ɩɪɢ ɛɨɥɶɲɢɯ ɞɚɜɥɟɧɢɹɯ ɢ ɬɨɤɚɯ ɪɚɡɪɹɞɚ, ɩɨ ɩɨɪɹɞɤɭ ɜɟɥɢɱɢɧɵ ɩɨɥɧɨɫɬɶɸ ɫɨɜɩɚɞɚɟɬ ɫ ɞɚɧɧɵɦɢ, ɩɨɥɭɱɟɧɧɵɦɢ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ ɪɚɧɟɟ ɞɪɭɝɢɦɢ ɚɜɬɨɪɚɦɢ [2-4]. ɇɚɩɪɢɦɟɪ, ɜ ɪɚɛɨɬɟ [2] ɞɥɹ ɚɡɨɬɚ ɢ ɤɚɬɨɞɨɜ ɢɡ ɠɟɥɟɡɚ ɢ ɧɢɤɟɥɹ ɩɪɢɜɟɞɟɧɨ ɫɥɟɞɭɸɳɟɟ ɡɧɚɱɟɧɢɟ jn/p2 = 0,4 ɦȺ/(ɫɦ·Ɍɨɪɪ)2, ɚ ɞɥɹ ɤɚɬɨɞɚ ɢɡ ɩɥɚɬɢɧɵ jn/p2 = 0,38 ɦȺ/(ɫɦ·Ɍɨɪɪ)2. ɍ ɧɚɫ ɠɟ ɞɥɹ ɚɡɨɬɚ ɢ ɤɚɬɨɞɚ ɢɡ ɧɟɪɠɚɜɟɸɳɟɣ ɫɬɚɥɢ ɩɨɥɭɱɢɥɨɫɶ ɚɫɢɦɩɬɨɬɢɱɟɫɤɨɟ ɡɧɚɱɟɧɢɟ jn/p2 § 0,32 ɦȺ/(ɫɦ·Ɍɨɪɪ)2. ɋɥɟɞɨɜɚɬɟɥɶɧɨ, ɦɨɠɧɨ ɫɞɟɥɚɬɶ ɜɵɜɨɞ, ɱɬɨ ɧɚɲɢ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɟ ɪɟɡɭɥɶɬɚɬɵ ɧɟ ɩɪɨɬɢɜɨɪɟɱɚɬ ɞɚɧɧɵɦ, ɩɨɥɭɱɟɧɧɵɦ ɞɪɭɝɢɦɢ ɚɜɬɨɪɚɦɢ, ɚ ɞɨɩɨɥɧɹɸɬ ɢɯ ɜ ɨɛɥɚɫɬɶ ɛɨɥɟɟ ɧɢɡɤɢɯ ɞɚɜɥɟɧɢɣ. ɂɡ ɪɢɫ. 11 ɦɨɠɧɨ ɫɞɟɥɚɬɶ ɜɵɜɨɞ, ɱɬɨ ɢɫɫɥɟɞɭɟɦɵɣ ɧɚɦɢ ɞɢɚɩɚɡɨɧ ɞɚɜɥɟɧɢɣ ɚɡɨɬɚ (ɨɬ ɩɨɪɨɝɨɜɨɝɨ ɞɚɜɥɟɧɢɹ ɩɨɹɜɥɟɧɢɹ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ ɩɪɢ ɪ ≈ 0,3 −0,4 Ɍɨɪɪ ɞɨ ɩɪɢɦɟɪɧɨ ɪ ≈ 2 Ɍɨɪɪ) ɹɜɥɹɟɬɫɹ ɩɟɪɟɯɨɞɧɵɦ ɨɬ ɫɥɭɱɚɹ ɨɬɫɭɬɫɬɜɢɹ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ ɤ ɫɥɭɱɚɸ ɫɮɨɪɦɢɪɨɜɚɜɲɟɝɨɫɹ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ ɫ jn/p2 = const. ȼ ɥɢɬɟɪɚɬɭɪɟ ɨɬɫɭɬɫɬɜɭɸɬ ɪɟɡɭɥɶɬɚɬɵ ɞɥɹ ɞɚɧɧɵɯ ɭɫɥɨɜɢɣ. ɗɬɨɬ ɩɟɪɟɯɨɞɧɵɣ ɪɟɠɢɦ ɯɚɪɚɤɬɟɪɢɡɭɟɬɫɹ ɬɟɦ, ɱɬɨ ɜ ɩɪɟɞɟɥɚɯ ɧɟɝɨ ɧɨɪɦɚɥɶɧɚɹ ɩɥɨɬɧɨɫɬɶ ɬɨɤɚ, ɞɟɥɟɧɧɚɹ ɧɚ ɞɚɜɥɟɧɢɟ ɝɚɡɚ ɜ ɤɜɚɞɪɚɬɟ jn/p2 , ɧɟ ɨɫɬɚɟɬɫɹ ɩɨɫɬɨɹɧɧɨɣ ɜɟɥɢɱɢɧɨɣ, ɚ ɭɦɟɧɶɲɚɟɬɫɹ ɫ ɪɨɫɬɨɦ ɪɚɡɪɹɞɧɨɝɨ ɬɨɤɚ ɢ ɞɚɜɥɟɧɢɹ ɝɚɡɚ. ɉɨ-ɜɢɞɢɦɨɦɭ, ɩɪɢ ɧɢɡɤɢɯ ɞɚɜɥɟɧɢɹɯ ɝɚɡɚ ɢɡ-ɡɚ ɭɯɨɞɚ ɱɚɫɬɢɰ ɢɡ ɨɛɥɚɫɬɢ ɩɥɚɡɦɵ ɜɫɥɟɞɫɬɜɢɟ ɚɦɛɢɩɨɥɹɪɧɨɣ ɞɢɮɮɭɡɢɢ ɤɨɧɰɟɧɬɪɚɰɢɹ ɡɚɪɹɠɟɧɧɵɯ ɱɚɫɬɢɰ ɜ ɪɚɡɪɹɞɟ ɩɨɧɢɠɚɟɬɫɹ, ɢ ɩɪɢɥɨɠɟɧɧɨɣ ɜɟɥɢɱɢɧɵ ɩɨɫɬɨɹɧɧɨɝɨ ɧɚɩɪɹɠɟɧɢɹ ɫɬɚɧɨɜɢɬɫɹ ɧɟɞɨɫɬɚɬɨɱɧɨ ɞɥɹ ɩɨɞɞɟɪɠɚɧɢɹ ɧɟɨɛɯɨɞɢɦɨɣ ɫɬɟɩɟɧɢ ɢɨɧɢɡɚɰɢɢ ɜ ɪɚɡɪɹɞɧɨɣ ɩɥɚɡɦɟ. ɋɥɟɞɨɜɚɬɟɥɶɧɨ, ɱɬɨɛɵ ɧɟ ɞɨɩɭɫɬɢɬɶ ɩɨɝɚɫɚɧɢɹ ɪɚɡɪɹɞɚ, ɩɪɨɢɫɯɨɞɢɬ ɧɟɛɨɥɶɲɨɟ ɩɨɜɵɲɟɧɢɟ ɧɚɩɪɹɠɟɧɢɹ, ɚ ɬɚɤɠɟ ɩɪɢ ɷɬɨɦ ɩɨɜɵɲɚɟɬɫɹ ɩɥɨɬɧɨɫɬɶ ɩɥɚɡɦɵ ɜ ɰɟɧɬɪɟ ɪɚɡɪɹɞɧɨɝɨ ɩɹɬɧɚ (ɢ, ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ, ɩɥɨɬɧɨɫɬɶ ɬɨɤɚ ɧɚ ɩɨɜɟɪɯɧɨɫɬɶ ɤɚɬɨɞɚ). ɉɪɢ ɩɨɜɵɲɟɧɢɢ ɞɚɜɥɟɧɢɹ ɝɚɡɚ ɞɢɮɮɭɡɢɨɧɧɵɟ ɩɨɬɟɪɢ ɢɡ ɩɥɚɡɦɵ ɭɦɟɧɶɲɚɸɬɫɹ, ɜɟɥɢɱɢɧɚ jn/p2 ɜɵɯɨɞɢɬ ɧɚ ɧɚɫɵɳɟɧɢɟ ɢ ɩɟɪɟɫɬɚɟɬ ɡɚɜɢɫɟɬɶ ɤɚɤ ɨɬ ɪɚɡɪɹɞɧɨɝɨ ɬɨɤɚ, ɬɚɤ ɢ ɨɬ ɞɚɜɥɟɧɢɹ ɝɚɡɚ. Ɉɛɳɟɩɪɢɡɧɚɧɨ, ɱɬɨ ɜɟɥɢɱɢɧɵ jn/p2 ɬɚɤɠɟ ɡɚɜɢɫɹɬ ɨɬ ɦɚɬɟɪɢɚɥɚ ɤɚɬɨɞɚ ɪɚɡɪɹɞɧɨɣ ɤɚɦɟɪɵ ɩɪɢ ɩɪɨɱɢɯ ɨɞɢɧɚɤɨɜɵɯ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɯ ɭɫɥɨɜɢɹɯ. Ⱦɥɹ ɢɫɫɥɟɞɨɜɚɧɢɹ ɷɬɨɝɨ ɮɚɤɬɚ ɧɚɦɢ ɛɵɥɢ ɫɞɟɥɚɧɵ ɫɟɪɢɢ ɮɨɬɨɝɪɚɮɢɣ ɪɚɡɪɹɞɚ ɜ Ɍ-ɨɛɪɚɡɧɨɣ ɬɪɭɛɤɟ ɜ ɚɡɨɬɟ ɞɥɹ ɪɚɡɥɢɱɧɵɯ ɦɚɬɟɪɢɚɥɨɜ ɤɚɬɨɞɚ - ɧɟɪɠɚɜɟɸɳɟɣ ɫɬɚɥɢ (SSt), ɫɟɪɟɛɪɚ (Ag), ɦɟɞɢ (Cu), ɦɚɝɧɢɹ (Mg). Ⱦɥɹ ɤɚɠɞɨɝɨ ɢɡ ɤɚɬɨɞɨɜ ɛɵɥɨ ɫɞɟɥɚɧɨ ɩɨɪɹɞɤɚ 300 ɮɨɬɨɝɪɚɮɢɣ, ɢɡ ɤɨɬɨɪɵɯ ɡɚɬɟɦ ɜɵɱɢɫɥɹɥɚɫɶ ɜɟɥɢɱɢɧɚ jn/p2, ɚ ɡɚɬɟɦ ɩɨ ɦɟɬɨɞɭ ɧɚɢɦɟɧɶɲɢɯ ɤɜɚɞɪɚɬɨɜ ɩɪɨɜɨɞɢɥɚɫɶ ɚɩɩɪɨɤɫɢɦɚɰɢɹ ɞɚɧɧɵɯ (ɜ ɧɚɲɟɦ ɫɥɭɱɚɟ ɧɚɢɛɨɥɟɟ ɩɨɞɯɨɞɹɳɟɣ ɮɭɧɤɰɢɟɣ ɨɤɚɡɚɥɚɫɶ jn/p2 = a/(I-b)2+c, ɝɞɟ a, b, c – ɩɪɨɢɡɜɨɥɶɧɵɟ ɤɨɷɮɮɢɰɢɟɧɬɵ). ɉɨɥɭɱɟɧɧɵɟ ɧɚɦɢ ɚɩɩɪɨɤɫɢɦɚɰɢɨɧɧɵɟ ɤɪɢɜɵɟ ɩɪɢɜɟɞɟɧɵ ɧɚ ɪɢɫ. 12. Ɇɵ ɜɢɞɢɦ, ɱɬɨ ɞɥɹ ɜɫɟɯ ɢɫɫɥɟɞɨɜɚɧɧɵɯ ɧɚɦɢ ɦɚɬɟɪɢɚɥɨɜ ɤɚɬɨɞɨɜ ɜɟɥɢɱɢɧɚ jn/p2 ɜ ɧɨɪɦɚɥɶɧɨɦ ɪɟɠɢɦɟ ɪɚɡɪɹɞɚ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ ɧɟ ɹɜɥɹɟɬɫɹ ɩɨɫɬɨɹɧɧɨɣ, ɤɚɤ ɩɪɟɞɩɨɥɚɝɚɥɨɫɶ ɪɚɧɟɟ, ɚ ɭɜɟɥɢɱɢɜɚɟɬɫɹ ɫ ɭɦɟɧɶɲɟɧɢɟɦ ɪɚɡɪɹɞɧɨɝɨ ɬɨɤɚ ɢ ɭɦɟɧɶɲɟɧɢɟɦ ɞɚɜɥɟɧɢɹ ɝɚɡɚ (ɚɡɨɬɚ) ɜ ɤɚɦɟɪɟ. ȼɕȼɈȾɕ ȼ ɧɚɫɬɨɹɳɟɣ ɪɚɛɨɬɟ ɩɨɤɚɡɚɧɨ, ɱɬɨ ɫɭɳɟɫɬɜɭɟɬ ɩɟɪɟɯɨɞɧɵɣ ɞɢɚɩɚɡɨɧ ɞɚɜɥɟɧɢɣ ɝɚɡɚ, ɜ ɩɪɟɞɟɥɚɯ ɤɨɬɨɪɨɝɨ ɧɨɪɦɚɥɶɧɚɹ ɩɥɨɬɧɨɫɬɶ ɬɨɤɚ, ɞɟɥɟɧɧɚɹ ɧɚ ɞɚɜɥɟɧɢɟ ɝɚɡɚ ɜ ɤɜɚɞɪɚɬɟ jn/p2 , ɭɦɟɧɶɲɚɟɬɫɹ ɫ ɪɨɫɬɨɦ ɪɚɡɪɹɞɧɨɝɨ ɬɨɤɚ ɢ ɞɚɜɥɟɧɢɹ ɝɚɡɚ, ɚ ɧɟ ɨɫɬɚɟɬɫɹ ɩɨɫɬɨɹɧɧɨɣ ɜɟɥɢɱɢɧɨɣ. ɗɬɨɬ ɞɢɚɩɚɡɨɧ ɫɨ ɫɬɨɪɨɧɵ ɧɢɡɤɢɯ ɞɚɜɥɟɧɢɣ ɨɝɪɚɧɢɱɟɧ ɩɨɪɨɝɨɜɵɦ ɞɚɜɥɟɧɢɟɦ ɩɨɹɜɥɟɧɢɹ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ (ɩɪɢ ɪ ≈ 0,3 −0,4 Ɍɨɪɪ) ɢ ɩɪɨɫɬɢɪɚɟɬɫɹ ɞɨ ɩɪɢɦɟɪɧɨ ɪ ≈ 2 Ɍɨɪɪ. ɍɫɬɚɧɨɜɥɟɧɨ, ɱɬɨ ɜ ɧɨɪɦɚɥɶɧɨɦ ɪɟɠɢɦɟ ɪɚɞɢɚɥɶɧɵɟ ɩɪɨɮɢɥɢ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ ɢɦɟɸɬ ɦɚɤɫɢɦɭɦ ɜ 83 ñåð³ÿ ô³çè÷íà «ßäðà, ÷àñòèíêè, ïîëÿ», âèï. 4 /44/ Íîðìàëüíûé ðåæèì ðàçðÿäà... ɰɟɧɬɪɟ ɪɚɡɪɹɞɧɨɝɨ ɩɹɬɧɚ ɢ ɭɛɵɜɚɸɬ ɤ ɤɪɚɹɦ ɩɹɬɧɚ, ɚ ɜ ɚɧɨɦɚɥɶɧɨɦ ɪɟɠɢɦɟ – ɢɦɟɸɬ ɩɪɚɤɬɢɱɟɫɤɢ ɨɞɧɨɪɨɞɧɵɣ ɩɪɨɮɢɥɶ ɞɥɹ ɮɢɤɫɢɪɨɜɚɧɧɨɝɨ ɡɧɚɱɟɧɢɹ ɪɚɡɪɹɞɧɨɝɨ ɬɨɤɚ. ɂɫɩɨɥɶɡɭɹ ɮɨɬɨɦɟɬɪɢɱɟɫɤɭɸ ɦɟɬɨɞɢɤɭ, ɜɵɱɢɫɥɟɧɵ ɡɧɚɱɟɧɢɹ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ ɪɚɡɪɹɞɚ ɜ ɧɨɪɦɚɥɶɧɨɦ ɪɟɠɢɦɟ ɜ ɚɡɨɬɟ. ɉɨɤɚɡɚɧɨ ɯɨɪɨɲɟɟ ɫɨɨɬɜɟɬɫɬɜɢɟ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɯ ɡɧɚɱɟɧɢɣ ɧɨɪɦɚɥɶɧɨɣ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ, ɩɨɥɭɱɟɧɧɵɯ ɦɟɬɨɞɚɦɢ ɮɨɬɨɦɟɬɪɢɢ ɢ ɧɟɩɨɫɪɟɞɫɬɜɟɧɧɵɦ ɢɡɦɟɪɟɧɢɟɦ ɩɪɢ ɩɨɦɨɳɢ ɤɚɬɨɞɚ ɫ ɤɨɥɥɟɤɬɨɪɚɦɢ. ɉɪɨɜɟɞɟɧɵ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɟ ɢɡɦɟɪɟɧɢɹ ɧɨɪɦɚɥɶɧɨɣ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ ɞɥɹ ɪɚɡɥɢɱɧɵɯ ɦɚɬɟɪɢɚɥɨɜ ɤɚɬɨɞɨɜ ɜ ɚɡɨɬɟ ɧɢɡɤɨɝɨ ɞɚɜɥɟɧɢɹ. ɉɨɤɚɡɚɧɵ ɧɟɛɨɥɶɲɢɟ ɪɚɡɥɢɱɢɹ ɦɟɠɞɭ ɚɫɢɦɩɬɨɬɢɱɟɫɤɢɦɢ ɡɧɚɱɟɧɢɹɦɢ ɧɨɪɦɚɥɶɧɨɣ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ, ɞɟɥɟɧɧɨɣ ɧɚ ɞɚɜɥɟɧɢɟ ɚɡɨɬɚ ɜ ɤɜɚɞɪɚɬɟ jn/p2, ɞɥɹ ɪɚɡɧɵɯ ɦɚɬɟɪɢɚɥɨɜ ɤɚɬɨɞɨɜ. ȼɨ ɜɫɟɯ ɷɤɫɩɟɪɢɦɟɧɬɚɯ ɩɪɢ ɞɚɜɥɟɧɢɹɯ ɚɡɨɬɚ ɦɟɧɟɟ 2 Ɍɨɪɪ ɧɚɛɥɸɞɚɥɨɫɶ ɭɜɟɥɢɱɟɧɢɟ ɡɧɚɱɟɧɢɹ ɩɚɪɚɦɟɬɪɚ jn/p2 ɩɪɢ ɭɦɟɧɶɲɟɧɢɢ ɞɚɜɥɟɧɢɹ ɝɚɡɚ. Ɂɧɚɱɟɧɢɹ, ɤ ɤɨɬɨɪɵɦ ɚɫɢɦɩɬɨɬɢɱɟɫɤɢ ɩɪɢɛɥɢɠɚɟɬɫɹ jn/p2, ɜ ɨɛɥɚɫɬɢ ɛɨɥɟɟ ɜɵɫɨɤɢɯ ɞɚɜɥɟɧɢɣ ɯɨɪɨɲɨ ɫɨɨɬɜɟɬɫɬɜɭɸɬ ɞɚɧɧɵɦ, ɩɨɥɭɱɟɧɧɵɦ ɪɚɧɟɟ ɞɪɭɝɢɦɢ ɚɜɬɨɪɚɦɢ. ɗɬɨ ɭɤɚɡɵɜɚɟɬ ɧɚ ɬɨ, ɱɬɨ ɩɪɢ ɧɢɡɤɢɯ ɞɚɜɥɟɧɢɹ (ɜɛɥɢɡɢ ɩɨɪɨɝɚ ɩɨɹɜɥɟɧɢɹ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ), ɡɚɤɨɧ ɩɨɞɨɛɢɹ jn/p2 = const ɧɟ ɜɵɩɨɥɧɹɟɬɫɹ. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. ɋɉɂɋɈɄ ɅɂɌȿɊȺɌɍɊɕ Ɋɚɞɢɨɮɢɡɢɱɟɫɤɚɹ ɷɥɟɤɬɪɨɧɢɤɚ // ɉɨɞ ɪɟɞ. Ʉɚɩɰɨɜɚ ɇ.Ⱥ. ɂɡ-ɜɨ Ɇɨɫɤɨɜɫɤɨɝɨ ɭɧɢɜɟɪɫɢɬɟɬɚ, 1960. - 561 c. Ɋɚɣɡɟɪ ɘ.ɉ. Ɏɢɡɢɤɚ ɝɚɡɨɜɨɝɨ ɪɚɡɪɹɞɚ. – Ɇ.: ɇɚɭɤɚ, 1987. - 592 c. Ƚɪɚɧɨɜɫɤɢɣ ȼ.Ʌ. ɗɥɟɤɬɪɢɱɟɫɤɢɣ ɬɨɤ ɜ ɝɚɡɚɯ. - Ɇ.: ɇɚɭɤɚ, 1971. - 490 ɫ. ɑɢɫɬɹɤɨɜ ɉ.ɇ. Ɂɚɤɨɧɵ ɩɨɞɨɛɢɹ ɩɪɢ ɧɨɪɦɚɥɶɧɨɦ ɬɥɟɸɳɟɦ ɪɚɡɪɹɞɟ ɜ ɧɟɨɧɟ ɢ ɚɪɝɨɧɟ // ɀɌɎ. - 1971. - Ɍ. 41, ʋ 8. - ɋ. 1672-1674. Ʉɨɪɨɥɟɜ ɘ.Ⱦ. ɂɧɬɟɪɩɪɟɬɚɰɢɹ ɹɜɥɟɧɢɹ ɩɨɫɬɨɹɧɫɬɜɚ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ ɜ ɧɨɪɦɚɥɶɧɨɦ ɬɥɟɸɳɟɦ ɪɚɡɪɹɞɟ // ɀɌɎ. – 1987. – Ɍ. 57, ʋ 2. -ɋ. 380-382. Fujii K. Transition mechanism from Townsend discharge to normal glow discharge// J. Appl. Phys. – 1973. - Vol. 13, ʋ 3. P. 573-574. Ward A. Calculations of Cathode-Fall Characteristics // J. Appl. Phys. – 1962. - Vol. 33, ʋ 9. – P. 2789-2796. Cicala G., De Tommaso E., Raino A.S., Lebedev Yu. A., Shakhatov V.A. Study of positive column of glow discharge in nitrogen by optical emission spectroscopy and numerical simulation // Plasma Sourses Sci. Technol. – 2008. – Vol. 18. – P. 115. Nemchinsky V. A method to decrease the normal current density at the cathode of a glow discharge // J. Phys. D: Appl. Phys. 2003. - Vol. 26 -. – P. 643-646. ɑɢɫɬɹɤɨɜ ɉ.ɇ. ɇɟɤɨɬɨɪɵɟ ɡɚɜɢɫɢɦɨɫɬɢ ɧɨɪɦɚɥɶɧɨɝɨ ɤɚɬɨɞɧɨɝɨ ɩɚɞɟɧɢɹ ɩɨɬɟɧɰɢɚɥɚ ɜ ɢɧɟɪɬɧɵɯ ɝɚɡɚɯ // ɀɌɎ. – 1970. Ɍ. 40, ʋ 2. - ɋ. 303-304. Tran N. A., Marode E. Monte Carlo simulation of electrons within the cathode fall of a glow discharge in helium // J. Appl. Phys. – 1977. - Vol. 10. – P. 2317-2328. Kulikovsky A.A. Hydrodynamic description of electron multiplication in the cathode region: elementary beams model // J. Phys. D: Appl. Phys. - 1991. – Vol. 24. –P. 1954-1963. Ward A. Effect of space charge in cold-cathode gas discharges // Phys. Rev. – 1958. - Vol. 112, ʋ 6. – P. 1852-1857. Vlasov V. V., Gyseva L. G. and Klarfeld B. N. Transition of one type glow discharge into // Oxford Contrib. Papers, 10th ICPIG. - 1971. – P. 98. Guntherschulze A. Zusammenhang zwischen stromdichte und kathodenfall der Glimmentladung bei verwendung einer schutzringkathode und korrektion der temperaturerhohung des gases // Mitteilung aus der Physikalisch - Technischen Reichsanstalt. - 1928. – B.26, H.4. – S. 358-379. Ɇɟɥɟɯɢɧ ȼ.ɇ., ɇɚɭɦɨɜ ɇ.ɘ. Ɉ ɩɪɢɪɨɞɟ ɤɚɬɨɞɧɨɝɨ ɩɹɬɧɚ ɧɨɪɦɚɥɶɧɨɝɨ ɬɥɟɸɳɟɝɨ ɪɚɡɪɹɞɚ // ɀɌɎ. – 1986. - Ɍ. 12, ʋ 2. – ɋ. 99-103. Ɋɚɣɡɟɪ ɘ.ɉ., ɋɭɪɠɢɤɨɜ ɋ.Ɍ. ȿɳɟ ɪɚɡ ɨ ɩɪɢɪɨɞɟ ɷɮɮɟɤɬɚ ɧɨɪɦɚɥɶɧɨɣ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ ɧɚ ɤɚɬɨɞɟ ɬɥɟɸɳɟɝɨ ɪɚɡɪɹɞɚ // ɀɌɎ. – 1987. - Ɍ.13, ʋ. 8. - ɋ. 452-455. Engel A., Emeleus K. G. and Kennedy M. Radial coherence of the normal glow discharge // J. Appl. Phys. – 1972. - Vol.42. – P. 191-192. Boeuf J.-P. A two-dimensional model of dc glow discharges // J. Appl. Phys. – 1988. - Vol. 63, ʋ 5, - P. 1342-1349. Ohuchi M., Kubota T., Monte Carlo simulation of electrons in the cathode region of the glow discharge in helium // J. Appl. Phys. – 1983. - Vol. 16. – P. 1705-1714. Hartog E.A. Dought D.A. Laser optogalvanic and fluorescence studies of the cathode region of a glow discharge // Phys. Rev. – 1988. - Vol. 38, ʋ 9. – P. 2471-2474. Goto M., Kondon Y., Monte Carlo simulation of normal and abnormal glow discharge plasmas using the limited weight probability method // Jpn. J. Appl. Phys. – 1998. – Vol. 37. – P. 308-312 Ʌɢɫɨɜɫɤɢɣ ȼ.Ⱥ., əɤɨɜɢɧ ɋ.Ⱦ. ɏɚɪɚɤɬɟɪɢɫɬɢɤɢ ɤɚɬɨɞɧɨɝɨ ɫɥɨɹ ɬɥɟɸɳɟɝɨ ɪɚɡɪɹɞɚ ɧɢɡɤɨɝɨ ɞɚɜɥɟɧɢɹ ɜ ɚɪɝɨɧɟ ɢ ɚɡɨɬɟ. // ɉɢɫɶɦɚ ɜ ɀɌɎ. – 2000. - Ɍ. 26, ɜɵɩ. 19. - C. 88-94. Ʌɢɫɨɜɫɤɢɣ ȼ.Ⱥ, ɏɚɪɱɟɧɤɨ ɇ.Ⱦ. ɍɫɥɨɜɢɹ ɩɨɹɜɥɟɧɢɹ ɧɨɪɦɚɥɶɧɨɝɨ ɪɟɠɢɦɚ ɪɚɡɪɹɞɚ ɩɨɫɬɨɹɧɧɨɝɨ ɬɨɤɚ ɧɢɡɤɨɝɨ ɞɚɜɥɟɧɢɹ // Ɏɂɉ. – 2006. – Ɍ. 4, ʋ 3-4. – ɋ. 184-186. Ʉɭɞɪɹɜɰɟɜ Ⱥ.Ⱥ., ɐɟɧɞɢɧ Ʌ.Ⱦ. ɇɟɭɫɬɨɣɱɢɜɨɫɬɶ Ɍɚɭɧɫɟɧɞɨɜɫɤɨɝɨ ɪɚɡɪɹɞɚ ɧɚ ɩɪɚɜɨɣ ɜɟɬɜɢ ɤɪɢɜɨɣ ɉɚɲɟɧɚ // ɉɢɫɶɦɚ ɜ ɀɌɎ. – 2002. - Ɍ. 28, ɜɵɩ. 24. - C. 36-42. Ʉɭɞɪɹɜɰɟɜ Ⱥ.Ⱥ., Ɇɨɪɢɧ Ⱥ.ȼ., ɐɟɧɞɢɧ Ʌ.Ⱦ. Ɋɨɥɶ ɧɟɥɨɤɚɥɶɧɨɣ ɢɨɧɢɡɚɰɢɢ ɜ ɮɨɪɦɢɪɨɜɚɧɢɸ ɤɨɪɨɬɤɢɯ ɬɥɟɸɳɢɯ ɪɚɡɪɹɞɨɜ // ɀɌɎ. – 2008. – Ɍ.78, ʋ 8. – ɋ. 71-82. Ɇɨɣɠɟɫ Ȼ.ə., ɇɟɦɱɢɧɫɤɢɣ ȼ.Ⱥ. Ʉ ɬɟɨɪɢɢ ɤɚɬɨɞɧɨɝɨ ɫɥɨɹ ɬɥɟɸɳɟɝɨ ɪɚɡɪɹɞɚ // ɀɌɎ. – 1989. – Ɍ. 59, ʋ 4. – ɋ. 22-29. Lister G. Low – pressure gas discharge modeling // J. Appl. Phys. – 1992. – Vol. 25. - P. 1649-1680. Lieberman M.A., Lichtenberg A.J. Principles of Plasma Discharges and Materials Processing. - New York: Wiley. – 1994. – 572 p. © ȼ.Ɉ. Ʌɿɫɨɜɫɶɤɢɣ, ɇ.Ⱦ. ɏɚɪɱɟɧɤɨ, Ɋ.ɇ. Ɏɚɬɽɽɜ, 2009.