« « » . . [544.252.23+532.783]-022.532 « » 02.00.03 – ) . . _________________________ . : , , , – 2020 2 . . .– . 02.00.03 – « ( « ). – » . . ; , . , 2020. ( ) , , . ( ). , : 5–30 . ) ( , (1,5–6 ) . ) , , , (Surface Stabilized Ferroelectric Liquid Crystal, SSFLC), ( . SSFLC , ), 3 , , , , (<2 ), . , – (Deformed Helix Ferroelectric Liquid Crystal, DHFLC), . . DHFLC . , , , , , , , , ( ~ p02). , « « » 1,1,1, , , DHFLC. . , , « » . -2, , , ( 300–500 , DHFLC SSFLC ( , , ) . , ), , DHFLC 4 , . . , : , . 35 –1 , ( ) – . (PS) , , 100 2 . , , : (1) , ; (2) ; (3) , i ; (4) ; (5) . i 1,1,1- -2- . 2,2,21,1,1– 1,1,1-2- -2. -2-2- 5 (R)-1,1,12, . -2, ( 11) 5 (R)-2,2,2- - . , . ( ) . ) l . l , (R)- . , (R). (R)(S)-1,1,1-2. (R)-1,1,11,1,1-2(n = 5–9). -2- -2, , (S)-2-(4(R)-1,1,1-2(n = 6–11). 1,4- 6 ( . , ) - (SmC*) . (R)-1,1,1( , ) (R)-2,2,2SmC* , . 1,1,1, . , -2- -2, , . -2. -2- , , , . : (1) 1,1,12,2,2-1; (2) , (S)(R) (S)-1,1,1, , ; (3) -2, -2- 7 – ; (S)-1,1,1-2; (5) , , , – (4) l 1,1,12,2,2-1- -2- C* (R,S)1,1,1C* -2- ; (6) , , , , , , . : ) (R); ) (S)-1,1,1- 2- , ; ) , , ; ) , , . , 8 : , , , , . ABSTRACT Mikhailenko V. V hiral diesters of p-terphenyl dicarboxylic acid and fluorinated alcohols as effective components of ferroelectric liquid crystals with a short helical pitch. – Qualification scientific work is as a manuscript. Thesis for a Candidate Degree in Chemistry: Specialty 02.00.03 – Organic chemistry (Chemistry). – State Scientific Institution «Institute for single crystals» of National Academy of Science of Ukraine; V. N. Karazin Kharkiv National University, the Ministry of Education and Science of Ukraine, Kharkiv, 2020. Actuality of theme. High practical utility of liquid crystal (LC) materials is conditioned by their use as a basis for implementation of series of electro-optical effects. This allows to use LC in information display devices such as light valves and optical modulators of optoelectronic and telecommunication systems or light polarizers. State-of-the-art technological demands require LC operating media to be ultrafast switchable (in a matter of microseconds). At the same time, capabilities to improve characteristics of the most widely used nematic LC materials (response time in the range 5–30 ms) approach to the natural limit and now they are almost exhausted. As a promicing alternative to nematic LCs, ferroelectric liquid crystal (FLC) materials are concidered above all due to their fast switching in the range of hundreds to units of microseconds under moderate driving voltages (1.5–6 V). From the discovery of ferroelectric behavior in chiral tilted smectic LC, the best efforts were focused on the development of materials for use in the Surface stabilized ferroelectric liquid crystal (SSFLC) effect where pitch of a supramolecular helix should be much more than thickness of a LC cell. However, wide practical use of the SSFLC in display technologies appeared to be restricted by several factors such as relatively low optical contrast, insufficient shock stability under screen touch, difficulties in realization of a grayscale, problems in formation of a defect-free monodomenic sample on a large area caused by, among other, too low LC cell thickness (<2 m), etc. , , 9 As the result of futher evolution of physical concepts of FLCs, other electro-optical effects were developed including above all the Deformed helix ferroelectric liquid crystal (DHFLC) effect where helical pitch is to be shorter than LC cell thickness. Optical switching in the DHFLC requires helix to be only partially unwinded. In the DHFLC, some peculiarities of the SSFLC (the grayscale, the shock stability) do not exist. However, with regard to matetials chemistry, the main obstacle in the way of widespread use of devices based on the DHFLC effect over many years was the fact that chiral compoonents (CCs) of the FLCs at the best provided helical pitch in the range 300–500 nm. Firstly, this did not permit high contrast ratio due to diffraction in visible range. Secondly, substantial speeding of the response was impossible due to considerable dependence of the response time on the helical pitch value ( ~ p02). Principal possibility to overcome this obstacle occurred when in SSI «Institute for single crystals» NAS of Ukraine chiral diester of p-terphenyl dicarboxylic acid and 1,1,1-trifluorooctan-2-ol was obtained. As CC for induced FLCs, and by comparison to non-fluorinated analogues, this compound has shown one of the best perfomances for use in the DHFLC devices. However, detailed relationship between structure of that compound and its practical properties was not revealed so far. Moreover, due to the fact that the preponderance of the FLC materials developed to the moment are intended for achievement helical pitch as wide as possible, structure– properties relationships related to induction of the short-pitch helix with chiral compounds in the tilted smectic mesophases were not thoroughly studied. Thus, such studies are current topics both in fundamental and practical aspects. The thesis is devoted to synthesis and investigation of new effective fluorinecontaining chiral conmponents of short-pitch ferroelectric liquid crystal materials. Following on from actual practical demands, we have stated suitability criteria of chiral organic compounds for practical use in the short-pitch FLC materials: first one is high helical twisting power (HTP) which is characteristic of CCs and is inversely proportional to a value of the pitch of a supramolecular helix. HTP is to be not less than 35 m–1. Secondly, effective induction of spontaneous polarization (PS) in a FLC at the level at least 150 nC/cm2 should take place. Relying on some regularities found in 10 literature, we have stated primary structural criteria which may affect effectivity of chiral components intended for use in the short-pitch FLC materials: (1) presence of two flexible polar groups separated by p-terphenyl core in a CC molecule; (2) presence of polar trifluoromethyl groups at chiral centers; (3) presence of two flexible terminal alkyl substitutes which may take an effect by strengthening interaction between molecules in adjacent smectic layers; (4) substitution of an alkyl at the chiral center with more polarizable aryl moiety; (5) introduction of a bifunctional lactate moiety to CC molecules. As the CCs combining criteria (1) – (3), homologous 1,1,1-trifluoroalkan-2-olic diesters of p-terphenyldicarboxylic acid were chosen. Effect of polarizability of substitutes at a chiral center was studied on 2,2,2-trifluoro-2-p-tolylethanolic diester of p-terphenyldicarboxylic acid taken as an example. Effect of combination of chiral lactate and 1,1,1-trifluoroalkan-2-olic moieties in a CC molecule was revealed on homologous diesters of p-terphenyldicarboxylic acid and 1,1,1-trifluoroalkan-2-yl-2-hydroxypropanoates. Key chiral intermediates for the synthesis of the target compounds are respective (R)-1,1,1-trifluoroalkan-2-ols (homologues n 5 11) and (R)-2,2,2-trifluoro-2-p- tolylethanol. These were obtained as racemic mixtures starting from alkyl trifluoroacetates and corresponding alkyl and aryl bromides. Enantiomerically enriched forms were obtained by enzymatic kinetic resolution of the corresponding racemic chloroacetic esters with the use of lipase. Since the key intermediates are of synthetic origin, there is a need for control their enantiomeric purity. One way to such control is derivatization of a mixture of enantiomeric alcohols with a derivatizing agent followed by gas (GC) and/or high performance liquid (HPLC) chromatographic analysis of obtained mixture of corresponding diastereomeric esters. As effective derivatizing agent for the analysis of enantiomeric purity of chiral secondary alcohols, L-menthyl phthalate was proposed. The developed method for enantiomeric purity determination using L-menthyl phthalate was applied to the analysis of (R)-enantiomeric trifluoroalkanols. It is found that in some cases the enantiomeric purity of the obtained chiral alcohols is insufficient for further use. However, the purity can be considerably increased by repetitive esterification and kinetic resolution. Moreover, enantiomerically pure (S)-1,1,1-trifluoroalkan-2-oles 11 can be obtained from residual chloroacetate fractions after isolation of the (R)-enantiomers. The target chiral trifluoroalkanolic diesters of p-terphenyldicarboxylic acid were obtained by esterification of the corresponding homolgous (R)-1,1,1-trifluoroalkan-2-oles (n = 5–9) with p-terphenyldicarboxylic acid dichloride. The homologous diesters of p-terphenyldicarboxylic acid and 1,1,1-trifluoroalkan-2-yl-2-hydroxypropanoates were synthesized through formation of the terphenyl core by Suzuki cross-coupling reaction starting from 1,4-phenylenediboronic acid and corresponding homologous 1,1,1-trifluoroalkan-2-olic (n 6 11) diesters of (S)-2-(4-bromobenzoyl)oxy)propanoic acid. The obtained target compounds were studied as CCs of FLC materials. It is found that introduction of the target compounds into an achiral smectic host even at high concentrations generally does not have negative effect on practical smectic C (SmC*) mesophase thermal range. It is observed that on legthening of the terminal substitutes the homologous 1,1,1-trifluoroalkan-2-olic diesters of p-terphenyldicarboxylic acid prone to reduce melting points of the FLC compositions. Similarly, the (R)-2,2,2-trifluoro-2-p-tolylethanolic diester has almost no effect on SmC* upper limit. However, this CC is characterized by induction of wide-range blue phase in the achiral host. This fact may be a consequence of high HTP of the CC in phases of nematic type. Study of FLC compositions of the homologous diesters of p-terphenyldicarboxylic acid and 1,1,1-trifluoroalkan-2-yl-2-hydroxypropanoates revealed that in the low-temperature range they form optical textures characterisric for ferri- and/or antiferroelectric mesophases. Study of helical twisting properties of the CCs shown that the presence of polar trifluoromethyl groups at chiral centers enables higher HTP. The HTP is also improved by lengthening of the terminal alkyl substitutes. Substitution of alkyl moiety at a chiral center in CC molecules with an aryl one does not promote increase of HTP in tilted smectic mesophases but appropriately leads to intensification of helical twisting in induced cholesteric mesophases. In the thesis, for the first time: (1) systematic series of symmetric chiral diesters of p-terphenyldicarboxylic acid and 1,1,1-trifluoroalkan-2-oles and (R)-2,2,2-trifluoro-2-ptolylethanol were synthesized and studied as chiral components of FLC; (2) synthetic 12 methodology for symmetric chiral diesters of p-terphenyldicarboxylic acid which molecules combine (S)-lactate and (R)- or (S)-1,1,1-trifluoroalkan-2-olic moieties was developed; alternating synthetic approaches are compared; systematic series of the diesters are obtained and studied as chiral components of FLCs; (3) L-menthyl phthalate is proposed as effective derivatizing agent for determination of enantiomeric purity of chiral secondary alcohols using chromatographic methods; (4) (S)-1,1,1-trifluoroalkan-2ols are obtained by excessive conversion of starting chloroacetate under enzymatic hydrolysis conditions; (5) it is shown that, in contrast to cholesteric LC materials, on transition from a 1,1,1-trifluoroalkan-2-olic diester of p-terphenyldicarboxylic acid to (R)-2,2,2-trifluoro-2-p-tolylethanolic derivative, substitution of an alkyl moiety at a chiral center with an aryl one which is more polarizable does not lead to increase of helical twisting power in a smectic C* LC; (6) it is shown that for (R,S)-diastereomeric diesters of p-terphenyldicarboxylic acid which molecules combine lactate and 1,1,1-trifluoroalkan-2-olic moieties the degree of helical twisting in an induced smectic C* LC has non-linear dependence on concentration; from estimations in linear range, HTP of higher homologues is at least twice as large as for compounds without lactate moieties. The practical significance of the obtained results: ) effective derivatizing reagent for determination of enantiomeric ratio of chiral secondary alcohols is proposed and used in the development of methods for obtaining (R)- and (S)-1,1,1-trifluoroalkan-2-ols with high enantiomeric purity; (b) data on effect of molecular structure of chiral diesters of p-terphenyldicarboxylic acid on properties of short-pitch FLCs are obtained; this opens a gate for wide range of chiral components having different effects on practical characeristics of FLC materials; (c) FLC materials with wide operating thermal range, high optical quality of an electrooptical cell, high optical contrast, and electrooptical response which is by two orders of magnitude faster than in current nematic LCs are developed; (d) effective method for obtaining both enentiomers of trifluorolactic acid, promising intermediate to future FLC components, is developed through tandem resolution of its racemic mixture. Keywords: liquid crystals, ferroelectric liquid crystal materials, smectic- phase, chiral components, chiral symmetric diesters, helical pitch, helical twisting power. 13 , , : 1. Syntheses of (R)- and (S)-enantiomeric 1,1,1-trifluoromethyl-2-alkanols with high enantiomeric purity controlled through derivatization with L-menthyl phthalate / V. Mikhailenko, D. Yedamenko, G. Vlasenko, A. Krivoshey, V. Vashchenko // Tetrahedron Lett. – 2015. – Vol. 56, Is. 43. – P. 5956–5959. (Scopus Web of Science). , , 1,1,1, , . 2. Ultrashort helix pitch antiferroelectric liquid crystals based on chiral esters of terphenyldicarboxylic acid / E. P. Pozhidaev, V. V. Vashchenko, V. V. Mikhailenko, A. I. Krivoshey, V. A. Barbashov, L. Shi, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok // Journal of Materials Chemistry C. – 2016. – Vol. 4, Is. 43. – P. 10339–10346. (Scopus). , , 3. . The nano-scale pitch ferroelectric liquid crystal materials for modern display and photonic application employing highly effective chiral components: trifluoromethylalkyl diesters of p-terphenyldicarboxylic acid / V. Mikhailenko, A. Krivoshey, E. Pozhidaev, E. Popova, A. Fedoryako, S. Gamzaeva, V. Barbashov, A. K. Srivastava, H. S. Kwok, V. Vashchenko // Journal of Molecular Liquids. – 2019. – Vol. 281. – P. 186–195. (Scopus , . Web of Science). , 4. 14 Tandem rystallization strategies for resolution of 3,3,3-trifluorolactic acid [CF3CH(OH)COOH] by chiral benzylamines / L. W-Y. Wong, E. V. Vashchenko, Y. Zhao, H. H-Y. Sung, V. V. Vashchenko, V. Mikhailenko, A. I. Krivoshey, Web of I. D. Williams // Chirality. – 2019. – Vol. 31, Is. 11. – P. 979–991. (Scopus Science). . : 5. . 113595 -2. ., 10.02.17, . 3. – 7 c. . 6. . 113594 . / . ., . 10.02.17, . . ., 3. – 8 c. . 7. 4,4''4,4''/ . 14.08.17 ; . ., . 27.08.19, , , . , . . ., 16. – 19 c. . 119903 . ((S))-1-(((S)((S)-1-(((R)-2-2i . . – . .– . ., 2016 00060 ; . . – 2016 00112 ; . / . 04.01.16 ; 1,1,1- . ., . . ., . 04.01.16 ; ))i 2017 08371 ; : 8. Mikhailenko V. V. Esters of p-terphenyldicarboxylic acid and chiral trifluoromethyl alcohols as chiral dopants for short-pitch induced ferroelectric liquid crystals / V. V. Mikhailenko, A. I. Krivoshey, V. V. Vashchenko // 25th International 15 Liquid Crystal Conference, 29 June – 4 Jule 2014 : abstr. – Dublin, 2014. – P. 104. , . 9. Induced V. Mikhailenko, helical nanostructures in ferroelectric E. Pozhidaev, liquid crystals / // E. Popova, S. Gamzaeva, V. Vashchenko Nanotechnology and nanomaterials NANO-2016 : 4th International research and practice conference, 24–27 August 2016 : abstr. – Lviv, 2016. – P. 103. , . 10. Chiral trifluoromethylalkyl esters of terphenyldicarboxylic acid – highly effective conponents for short-pitch FLC mixtures / V. V. Mikhailenko, A. I. Krivoshey, E. P. Pozhidaev, E. V. Popova, A. P. Fedoryako, V. G. Chigrinov, H. S. Kwok, V. V. Vashchenko // 16th International Conference on Ferroelectric Liquid Crystals, 4–7 December 2017 : abstr. – Hong Kong, 2017. – P. 64. , , . ......................................................................... 19 ............................................................................................................................. 22 1 ( ) ............. 28 1.1 1.1.1 1.2 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.3 1.3.1 1.3.2 ............................................ 28 ................................................ 32 .................................. 39 (SSFLC) .................................................... 39 ....................... 41 .. 43 ........................... 44 ....... 44 ..................................... 47 ........................................................................ 47 ......................................................................... 48 1 ...................................................................................... 54 2 ................................. 56 2.1 .......................................... 59 2 ...................................................................................... 65 3 ..................... 66 3.1 3.1.1 3.1.2 3.1.3 3.2 (R)- (S)(R)-2,2,2- ................................................................... 66 . 66 -2-2............................................. 72 ...................................... 77 1,1,1(FOTDA) .................................................................................. 78 3.3 -2- -2- 1,1,1(LACTAF)......................................... 81 3 ...................................................................................... 87 17 4 .............................................. 89 4.1 4.1.1 4.1.2 1,1,14.1.3 (R)-2,2,24.1.4 1,1,14.2 4.2.1 .............................................................................. 90 ........................... 90 -2- (FOTDA-n) .......................................... 92 -2- (FOTDA-Ar) ......................... 97 -2- -2- .......................... 98 ........................................................................... 102 1,1,14.2.2 -2- -24.2.3 -2(FOTDA-n) .. 102 1,1,1(LACTAF-n) .............................. 107 ....................... 112 4 .................................................................................... 116 5 ................. 118 5.1 1,1,15.2 , 5.3 -2DHAFLC UFOTDA LACTAF .......................... 126 ............................................................. 132 5 .................................................................................... 138 6 ................................................ 139 DHF .... 118 6.1 6.2 6.2.1 6.2.2 6.2.3 6.3 (R)-3,3,3- .................................................................................... 139 (R-35, S-35, R-46) .................................... 142 1,1,1(R)- 2,2,2-1-2............................... 142 (R-46) ........................ 148 149 -2................................. 152 6.4 6.4.1 18 ................................................ 154 1,1,1............................................................................................ 154 6.4.2 1,1,1-2- -2- ................................................................................ 156 6 .................................................................................... 160 .................................................................................................................. 161 .................................................................. 164 ………………………………………………………………….………...181 19 4N,N- -2. , N-(4. . , )-4: , * 4- -4’- p0 max L 20 r, off Alk Ar AFLC Bu , , nH2n+1 Cr DHFLC DHF dppf Et FOTDA-n -2FOTDA-Ar (R)-2,2,2-2- 1,1,11,1’- Iso LACTAF-n 2- -2Me 1,1,1- N N* Ph PS PTSA Rac Rs SDS , C6H5 21 Sm Sm * , SmC SmC* SmCA* SmC*FI SSFLC TGBA THF TBMS TBMS-Cl twist grain boundary 22 . ( ) , , . ( ). , ( : 5–30 [1]. , ) , (OLED) [2], . ( , (1,5–6 ) [3-5]. ) , , , [6] (Surface Stabilized Ferroelectric Liquid Crystal, SSFLC), ( [7]. SSFLC , , , , , (<2 ), . ), , – 23 (Deformed Helix Ferroelectric Liquid Crystal, DHFLC) [5, 8], . . ) DHFLC . , , , , , , , , ( ~ p02). , « « » [9], , , , 300–500 . , DHFLC SSFLC ( , , , DHFLC [8, 10–12]. , , 300–350 , 100–110 . , , » . , , – DHFLC, 9. . , , 24 , – , « , « : , 100 , . . » », 2012–2016 0112U002186; « . », 2017–2018 . 0117U001684; « », 2017 . 0117U001282; « », 2018 . . , 0118U000755. . : – – ; – 1,1,1- ; – 1,1,1-2; 25 – , ; – ( , , ) , , – . : , ; O ; . : , , ; , , ; , 1,1,1-2- . : ( ), ( ) ( ( . : – 1,1,1-22,2,2-1; ), , , ), , ( ) , – , (S)-1,1,1, ; – , l – (S)-1,1,1-2; , -2, , (S)(R) 26 - ; – , , 1,1,12,2,2- -2-1C* ; – , , (R,S)1,1,1-2C* , , , . . , (R); (S)- 1,1,1- -2- , ; 27 , , ; , , . , . , , . .– ; – 1 , . . ., ; . . . .– ; . . ; . ., .– . .– . ., . ., . ., . . . « » Con¬ference ( , (2013, 2015, 2017 .), 25th International Liquid Crystal , 2016 ), 16th , 2017 ). 183 , ; 16 , , 18 75 . , 2014 .), Nanotechnology and nanomaterials NANO, , 2016 : 4th International research and practice conference ( International Conference on Ferroelectric Liquid Crystals ( . , (160 ) 28 1 ( 1.1 ( ( ( , . ) ), – ( ) ) ) , , ( ), ( ). . (N) , , , , . ( . 1.1 ( , )) . n. , ( . 1.1 ( , )) 13 1.1 ( ), ( ( ) ) () ( ), . , 29 , ( [14-16]. , . , . ( ( , N*) , , 0 , ) n . 1.2 ( )), , ( . 1.2 ( )). [13] n 1.2 – 4)-4( , 2). -4'N( ) N* ( ) (5 , 1) N-(4- 1 N* streaks) . 2 » (oily ) » 17 . ), ). . 1.3 ( , )), 0< , N* 300–350 , . « . , ( « » 30 : 17 . I*, II* , III*. (0,5–2 º ) (40–50 º ) , [21], 15–20 . 17, 18 , 19, 20 . 1.3 : ( ) ( ) (SmA) [13]. , , , ( n n , ( . 1.4 ( )). ) d n n 1.4 SmA , , 3, . TGBA(twist grain , ( ) TGBA ( ) , - SmA*. boundary), - 31 ( SmA, d, N* SmA, : SmA [13], N* . . (filament) 17 , . [23, 24]. TGBA TGBA , 0. . 1.4 ( )) [22]. , n TGBA - , SmB [22]. , . , – Sm , , , . . SmA ( . 1.5 ( )), e, n , , . 1.5 ( )). z (SmC , ) [22, 25]. e n x y 1.5 n ( ) ( ) , , , SmC*. , 32 ( , . 1.8 ( , ), N* 33). 0. , SmC* , SmC SmC* , « »( . 1.6 ( )). ( SmC* ( . . 1.1.1). SmA . 1.6 ( )) ( SmC ) SmC* . 1.6 ( )). . ) hlieren ) 17 . , 1.6 Sm 1.1.1 ( ), SmA ( ), Sm * ( ) 17 , , * . SmC* (PS). , . – , , ( ), ( [26]. , SmCA* PS , AFLC) ( SSFLC , ) 33 E, . PS ) ) : z e n ( . 1.7 ( , )). ) n z e x y PS > 0 x y PS < 0 E E 1.7 n , 180 °, PS SmC* ( ), : ( ) ( ) PS ( . 1.8 ( )). – 2 . 1.8 ( )). , ( , , . 1.7 ( )). e, , n PS ) , ( ) E =0 . 1.7 ( )) [26, 27]. ) n 1.8 : ( ), ( ) SmC* – , . ( – ) ( SmC* , ( ) SmC*) (SmC*A) – SmC* (SmC*FI), ( SmC*), 34 ( ( SmC*A) . 1.9) [26, 28, 29]. – ( SmC*A SmC*, [31–33]. , SmC*FI . 1.9 ( – )) 30 . , . 1.9 ( ), ( ) , SmG*, SmF*, SmI* TGBC [34] TGB ( , . 1.4 ( )) ( ) . [35, 36–38], ( , , ( ) SmH*, ) [13, 19], TGBCA [35] – 1/ 0 q0 = 2 / 0). : p0-1 = C, – ( ) , ( ). (1.1) 35 , , <0– ), , , ( >0– . 1.1.1.1 , . . , - * – – – – – . , ( ; ( ); ; ); : - * ( max) 39, 40 . 0, Sm * , : m max , 2 Dn sin max , , (1.2) ; – ;n– 1,6; , , ( n ) , – , [41–43]: n. m– ; D– . , , 36 . , , 1.48 5 %. n = 1.5 , , , ( D) SmC* ( , SmC*, , =90 ) [41, 45, 46]. (D = p0/2), , 1.2 p0 = p0 = max max n 1.65 [44], , , SmC , n = 1.6 – . – ) SmCA* ( D = p0/2 ( ). ) , ( < 90 °) D = p0 41, 47, 48 . : , /n, = 90 < 90 °, , (1.4) /2n, . , , [32, 45] . , , [46] : p0 = 2 SmC*, n = 1.6, , , max /n, = 90 SmCA* [45–48]. (1.5) , , , 240 . . , , 130 , , . 37 , , max, 350–300 0< . , , , , , , max. 130 , , [49] 3000 . . , 1.10 . , l– ,d– – , , , , . – , , . 0= . , . , . 2x·tg , x , tg = d/l ( . 1.10). . (>1 ) [50]. . , , . , , 38 ( . 1.11) /2n, , n– , , . . , – * [51, 52], . , , , , , . , ( r) ( 1.2.2, 1.7). , . , , , , . , , , ~110 300 ) ( , . . , , , – , , . , 52 1.11 - 39 1.2 SmC* , . , . [5]. 1.2.1 (SSFLC) [7]. ( ), « - » (bookshelf geometry), 0 . 1.12). PS E, PS PS E. 2 . , , , . , E 2 1.12 - . - . 0 >> L. , , , . , 0 40 : , « » (Surface Stabilized Ferroelectric Liquid Crystal, SSFLC) [7]. SSFLC ( . 1.6), [5], , , ( . 1.12). ( 90 º), , SSFLC , , = , /PSE . (1.6) . , 1980 , ., , , , PS , [53–55]. , ( 0 [8, 56], ), . ( - ), . 41 , SSFLC 1990 [57–59], . , SSFLC 1.2.2 , (Deformed Helix Ferroelectric, DHF) . [60, 61]. : 0 . , . , [6], << d. DHF . 1.13 ( ). , . , . , cos ±E ( . 1.13 ( )). , , , . 2 z/R0 8. ( on) SSFLC ( ( , 2 0 2 p0 r 1.6, DHF : . 40), PS r) , 2 K sin 2 (1.7) 42 , , . 25, 30 . 1.13 1– 4 – ,2– Sm * ,3– 30 ( ). ( ) DHF I sin 2 (2( ( z)) sin 2 ( n( z) nd / . , [5, 62]: (1.8) . : (z) n(z). y-z (z) – z; (z) : : (z) arctan( tg cos . ( z )) (1.9) n(z) = neff(z)–n neff n|| n [n 2 : n ) sin 2 sin 2 ]1 / 2 2 (n 2 || (1.10) (z) = 45 , n(z)d= /2. . , , 45 . 43 , , 1.2.3 [63, 64] 39–40 DHFLC. . , . , DHF, (PA) 1.14 ( , 1.14). . ( : ) 8 (1.11) p0 , Kker 1.11 ( ker). np , e e 4 PS2 p0 32 2 K 2 sin4 PS ,( ) p0 ,( ) PS , , . kerr , . , DHF, ( . 1.7, . 41). 100 [64] . , 44 1.2.4 8, 65 , « (Electrically Suppressed Helix, ESH). p0 d, , » , . SSFLC ( , ESH . . 1.12, . 39). ESH . , . , ESH 1–3 . ESH 0 d( ). , , ESH . 1.2.5 , , . SmC* 1.1. , DHF ( ( , , , . 1.15). 1.1, . 3, 4) 45 . , , . , DHF . , SSFLC, = 36 ( . . , . 1.10). , DHF , 1.15 . . , SSFLC – , , – . = c DHF c , . ESH SSFLC, , DHF ( . 3) ( . 4)) , (ESH, . 2) ( . PS, , . 1.1). , ( 46 1.1 (SSFLC) 1) (ESH) (DHF) p 2 0 (VADHFLC) 2 p0 Ps E >5 (d) p0 >> d 20–60 10–30 + 1–100 : 1 Ps E 0,7–1,5 p0 d 4 2 Kh 4 2 Kh (p0) , <0,13 p0 << d >150 3–10 – ~800 : 1 0,13–0,24 p0 << d >150 15–20 – ~1 000 : 1 (PS), 2 40–80 1,5–3,0 – ~10 000 : 1 , p0 > 240 : 1) – , p0 – , – , Kh – , PS – . , p0 > 240 – 47 1.3 1.3.1 1.1.1, , « , », . 1.16, R1 R2. 1.16 4. 4 (37–88 º ) (49–129 º ) 5, , X Alk1(O) X X X (O)Alk1 . SmC . 5 X = H, F , . , 2,56–9 [66, 67]. 130 [44]. 48 6 7 8 n = 2–15, m = 1–18 , , 9 , , , 2. 6–9 12, 10, ( 11 13 13 1.1) [68, 69]. 10 1.3.2 12 1.1 ( . 1.2.5), , , , 70 . PS , . ( . 1.1, . 34), , . , 71–75 49 ( (p0 . 1.17) ). ( ) ( r) 15 74 . . (390 ), 106–300 (fGM) , 72, 73, 75 fGM r r = (2 fGM)–1 76 . 0,08–0,8 200–2000 0 . = 120-320 75 = 290-640 74 = 150-250 73 14 15 0 16 1.17 , 0 , , . 1.1.1) p02 ( 1.7, . 41). , 400–600 , , , ( . , 1.2.5), , , DHF ( 1.2), 50 . . , , 18 . 19 ( . 1.18) [77]. 17 18 19 20 21 22 23 1.18 24 N* N* , 25 , , 22 23 17 . [78, 79]. , , , , 51 . (0.98 Tnext, , Tnext – ). SmC* , . , 1.2 . , , . ( DHF ( -21 1.2, . . 1), 1.2.2), 26 (> 30 . %) 250 13 , , –1 ), SmC ). DHF . 81 27 ( 24 ( 830 . , , 460 1.2, . 2). –1 –1 (10 ° ) 13 (20 ° ). 20 ° ) , (10 . , . %) 1 « » : . ., . , . . 52 28 ( 1.2, . 3). 82 , n = 9. , , Sm * 28 ) 6–9 ( 85, 86 29 »( , , , . , , 1.2, . 4, 5) 30, . , « , . 48). . (, , ), , , Sm * . . , 80 . , 87, 88 100 ( 31 1.2, . 6). , 31 25 . . , 53 1.2 1 . 8, 11, 12 1 26 n = 2-8 ( -n) 27 ~9–122 2 +24 (10 C) +13 (20 C) 81 3 28 11–423 82-84 n = 6-8 4 29 n=9 n=6 5 30 n=7 17 85 39 1,4 86 20 6 31 ~302, 4 87, 88 32 7 33 (FOTDA-6) : 1) 2) 3) 4) –30 89 8 ~19–212 9, 64 ( 2 . %) . %. , . N*. . 89 , 32, ( 1.2, . 7). 150 . , 54 , . 9, 64 33 DHF 26, 20 ( , 21 –1 . , .% 240 , DHF ), ( ( 120 300:1) ). . 1 1. , , . : 1) 12 , [8, 30], 2) p0 < 130 2. : 1.2 > 35 , , 28 29. 28 29, . , –1 ( , . %, ), , , . 55 , ( 3. . , , , p0 < 130 . , , , , ). « » . : , 4. . SmC* , > 60 –1 . 1.2. , . , , , 5. . – – , , . 56 2 FOTDA-6 [9] ( 1.2, . 8, . 53). , ( PS) , 26 ( , , , , . , CF3 ; 1.2, . 1) FOTDA-6. FOTDA [80]. . . , , [90, 91], . , 28 29 ( 1.2, . 3, 4) 82, 85 , . , , FOTDA 92 . 57 [87, 93]. , . , ( . 2.1): PS PS, R-FOTDA, S- FOTDA 2.1 , [77, 90], FOTDA-n ; n = 4–8 ( , , . ( , . 1.3.2) , ) , . , [92] ( . 2.2): FOTDA-Ar 2.2 FOTDA-Ar , . , , [30]. , , 58 PS ( Sm *), 1.2.1). , PS, DHF ( . 1.2.2). , ( . , – . , , , , FOTDA. , , , 34 . , . , , , . . 2.3. 2.3 (R*1, R*2) , , . B1 , : 2– : 1) ) ; ) : , 34 [25,11, 12]; 59 34 ) , , ; . ) , , , , , S 2) 1,1,1, , LACTAF-n [94] ( . 2.4). -234, ; , FOTDA, PS. , 34 34 (S)- 2.4 2.1 RS-LACTAF, SS-LACTAF LACTAF-n ; n = 5–10 . – – [95], Pi = Pi – ROFi . i , i , PS : ROFi 1/ , i , , – , , 60 , RS( , », . , – . . SS-LACTAF-n PM3. . 2.5) 2.5 , , . – , ( » . 2.6). , , , , « ». , , , « , , , . , , . , , ». , , . . , ( . . . 2.5), 61 , , , « . », – YOZ, 3 , . Y Z, , . . 2.6. , ( ( . , XT 2.1 – 2.3), ). , ) ) XI YOZT YOZI T I 2.6 ( ), ( ) ( ) FOTDA , , , . YOZ. ( (YOZ), ) , , XI ( ) 2.1. 62 2SRSS-LACTAF 2.3). 2.1 FOTDA 34 2.2) FOTDA-2 -1 ,D 10 21 11 12 -120 60,4 -2,768 3,192 1,272 1,165 X -1,103 2,356 0,871 1,217 Y 1,685 -1,708 -1,499 -0,959 Z | | 3,423 4,604 2,150 1,939 H PM3, -174,710 -172,623 -23,451 -22,802 H, 0,000 2,087 0,000 0,649 % at 298 K 97,1 2,9 75,0 25,0 **) ,D 3,25 1,84 , I 2,04 1,69 2.2 34 34 11 12 13 21 22 23 31 32 33 X Y Z 0,897 1,095 -1,400 1,990 -91,0 0,094 27,3 3,470 -0,493 -2,094 4,082 -90,3 0,822 8,0 , D**) 3,325 0,567 3,309 0,137 -0,464 0,122 -1,914 -2,149 -1,927 3,839 -89,2 1,970 1,2 2,271 -89,3 1,833 1,4 3,831 -89,2 1,960 1,2 H PM3, H, *) % at 298 K *) ,D 3,452 0,416 2,033 | | 4,027 -90,5 0,665 10,4 -0,849 -1,562 1,053 -0,567 1,445 -0,492 1,979 -91,1 0,000 32,0 1,733 -90,6 0,571 12,2 , I 2,742 1,392 1,777 3,551 -90,2 0,966 6,3 1,70 1,76 **) . 2.6 63 2.3 SRSS-LACTAF LACTAF-SR011-Ethyl 111 112 121 122 211 212 221 222 X Y Z 3,072 -2,506 -0,539 4,001 -254,6 1,171 5,1 -3,041 1,952 -2,956 4,669 -255,8 0,000 36,6 , D**) -4,431 -0,568 -4,003 5,998 -253, 0 2,839 0,3 -2,610 1,187 0,168 2,872 -255,7 0,104 30,7 H PM3, H, *) % at 298 K *) ,D 1,852 3,647 1,720 1,240 4,245 -0,687 | | 4,941 3,913 -252,1 -254,7 3,728 1,341 0,1 3,8 , I -5,227 0,495 -0,359 5,262 -248,6 7,186 0,0 -1,478 -1,335 2,804 3,440 -254,3 1,491 2,9 2,31 2,42 222 LACTAF-SS011-Ethyl 111 112 121 122 211 212 221 X Y Z -1,032 3,545 -2,453 4,433 -254,4 2,521 1,2 -3,735 0,681 -0,560 3,837 -257,0 0,000 82,6 , D **) -5,002 0,516 -0,093 5,029 -253,9 3,109 0,4 1,825 0,893 -3,618 4,149 -255,7 1,228 10,4 H PM3, H, *) % at 298 K *) ,D 2,002 -3,101 3,097 1,493 0,476 2,864 | | 3,718 4,478 -252,8 -254,8 4,170 2,201 0,1 2,0 , I -2,936 -1,067 4,360 4,056 1,069 0,235 5,364 4,201 -252,0 -255, 1 4,989 1,893 0,0 3,4 1,44 1,27 *) **) . 2.6 64 2.4 . 2.4 ( , 34) SS-LACTAF) LACT 1.76 1.70 < ,( FOTDA , (FOTDA, SR- YZ T SS-LACTAF 1.27 1.44 1.69 1.84 < FOTDA 2.03 3.25 SR-LACTAF 2.42 2.31 PS , . , . 2.4) . , SR- SS-LACTAF, SS . FOTDA-n, FOTDA-Ar, LACTAF, , , (R)(S), , , , , , , FOTDA (S), 35 [96], SR-LACTAF/SS-LACTAF. R-35 n = 4 ( ), 5 ( ), 6 ( ), 7 ( ), 8 ( ), 9 ( ), 10 ( ) 2.7 S-35 65 2 ( * , FOTDA-Ar ( SR-LACTAF/SS-LACTAF). ); ) ( ( , : FOTDA, LACTAF); , , FOTDA [92, 94, 96]. 66 3 3.1 35 ( . 2.7, . 64) – [97–99]. . - . ( ) , 90 % [100]. 97 % , [101, 102]. , -235 . 1,1,1- . 3.1.1 , , , 103 . , - (dr) dr , . , . : 1) , ; 67 2) 3) 4) ; . 101 19 ; F 102 -( (MTPA, ; 36, . 3.1). (S)(37) 104 (S)(38) 105 . - 36 3.1 , 37 38 36–38 36–38 , , . , , , ( ( , ( . 3.2) – N N -d. ). , -l (41), (39), , ) N -l, (40) 39 3.2 40 41 , 42 68 , , [106] [107], [108], , i 1,1,1l (42, -2. 3.2), . , MTPA (36) [96, 109]. 39–42 rac-35 45–48 ( . 3.3) . 43: R , R = 45: R1 = CF3, R2 =Ph 3.3. 1 2 46: R1 = CF3, R2 = -(C6H4)CH3 47: R1 = H3, R2 = -C6H13 48: R1 = H3, R2 = H2Ph 45–48. 35 45–48 39–42 [110, 111] ( 3.1). R-44 N, . S-44 . 3.1. rac-35, 45–48 3.1 R-44, S-44 (R)(S)44 49 69 , R-35 –35 S-35 –35 44 44 ( max) ( . 3.1.2). . 49 245 , . 3.1 35, 45–48 39–42. Rs 0 0 0 1,40 1,84 2,39 2,53 2,54 3,18 1,52 0 0 ); 1 2 3 4 5 6 7 8 9 10 11 12 39 40 41 42 42 42 42 42 42 42 42 42 : Agilent HP-5 (5% 250 °C; : 40 °C (Rs) (tR1 99,9 %, . 3.1.2) .% ). , . 6)). S-49 71 R-49 /S-49 , Rs=1,38 , . R-35 ( > 99,9 %,). (R)-MTPA (R-36) R-49 6,3 % S-49 . (42) , (10,3% , (R), 99,5 %, 0,25 %, 0,25 . % S-35 R (R)( R . 3.4). , 10,2% (R)-MTPA (R-36) . , S-49 , l R-44 S-44 ). S S 3.4 Ascentis Si, 4,6×250 ), R-35 ,5 ; , 32% 0,25 % S-35 - 72 S-35 0,23±0,04 % ( . 3.4). S-35 . , l (42), 39–41, ee . , (S), . l 47 –48 (R)-MTPA (R)-1,1,13.1.2 (R-36), -2(R)- (S)35 –35 [112] 51, , 1,251 51 rac-35 ( 3.3). 52, , 50 (R-35) , . -2. l S-35 (R)RS = 2,1. 0,39±0,23 %, 50 51 3.3 (R)- 52 rac-35 1,1,1-2- R-35 –35 rac-53 [102], rac-35 –35 53 <50 % ( ), 73 (R)R-53 S-53, ( R-35, 3.4). . R-35 –35 , 3.2 l (42) , 3.1.1. R-35 rac-35 rac-53 R-53 S-53 3.4 3.2 ( .1, 3, 5, 7), rac-53–53 3.4) , R-35 –35 R-35 –35 ( 35 . 35 , 35 ( .1, 3, 7, 8) , , [101], , . 8, 9 53, R-35 , 35 , 10) . ( 1,8°). , [101], R-35 . 5) . 1, 3, 5, 7, 8) , l R-35 –35 ( 3.2, (42) [96, 109]. . 74 3.2 , (R)-1,1,1(%) ([ ]d 25 -2(ee ) ((R)-35 –35 ). , % ,% ), ° ee, % ([ ] 25 d ), ° 1 R-35 2 3 R-35 4 5 R-35 6 7 R-35 99,6 99,8 99,4 99,4 99,1 99,7 99,6 70 75 68 83 65 60 78 +23,6 +27,0 +24,0 +26,5 +25,0 +25,0 +25,1 95,6 (90,6) 99,9 (99,8) 95,5 (91,0) 99,6 (99,2) 99,1 (98,2) 100 (100) 98,1 (96,2) 95,3 (91,2) 100,0 (100,0) 95,8 (91,6) 99,7 (99,4) 99,0 (98,0) 100 (100) 98,0 (96,0) +23,8 98 +24,0 +28,6 97 +28,0 97 +29,5 98 75 3.2 (ee ) , % ,% 8 9 R-35 10 11 ) ) 3.1.1 ) ) : Ascentis Si, 25 ×4,6 : Agilent HP-5 (5% 40 °C 300 °C 53 S-35 . , 5 ; ); 20 °C/ , : 32% 20:1; : 20 . ) . ) . ) (S). ) . ) ; 250 °C; (%) ([ ]d 25 ), ° ([ ] 25 d ee, % ), ° 98 – 97,0 (94,0) 97,8 (94,0) 99,7 (99,4) 97,7 (95,4) R-35 (R)(S)R-35 l (42), , ( ) [101, 102]. 245 . 15,0 ; 100% , rac- ). R-35 97,8 98,4 98,8 61 62 74 41 , (50% +25,0 +23,0 +25,4 – +23,0 +22,5 – – – R-35 : 78,8 – – 76 ( . 3.1.1), ( 3.5) [113]. 53 R-35, S-35 3.5 , R-35 –35 , ( 53 53 85 % R-35 –35 ( ., , . 1, 3, 5 ( R-35 –35 R-53, S-53 3.2 . 1, 3, 5), 3.5) . 2, 4, 6). , , , , R-35, , , , , . R-35, i, , R-53 ( S-53, S-35, , , ) , , - , . (S)-1,1,1R-53, S-53 1) R . R-53, ( S-53 S-53; -2(S-35 –35 ) 3.3): 2) ) 3) 3.6, R-53 S-53 3.3). S-53 S-53, ; R-35 77 S-35 S-35 R-35 S-35 3.6 , (S)-1,1,1a S-53 S-35 –35 3.3 -2, % 99,1 99,4 99,0 99,6 , (S-35 –35 ) 25 ( [ ]d ), ° , % 1 2 3 4 a ,% 100 100 100 100 ( . S-35 S-35 S-35 S-35 (42) 3.1.1 27 22 49 25 –29,1 –30,3 –28,0 –28,2 100 100 100 100 3.6). S-35 l , - . . 3.2 . 74. 3.3 S-35 i , , (l , ). -2R-46, FOTDA-Ar, 3.7. 55 , R-35, (R)3.1.3 , (R)-2,2,2- S-35 (54) 1,2- 78 [114], rac-46. rac-46 , 35 –35 ( . 3.1.2): rac-46 rac-56 , 35 –35 2–8 . 56 35 –35 ), 45 % 55 . . R-46 [115]. Lipase MY. 56 , 54 55 rac-46 3.7 R-46, 56 R-46 ( . 3.1.1), , 56 46 72 % (ee 44 %) Lipase MY . (R) ([ ]D25 –31,8 °, c(MeOH) = 0,1) . ([ ]D26,4 – 9.8°, c(DCM) = 0.08 [116]). 3.2 (FOTDA) FOTDA-4–8 FOTDA-Ar 3.8 58 57 35 –35 ( . 3.1.2) R-46 ( . 3.1.3) [117]) 9. 1,1,1- 79 (R)R-46 R-FOTDA-Ar [92, 115, 118]. (S)35 –35 , R-FOTDA-4–8, S-FOTDA-6 35 –35 , R-46 FOTDA-n: R = CnH2n+1, n = 4–8 FOTDA-Ar: R = -C6H4CH3 3.8 1 1 57 58 . , FOTDA-n a CDCl3 . 8,18–8,18 (J 8,2 – ), b – 7,76–7,70 . . (J 3,7 ), 7,74–7,18 5,58–5,40 CH2 .; 1,92–1,88 ., 1,35–1,18 1 1 ., 0,87–0,80 . (J 6,8 ). 3.5 FOTDA-7. a FOTDA-Ar 8,22 . (J = 8,2 ), – 7,75 ., 7,48 . 7,25 6,37 b – 7,76 . (J = 8,2 ), ., . . (J =7,0 ), 2,38 FOTDA-4–8 FOTDA-Ar, . 80 3.5 (R)-1,1,1, R-35 3.1.3), FOTDA-n FOTDA-Ar, . 1 -2- FOTDA-7 DCl3, 200 ) 3.1.2) R-46 ( . ( 3.8) , (S,S; R,R) (R,S; S,R). , , (S,S S,R, R,R , ee 100 %, FOTDA-n FOTDA-Ar (R,S; S,R). , , FOTDA-Ar , , S,R) PS , , , . (S,S; R,R), , . FOTDA-n , 81 « (R,S; S,R) ( , , 3.3 -2- -2(LACTAF) LACTAF, FOTDA-n i FOTDA-Ar . 3.2), 58 ( 59 ( SR-59 61 , R-35 (PTSA) SR-59 ( R-35 SR-59 . 3.9). (S)(S-61) (S)SS-59 R-35/S-35. (S-60, Alk=C2H5) 3.8, . 79). 60 57) . 1,1,1PS ), », , , S-60 S-61 R-35 SR-59 3.9 R-35 82 , 59 ( . 3.6). ( . 3.6) : 60. ( , . 3.6) , . LACTAF 58 62 59 PG = PhCH2, TBDMS 3.6 ), 463 ( ) (62) 63 LACTAF-n 58 59 (TBDMS) , . . , , , , SR-66 (30 .) . , , , SR-59 . , . (TBAF) O [119], ( TBDMSSR-69 , ), S-60 , SR-59 , 3.10. - 83 , . KHSO4, [120], S-60 S-64 S-67 S-65 S-68 R-35 SR-66 R-35 SR-69 SR-59 3.10 , LACTAF 1,463 ( (62) . 3.7) [94]. 70 71 72. , 72, , , LACTAF, , « » 84 – 34 ( . 59). , (S)- S-70. , ( , . , ( 3.11). F3 C O O O O O O O * Cn H2n+1 , ), LACTAF H 2n+1C n * CF3 O H 3C LACTAF O CH3 CH3 O O O (HO) 2B B(OH)2 + Br * Cn H 2n+1 CF3 62 O O Br O CH 3 OH + 63 CF3 HO * CnH2n+1 72 O O Br O CH3 O Ph 35 71 CH 3 HO O O Ph 70 3.7 i LACTAF, (S)S-71. S-71 ( 3.4, .1; , (S-70), 3.12). , 85 , , S-71 S-73 S-74 ( . 2; 3.12) [94]. S-71 S-70 35 Sx-63 S-72 62 LACTAF 3.11 , S-72 S-72 3.4, . 3). , , S-71 S-72 S-73 3.12 , S-74 86 S-72, . , ( . 4). , S-72 ( . 5). 3.4 S-71 S-72 , % – – – – 65 : 70 % 254 . i ),% 1 2 3 4 5 Prontosil 120-5-C18H, 4,0 250 0,05 % , . 3.12. 3.12. ; ; , ), % – – – – 97,5 – – – – – 78,0 80,0 97,0 . . S-72 (R)- (S)SR-63 SS-63 (Sx-63, 35 –35 3.11). Sx-63 1,4- Pd[121], SR-LACTAF-5–10, SS-LACTAF-6. 1 . 1 SR- SS-LACTAF 8,18–8,20 . (J 8,2 ), b – 7,75–7,80 . (J 7,4 ) – 7,74–7,75 87 . 5,41–5,35 . (J 7,2 ). 5,28–5,37 1,75–1,80 – 1 ., – ., CH2 1,2–1,4 ., 0,88 (J 6,8). 3.8 LACTAF. 3.8 1,1,1- 1 -2- -2- (SR-LACTAF-9) CDCl3 SR-LACTAF-5–10, SS-LACTAF-6, . 3 1. l , . – 88 , . 2. (R)-1,1,1-2- Lipase MY, (R)-1,1,1, Lipase MY -2(S). 3. 1,1,14. 1-(( -2-4. , Lipase MY, (S)-1,1,1-2(R)-1,1,1-2>99,9 %. ; , ; ; , . 5. 41,4, 1,1,1-2. [92, 94, 96, 109, 113, 115, 118]. 89 4 FOTDA-n LACTAF-n , , SmC , ( – ), , – , , , . . (« », 75 < 16 º ) , 76 [122] ( . 4.1 ( )). [67] ( . ) 4.1 ( )), [25, 28]. ) 75 ( ) 76 4.1 75 ( ) 76 ( ), 90 4.1 , , ( ) , . 4.1.1 [13, 19, 25], FOTDA LACTAF . . , . FOTDA-6 , FOTDA-4–8 FOTDA-4–8 = 42,1–42,2 ° ). 26 ( 79–87 º . FOTDA-Ar – ( 58 º ), . SR-LACTAF-5–10 , . . 4.2. , , . . 1.2, .1, . 53) , 80 60 T oC 40 20 0 4 5 6 n 7 8 9 10 4.2 SR-LACTAF-n , 91 SR-LACTAF, , , ( SR-LACTAF-5 ) , . -6 ( , SS-LACTAF-6 . 40,4 0.0 . 4.3). = 67,2 º , (mV) -0.5 53,7 -1.0 11223, , , , , -1.5 -2.0 -40 -20 0 20 40 o T, ( C) 60 80 100 120 4.3 , S,R-LACTAF, , , SR-LACTAF-5 FOTDA . 92 , FOTDA . 4.1.2 1,1,1-2(FOTDA-n) FOTDA-4–8 75 ( , , 20–25 4.7) (Iso) FOTDA-4–8 (N*) . 4.1.1), , .%( 33 . %, . FOTDA-n 75, . 4.4 [92]. ( . . 4.5 . 4.4). - SmC* ( 17 . 4.5). (SmA*), , . SmC* (schlieren , , , , ( , ) 4.5. . , , , 93 )160 140 120 Iso N * S m A* o ) 160 Iso 140 120 ) 160 140 N * 120 N * Iso S m A* o T, ( C ) T , C 100 80 60 40 20 100 80 60 40 20 S m A * T, oC 100 80 60 40 S m C * S m C * S m C * C r 0 0 5 10 15 20 25 30 35 40 C r 0 0 5 20 C r 25 30 35 40 0 0 5 10 15 20 25 30 35 40 CF ,m ol % O T D A -4 CF O T D A -5, ( 10 15 20 .% ) CF O T D A -6, ( .% ) ) 160 140 120 Iso N * S m A * ) 160 14 0 12 0 Iso N * S m A * T, C T, C o 100 80 60 40 20 0 0 5 10 10 0 8 0 o S m C * 6 0 4 0 2 0 S m C * C r 15 20 25 30 35 40 0 0 5 10 15 C r CF ,( O T D A -8 20 .% ) 2 5 3 0 3 5 4 0 CF O T D A -7, ( .% ) 4.4 SmA SmC* ( ),Sm FOTDA-8 ( ) Cr ( )) 75 (Iso N* ( ), N SmA* ( ), N SmC* ( ), FOTDA-4 ( ), FOTDA-5 ( ), FOTDA-6 ( ), FOTDA-7 ( ), 94 122,0 º 00 ( ) 00 121,3 º - ) 160 140 115,0 º N* 120 100 Iso SmA* 00 * Sm - 101,5 º 00 Sm * T, (oC) 80 60 40 20 SmC* 86,6 00 Cr 0 0 5 10 15 20 25 30 35 40 Sm * C FOTDA-6, ( 4.5 75, , 17,0 . %) FOTDA-n . % R-FOTDA-6 95 Sm ( Sm * . 4.6 ( )). . 4.6 ( )). 4.6 FOTDA-6 Sm , 114,3 ( ), 75. Sm * SmC*, 88,6 ( ) 24 % , FOTDA-n 4.4 25 SmC* FOTDA–7 30 . % 75. , , FOTDA–7 SmA* FOTDA-4–6 –8 SmC*. I . [123], », ( , , . , , ) , , . SmC* FOTDA–8, , , , . % , 4.7 20–80 º . 75 . 5.1). SmC* 96 . , . ( . 4.2.1), . FOTDA-n 75. . 4.7 , 75, , FOTDA-6, . , . 120 100 SmA* Iso N* , 20 , . % 80 T, ( C) 60 40 20 0 4 5 o SmC* Cr 6 n FOTDA-n 7 8 4.7 FOTDA-n ) (n=4-8). SmC* 75 , SmC* , 25 .%) 81 ~25 ( 33 .%( ) FOTDA-6 ( FOTDA-7, FOTDA-8. – FOTDA-7 97 4.1.3 (R)-2,2,24.8 FOTDA-Ar (FOTDA-Ar), , . 4.4). FOTDA-Ar , . 4.8), . 4.9. (BP) FOTDA-Ar , FOTDA-n [92]. FOTDA-Ar , FOTDA-Ar [17], FOTDA-Ar 75. . 4.8) SmC* ( . . 4.8 -2(FOTDA-Ar) SmA* SmC* FOTDA-4-6. , FOTDA-n 160 140 120 100 N BP N* SmA* 80 60 40 20 0 0 5 10 15 Cr+SmC* SmC SmC* Iso ( . 1.3.2). T, ( C) o 20 25 C TolF, ( . %) 4.8 ), N SmA* ( ), SmA SmC*( ), SmC* FOTDA-Ar 75 (Iso Cr ( )) BP ( ), BP N* FOTDA-Ar ( , , . > 60 C) , SmC* 75, , . - 98 4.9 75: ) 110,8 º , (BP) FOTDA-Ar (22 FOTDA-Ar . %) ) 124 º FOTDA-Ar (12 . %) (FOTDA- Ar/75), . , FOTDA-Ar. 4.1.4 1,1,1, SR-LACTAF-5–10 . 4.1, . 4.12. SR-LACTAF-n . , FOTDA-n, SR-LACTAF-5–10 . , SmA* SmC* Iso. 89); , : . 4.11, 20 % FOTDA-n, 75 -2- -2- 99 . 17 SmC*FI SmC* [124, 125]. , 3–5 . , , , ,( . , . SS-LACTAF-6 , , 15 % ( . 4.12). , SR, SSSR-LACTAF-6 . 4.11), 75 1.1) ( , [94]. 160 140 120 100 N . 4.12), Iso TGBA SmA T, o C SmC* SmC 80 60 40 20 0 5 10 15 20 CSS-LACTAF-6, ( %) 4.10 ), N TGB ( ), Iso SmA* ( ), TGB SmA SmC*, SmC Cr+SmC* (*)) (Iso N* SmA*( ), N SmC ( ), SS-LACTAF-6 100 ) 160 140 Iso N* TGBA SmA* N )160 140 120 100 Iso N* N SmA* TGBA )160 140 120 100 Iso N* N TGBA SmA* 120 100 T, C T, C T, ( C) o 80 60 40 20 0 80 o SmC 60 40 SmC o SmC* 80 60 40 SmC SmC* SmC* 20 20 Cr+SmC* 0 5 10 15 20 0 Cr+SmC* 0 Cr+SmC* 0 5 10 15 20 0 5 10 15 20 c LACTAF-5 ( . %) c LACTAF-6 mol % . %) c LACTAF-7, . %) )160 140 120 100 Iso N N* TGBA SmA* )160 140 120 N Iso ) 160 140 120 Iso N* Sm A* N* N SmA* T, C SmC SmC* 80 60 Sm C T, ( C) 80 60 40 T, oC 100 o 100 o SmC* 80 60 40 SmC SmC* 40 20 0 0 Cr+SmC* 20 0 5 10 15 Cr Cr 20 Cr Cr C LACTAF-10, 5 10 . %) C c LACTAF-8, . %) , LACTAF-9 5 . %) 10 15 0 15 4.11 SR-LACTAF-5 ( ), SR-LACTAF-6 ( ), SR-LACTAF-7 ( ), SR-LACTAF-8 ( ), SR-LACTAF-9 ( ), SR-LACTAF-10 ( ) 75 (Iso N* ( ), N TGB ( ), N SmA* ( ), TGB SmA*( ), N SmC* ( ), SmA SmC* ( ), SmC* Cr+SmC*(*)) 101 4.12 75, , 12,2 . % SR-LACTAF-5 SR-LACTAF 102 4.2 SmC* N* ( max; max . 1.1.2.1). 1.2 ( . 35). (p0) ( ) 1.1 ( 4.2.1 . 34). 1,1,1-2(FOTDA-n) (p0) . 4.13 FOTDA-4–8 FOTDA-Ar 75. . , FOTDA-4 25 º ( 35 . %). 18 .%. FOTDA-5 , FOTDA-6–8, ( ) 17-18 . %. , +50 33 . %, , FOTDA-7 FOTDA-6 -8 – 22-24 25 º « » .% [92, 115, 118]. » p0 FOTDA-Ar, 75 , SmC* , 103 , ( FOTDA-Ar, . . 4.13 ( )). FOTDA-n, ) ) 600 500 400 300 200 100 20 700 600 ) ) p0, ( 12 18 22.3 37 30 40 50 60 70 80 90 600 500 400 300 200 100 20 30 40 50 60 o T, ( C) 70 80 9.1 mol.% 12 mol % 17.8 mol. % 22 mol. % 90 100 p0, ( .% .% .% .% 100 T, ( C) o ) ) ) 600 500 500 400 300 200 100 0 10 20 25 30 40 50 60 70 80 90 100 110 ) 400 300 200 100 20 30 40 50 60 70 80 5.5 7.9 12.1 17.4 24.0 34.4 .% .% .% .% .% .% p0, ( p0,( 6.0 11.8 18.3 22.0 90 o .% .% .% .% 100 T, (oC) T, ( C) 550 ) 600 ) 500 400 500 450 ) p0,( p0, ( 300 200 130 100 20 30 40 50 60 70 80 ) 400 23,3 mol % 17,6 mol % 9.2 mol.% 11.9 mol.% 17.6 mol.% 24.0 mol.% 90 100 o 350 300 150 20 50 55 60 65 70 75 80 85 90 T, ( C) o T, ( C) 4.13 ( 0) FODTA-4 (a), FODTA-5 ( ), FODTA-6 ( ), FODTA-7 ( ), FODTA-8 ( ), FODTA-Ar ( ) 75. 0, . 25 0, 104 . 4.14 FOTDA ) 900 800 700 600 ) max, ( FOTDA-4 FOTDA-5 FOTDA-6 FOTDA-7 FOTDA-8 FOTDA-Ar 75. ) ) 14 12 10 -1 FOTDA-4 FOTDA-5 FOTDA-6 FOTDA-7 FOTDA-8 FOTDA-Ar 500 8 1/p0 , ( 6 4 2 0 400 300 200 100 5 10 15 ,( 20 %) 25 30 35 40 0 5 10 ,( 15 . %) 20 25 30 35 40 ( ) ( ) FOTDA-n (n = 4( ), n = 5 ( ), n = 6 ( ), n = 7 ( ), n = 8 ( ), n = Ar ( )) 75 25 º max 4.14 , (1/ 0, FOTDA-n FOTDA-4 37 4.1 FOTDA-Ar 75 76 ( . 4.1, . 89). 26 ( 4.1 , 26 ( . 1) , , . %. . 4.14 ( )), , . FOTDA-n 4.1, . 1). FOTDA-6 ( . 5) ( FOTDA-4–8 . FOTDA-7 ( . 5) , ) . FOTDA-4 2,5 . 4.1, . 2) FOTDA-8 ( . 6) FOTDA-7 . . 4.15, , FOTDA-8 , , FOTDA , 105 75 , FOTDA-7. 1 ( ) FOTDA-4–8, FOTDA-Ar, 26 4.1 75, 76 3,4 , –1 n 1 2 3 4 5 6 7 1 Ar 6 e2, % N* 75 SmC* +226 –18 –32 –36 –44 (–46) –45 (–47) – << 85 767 SmC* – –11 –18 –22 –25 –27 S-26 (X = H, Y = CnH2n+1) R-FOTDA-n (X = F, Y = CnH2n+1) >99 99,8 99,2 99,9 96,2 94,0 44,0 .4.13, R-FOTDA-Ar (X = F) , max 4 5 6 7 8 -C6H4CH3 p0 (ee) |31| . 103, ) –13 (–29) –8 (–19) 25 R-35 –35 , S-47 , R-46. ), , (4.14 ( )) 1.1 1.2 2 3 , 100=100· ee 100 % ( /ee. , ( . . 142). 4 5 (5–21 6 7 . %). 11 . ( 12 . %) = 1/(p0 ). 4.1 FOTDA-n . 89). ( < 16 1/p0( ) ) FOTDA-n 76 ( , . 4.1, 12 76 | | . %). , FOTDA-n , , 75. , FOTDA-n , ( 40 76 , 106 n > 8, . 1.3.2). -1 ) ,( 30 20 10 0 3 4 5 6 7 8 n 4.15 75 ( ) FOTDA-Ar SmC* , , 700 ) ( ) FOTDA-n (n = 4–8) 76 ( ) 75 ( 800 12 mol % . 4.1.3), , 25 °C ( FOTDA-Ar . 7) FOTDA-n 4.1, . 7). 4.1, , max, ( p0 ( . 4.13 ( )), - 600 500 105 110 115 120 . 2-6) T, (o C) 4.16 FOTDA-Ar ( 10 %) FOTDA-Ar N* % max 12 75 FOTDA-5 4.1, . 3). SmC* 75 ( . 4.16) , , . N* FOTDA-Ar, , , , 107 [126]. N* FOTDA-n FOTDA-Ar 4 4.2.2 1,1,1-2- -2LACTAF-n . , ( SmC* SmCA* . ( 1.5, . . 36). 1.1.1.1). , (LACTAF-n) 75 SmC* N* ( 4.1, , 4.1, . 7) . 2–6). 3 . , FOTDA-4–8 . LACTAF-6, ( , 14 % , 22 % % 65 SmCA* . . , SmC* , . 29 5.1), . max , ( , . 4.17), . , ( 10 . %), LACTAF-n, . 4.17 ( ) (<9 SmC*, . %) , max LACTAF-6 . SR-LACTAF-6 FOTDA-n: max 108 . ( 10.1, 11.9, 12.3 . %) , , 13.4 . %, . SR-LACTAF-6 . 6 00 ), max 60 0 . ) 50 0 40 0 30 0 20 0 10 0 0 10 6 ,1 1 1,7 1 5,1 1 6,8 .% .% .% .% ) 5 00 ) ,( 3 00 1 00 0 0 10 20 3 0 5.5 m ol% 7.2 m ol.% 9.3 m ol% 10.1 m ol.% 11.9 m ol % 12.3 m ol % 13.4 m ol% T , (o C ) 40 50 6 0 70 80 9 0 100 ,( m a x m a x 4 00 ) 20 30 4 0 T , (o C ) .% .% .% .% .% 5 0 6 0 7 0 8 0 90 1 0 0 1 1 0 12 0 5 0 0 ) ) ) 400 ,( m a x ) 3 0 0 2 0 0 1 0 0 0 1 0 6,7 m ol % 11 m o l% 15,3 m o l% m ax, ( 800 640 480 320 160 0 10 5.8 9.2 12.0 13.6 18.5 2 0 3 0 4 0 5 0 T , (o C ) 6 0 7 0 80 9 0 1 0 0 20 30 40 50 60 o T, ( C ) 70 80 90 100 ) 640 ) 48 0 32 0 16 0 0 10 ,( m a x 8.0 9.5 12.2 .% .% .% 20 30 40 50 T , (o C ) 60 7 0 8 0 SmC* SR-LACTAF-6 (a), SR-LACTAF-7 SR-LACTAF-8 ( ), SR-LACTAF-9 ( ), SR-LACTAF-10 ( ) 75. , , , , , , 4.17 ( ), - 109 SR-LACTAF-7 SR-LACTAF-8 ( 4.17, , ( 11.9-12.3 .% max . . 11,7, 15,1, 16,8 11,0 15,3 .% . % . 4.17 ( )). . 4.17 ) SR-LACTAF-6 (a) SR-LACTAF-7 ( ), = 544 675-700 9-10 . .% . 4.17 ( )), SR-LACTAF-n, . , LACTAF-n, : . , 13,7 . % SR-LACTAF-6 . 4.18 ( )) 70 75 SmC* ( ( ( . 4.18 ( )), . 4.18 ( )), 60 max . ( ) 4.18 75 schlieren ( ) 13,7 ( ) . % SR-LACTAF-6 max; : SmC*, : 119,3 ° ( ), 69,7 ° (b), 60,3 ° ( ) SR-LACTAF , , . SR-LACTAF-6 12,3 , .%( . 4.17 .% ( )), SR-LACTAF-7 – 16,8 . 4.17 ( )). .%( . 4.17 ( )), SR-LACTAF-8 – 15,3 , SR-LACTAF-9, -10, , 110 max (>200 ). , , SR-LACTAF . SS-LACTAF-6 75, SR-LACTAF-5, , max 50 ° , 12 . % SS-LACTAF-6 70 ° , . , (SR-LACTAF-6, 7) 75 . (SR-LACTAF-5, SS-LACTAF-6) LACTAF , . , . max ( , , ( . ( 1.1), . 4.12). , - 127 . , LACTAF, . , . , , , 13.4 1.2 .% max SR-LACTAF-6, SmC* . , . 4.19 , = 1/ 0 . , , SR-LACTAF-6 . ( (5-6 . %), . 4.19), ,( , FOTDA-6, 111 , 1/p0), , FOTDA, ( 8 -1 10 %). 80 6 60 ), , ( 0 -1 0 4 ,( 16,8 17,6 40 2 20 0 0 -2 5 10 15 20 25 0 ( ), .% -20 4.19 , ( , ( )) SR-LACTAF-6 (p0-1) ( , (1/p0C) 75 ) , -1 -1 ) SR-LACTAF « . » , , – . SR-LACTAF-9 -10 , , 12 .%! , , 4.17 , 50 . FOTDA-n, 22 .% ( n = 7, . 4.13, -10. . 103), , SR-LACTAF-9 112 4.2.3 , , , , , , , , , : , [85, 86, 128] ( ) . 4.20), ) [87]. , 4.20 ( ) , « , » ( ) , . , SmC* . , FOTDA-n ( , 4.1, . 4.1). , FOTDA-n (75) (76) 113 FOTDA-n , , , , 76, FOTDA-n SR-LACTAF ( . . 4.4, 4.11). 4.1, FOTDA-n FOTDA-Ar. . 105) , SmC* FOTDA-Ar , FOTDA-5, ( . 4.21). 4.21 FOTDA-5 FOTDA-Ar , Sm *, N*, ( . ), , , . FOTDA-Ar, , FOTDA-n, « », FOTDA-Ar . , , . SmC*, N* « » « » ( . 4.22). , , 114 . , , , , FOTDA-Ar FOTDA-n N* : FOTDA-n N*, ( . FOTDA-Ar SmC* ). ( 4.1, . . 105) 4.22 FOTDA-n , 26 ( , , , 26 . . TolF « FOTDA-n FOTDA-Ar. » 1.2 . 1 . 53), , FOTDA-6 (FOTDA-6) FOTDA-4–8, 75 76 FOTDA-7. , , FOTDA-7. 115 , , N . FOTDA-n FOTDA-Ar, , . FOTDA-Ar. , FOTDA-Ar, , , ( . ( 4.1.3) . SR-LACTAF-6–10, . , (910- ) , : ( . 112). , » FOTDA-n. , . SS-LACTAF-n, , . .4.20 , , , , FOTDA-n. . 3.1.3) SR-LACTAF-n . 116 , , SR-LACTAF-6–8, ( ( ( [73, 129], . . 4.12, , Sm *, ) . 101), 5.2). Sm * Sm A* , , , ( , SR-LACTAF-n : Sm * Sm A* . 1.1). . , , ( . 108), SmCA* 4 1. , FOTDA-n , 129 . . . 4.17, - SmC* FOTDA-n (n = 4–6) . FOTDA-n 75 . 25 .% . 117 2. SR-LACTAF-n SS-LACTAF-6, FOTDA-n, SmC* . - (SmC*FI) . (SmC* ), 3. , FOTDA-Ar, ( 40 60 ) . 4. . FOTDA-n , , . , FOTDA-n FOTDA-Ar . 5. SR-LACTAF-n , FOTDA-n, , . 6. , , n = 9, 10 1,1,1(FOTDA-7). 22 .%. -2- [92, 94, 115, 118, 124, 125] 118 5 5.1 1,1,1DHF -2- DHF , . FOTDA 75 , 12 . %), , SmC*, , FOTDA-n 5.1, 5.2 75. FOTDA-6 . FOTDA-7. . 33% FOTDA-7/75 ,( « . 5.3 ( )). V» V, f = 10 5.1 75. 27 C f = 60 (V) 24 % f = 180 FODTA-6 1.7 119 5.2 75, 19 Vpp (a) 12Vpp ( ) 27 (V) f= 2 33 % FOTDA-7 1.75 , 2 ( . 5.3 ( )), S100 SmC*. f = 2 Hz, V-shape mode f = 2 Hz, S-shape mode f = 100 Hz, S-shape mode 5.3 S. 5.4 ( ) FOTDA-4–8 . 5.4, FOTDA-n , 50 º T=50 °C) . 75 ( , ( FOTDA-n . 5.5 ( )), , R-FOTDA-8, R-FOTDA-4). , , , PS . 5.5 ( , )). FOTDA-n 75 Ps ( ) , 33 % FOTDA-7 V- ( ) 75 (Ps) 12 . %. , 120 90 a) 2 80 70 60 ) / 50 40 30 20 10 0 20 40 60 80 100 120 o 36 34 32 30 28 26 24 22 20 18 16 14 12 20 40 T (°C) 60 80 100 120 Ps, ( ) T, (oC) ) 3.5 3.0 2.5 ) ) r, ( 80 70 60 50 40 30 20 10 2.0 1.5 1.0 0.5 0.0 -0.5 20 40 T (°C) 60 80 100 120 0 10 20 30 40 50 T (°C) 60 70 80 90 100 ( ) Ps, ( ) , ( ) ( ) ( r) 12 .% FOTDA-4 ( ), FOTDA-5 ( ), FOTDA-6 ( ), FOTDA-7 ( ), FOTDA-8 ( ) 75 , , FOTDA-6–8, PS 100 90 /c 2 80 70 5.4 75 , ( 50 45 40 35 ) , . 4.1, . 4–6, . 105). 3.5 3.0 2.5 2.0 1.5 1.0 Ps, 60 50 40 4 5 6 7 8 ,° 30 25 20 4 5 6 7 8 n n 0.5 4 5 n 6 7 8 5.5 ( ) ( ) ( ) 75 25 C (PS), ( ) ( r) FOTDA-n PS , 12 .% . 5.6 33 . % FOTDA-7 FOTDA-8. 121 ( 160 140 120 . . 4.4 4.7, 35 30 25 20 o . 96) . 2 ) / 100 80 60 40 20 0 10 20 30 40 o 15 10 5 0 Ps, ( 50 60 70 80 10 20 30 40 50 60 70 80 90 100 T, ( C) T, ( C) o 5.6 33 .% FOTDA-7 5.1 ) ( ) ( ) FOTDA-8 75 (Ps) ( ) FOTDA-4–8 75. 5.1 751) ,º 32 30 30 36 37 31 34 30 30 p02), 454 262 248 118 85 191 65 183 64 FOTDA-n , 1 2 3 4 5 6 7 8 9 1) 2) . % 12 12 12 24 33 12 33 12 33 PS2), 76 77 71 111 –3) 79 112 69 130 2 , 3,14) 1,94) 1,34) – 7,95) 1,44) 4,75) 0,84) 4,44)/4,85) FOTDA-4 FOTDA-5 FOTDA-6 FOTDA-7 FOTDA-8 ( 3) 4) . 25 º . 100 %; , 3.2 . 74). . : PS = PSE/1,8 30 . 5) DHF 30 : K = 2,4·10-11 [130]. r = p02/2 K sin2 , 1.6 ( . 40) PS SSFLC ( ( . 5.1, 1.2.1), .1-3, 6, 8, 9). - - ( c = 33 ( 122 . %) - PS Vc , . . 1.15, . 45), 1.7 ( . 41) DHF ( , 5.1 . 5, 7, 9). , 5.1 ( . 9), . FOTDA 5.1), , . 8), FOTDA-7 ( , , , FOTDA-4 . 1), FOTDA-8 . 7) i FOTDA-8 ( . 9) 4.1, 120 off, . 105), on off ( 12 10 8 . 5.7). 100 ) ( 80 6 4 2 0.1-0.9 60 40 0 6 7 8 n 5.7 ) 75 25 º ( on) ,( ) ( ) off) DHF .% ( FOTDA-6–8 33 [131, 132], [83, 133], [134]. , , p0 , , . p0 . 123 , ( , PS, , off) FOTDA-7 i FOTDA-8. , . FOTDA-n , . p0 . ( ) ( ) ( ) () ( ) , . 5.8 , FOTDA-7 FOTDA-4 p0 = 218 5.8 25 33 80 p0 = 118 p0 85 p0 65 p0 64 ( 75) . % FOTDA-4, ( ) 24 . % FOTDA-6, ( ) 33 . % FOTDA-7, ( ) 33 . % FOTDA-8; 80 , 25 º , PMDA-ODA FOTDA-6 24 , ( . 5.8 ( ) ( )). ( 1,7 :( ) . % FOTDA-6, ( ) .% 33 .% . 75 . 4.7) 33 , .%. , FOTDA-6 , . . 5.9 33 . % FOTDA-7 ( ). 75 ( ) 124 Transmittance (fractions of unit) 10 1,0 0,8 0 -10 1000 off 1200 V (Volt) 0,6 0,4 0,2 0,0 0 1000 90% T -30 -40 -50 -60 ( s) Tmax -20 800 600 400 200 on 0.1-0.9 Region of DHF-effect T=21 C f=60Hz dFLC=1.8 m o off on -70 10% T Tmin 2000 -80 -90 0 0 2 4 6 Vc = EcdFLC 8 10 12 14 t ( s) Vop (Volt) 5.9 DHF75, ( 5.9, FOTDA-7 1 , ) ( ); 33 , % FOTDA-7 ( 0.1-0.9 on ), off 0.1-0.9 FOTDA-7 ( ) , ( .( 50 FOTDA-7 , . , ( (Vop) (Vc). (Vop, 5.9 ( )). , FODTA-n, V33 . 5.10, . % FOTDA-7 V75 ( DHF, . 5.10). on 0.1-0.9 off 0.1-0.9 ) 1500:1 off 0.1-0.9 = ( max/Tmin, . 5.9 ( )). , 5.9 ( )). , , . 1.2.5) DHF , 500 5 , . ( . . 5.9 ( )) , – , , . 0,5 500 Hz, from - to + 500 Hz, from + to 2kHz, from - to + 2kHz, from + to 5kHz, from - to + 5kHz, from + to - 125 , , Transmittance (arb.unit) 0,4 0,3 0,2 0,1 0,0 -6 -4 -2 0 2 4 6 V (Volt) 5.10 33 V. % FOTDA-7 FOTDA-7 FOTDA-8 , , , SSFLC fi, , , , V. FOTDA-7 -8, 1.7 ( . 41), . . DHF , 75 23 C ( DHF), , . N* , - , . 126 5.2 , ( ) DHAFLC UFOTDA LACTAF [30, 135–138]. , 25 [139–141], [30]. , , « » – [30, 142]. , SSFLC , – [30, 135, 137, 138]. 0 – W, , , 1 µm [137] SSFLC , . DHFLC [5] , , . (FOTDA-n LACTAF-n), (LACTAF-n) DHAFLC , , . , PS , , FOTDA-n . LACTAF-n, , 127 LACTAF-n 25 % . , , , . S-FOTDA-6 5.2. 5.2 S-FOTDA-6 SR-LACTAF-6 75 ( 1 2 3 S-FOTDA-6 SR-LACTAF-6 4 S-FOTDA-6 SS-LACTAF-6 5.2 SR-LACTAF-6 , LACTAF-6 S-FOTDA-6. , S-FOTDA-6 SR-LACTAF-6 , S-FOTDA-6 PS , , . , , S-FOTDA-6 SS 21.0 15.6 S-FOTDA-6 20.5 15.4 70 SR-LACTAF-6 SR-LACTAF-6 ) 24 15.0 , .% Ps, 111 200 389 2 SR-LACTAF-6 128 SR-LACTAF-6 75 36 180 160 N* Iso-N Iso-SmA*(Two-Phase) Iso-N* Two-Phase - SmA* N*-TGBA* TGBA*-SmA* SmC*-SmA* SmCFI* -SmCA* Cr-SmC* Cr-Iso 4:3 ( 3, . 5.2), . %. 5.11. 140 120 TGBA* SmA* Iso T, C 100 80 60 40 20 0 Cr Two-Phase SmC* SmCFI* o SmC* 2 SmCA* 0 20 40 60 80 100 , 83 .% S-FOTDA-6 S,R-LACTAF-6 1 3 5.11 75; ( ). 36 75. , 87-88 S-FOTDA-6/SR-LACTAF-6 (3:4) SmCFI* -SmCA* - (1) (2 ) schlieren (3) – .% S-FOTDA-6/SR-LACTAF-6 (3:4) 64.2 C, .( ) (S-FOTDA-6/SR-LACTAF-6/75), S-FOTDA-6/SR-LACTAF-6 15 , . %. 15.5 36 36 .% ( . . 5.12). 2 . % S-FOTDA-6/SR-LACTAF-6 PS , . , (7 SR-LACTAF-6 .%), ( . 15 4.1.4). , . %, 400 , . 129 , » . ) T (Transmittance) 1,0 – 1.7 ( . 41), T = 80 C, . SmC* r 2 0 . 0,8 f=1Hz , 0,6 0,4 0,2 0,0 -8 -6 -4 -2 0 2 4 6 8 V (Volt) ) T (transmittance) 1,2 1,0 0,8 0,6 0,4 0,2 0,0 Voltage increase: - 10.5V up to +10.5V Voltage decrease: +10.5V down to - 10.5V T = 77.3 C, « f=5 Hz » . , SmCFI* -10 -5 0 5 10 V, Volt ) 3 – T=60 C. , SmC * 2 1 o I (arb. un.) 0 -30 -20 -10 0 10 20 30 V (Volt) ) P (10 C/m ) 2 4 P 2 T=25oC, f=1Hz , SmC * -3 0 -2 -4 7 -2x10 -1x10 7 0 1x10 7 2x10 7 E (V/m) 5.12 36 .% ( ) ( ) 3:4 1.7 75. S-FOTDA-6/SR-LACTAF-6 130 ( . . 5.13), , ( ( . , . , , . I E on) , ( off). ) off = r. T (transmittance) 100 10 1 0.1 0.01 1E-3 1E-4 0 10 0 -10 -20 -30 10 20 30 (a) 5.13 75 =0, , tt(ms) (ms) on off 36,0 =632,8 . % S-FOTDA-6/SR-LACTAF-6 T=30 °C, f=100 , 5.3 5.3 36 , 15,5 36 , .% S-FOTDA-6/SR-LACTAF-6 , .% , Pa·s r , 150µs ~ 0,095 150 ~ 0,2 1.7 38 . 5.14 36.0 40 20 36 . E (V/ m) 0 75 , , 32 35 . , 40 ° . , 0, 140 ? . %- . % S-FOTDA-6/SR-LACTAF-6 75. , , . 5.14), 400 300 3,5 3,0 131 60 ° . 35 30 25 vis P S, (nC/cm ) 2 p0 (nm) 300 200 200 100 2,5 , Pa s 2,0 1,5 1,0 20 15 10 5 0 100 0 0 20 40 60 o 80 100 0 0,5 0,0 20 30 40 50 60 70 80 90 100 T ( C) T, C o 5.14 ( ) 36,0 PS ( ), . % S-FOTDA-6/SR-LACTAF-6 0,1–0,9, 75 , TLT 20–45 ° , DHAFLC TLT 40%, 0,1–0,9 65–70 ( s); Contrast ratio 200 ( . 5.15). 0,5 0,4 150 100 Contrast ratio response time ( s) 0,3 0,2 0.1 - 0.9 50 0,1 0,0 25 30 o 0 20 35 40 45 T( C) 5.15 0,1–0,9 DHAFLC TLT ( ) 36,0 . 75 , f=1 =TLTmax/TLTmin) TLT = 35 40 %. 1,5 , =632,8 % S-FOTDA-6/SR-LACTAF-6 ( DHAFLC 1000:1, , Transmission (degree) . 132 45 , . , S-FOTDA-6 SR-LACTAF-6, 39–40 , , , . 5.3 5.4 FOTDA LACTAF: PS , R-FOTDA-7 SR-LACTAF-9. 5.4 R-FOTDA-7 SR-LACTAF-9 75 R-FOTDA-7 , 1 2 1) 2) 3) 4) SR-LACTAF-9 –1 PS/ , /( 6,2 10,1 2 . %) , 1,41)–4,72) 2,1 off, R-FOTDA-7 SR-LACTAF-9 = 12 = 33 . %. . %. 46 >90 432) 25 35 º . 50 º . 5.4 , ( , PS/ ; . , ( , off), 1.3.2) SR-LACTAF-9 ( . 2). SR, LACTAF-9 . SR-LACTAF-9 , R-FOTDA-7 ( . 5.16 ( )). 133 , R-FOTDA-7, . , 4.1.2), SR-LACTAF-9 , off . 5.4, . 2), , , SmC , Cr. ( . 5.16 ( )), ( SR-LACTAF-9 25 º , , , off: . . 25 º ( . 1) , , , , R-FOTDA-7 SR-LACTAF-9 35 º , . 2,5 35 2,0 30 1,5 25 1,0 , , 20 0,5 15 0,0 0 0 5 10 15 20 10 20 30 T, °C 40 50 60 70 80 C, .% 5.16 SR-LACTAF-9 ( ) . R-FOTDA-7 ( ) 75 ) ) 25 º ( ), 12 % LACTAF, ( , PS/ ) , , , . LACTAF , 77. - 134 . ( . 4.1.1) 26 , . , . , , 34 , . 77 R= 38*, ( ) 149–152 ( ( , , : 5.1) 143–148 5.1). 38 38* 5.1 38* , 149, 153–155 . 38 78 ( 5.2, ) 145 3,3- -1,1,1- 79 ( 5.2, ) 135 156 . , 5.2 ( ) . 79 78 38 79, 82 38 83 81 R-35e 80 SR-84e SS-84e 5.2 148 80 S-81. 38 38 38: 80 , 38 . ( . 38 3.1.1). , , 136 77. 38 82 83, S-35 . 3.3). , . 5.17 84. SR-84 SS-84 . SR-84 SS-84 . 5.17 ( ), 38 R,RS,S-238* 86. , -1- , Ascentis Si, 4,6×250 90 % -1,3- ,5 ; 84 8% 86 ( 5.3) 144 , ( . 4.2.1), , 99 %. 147, 148 , 38* , , R-38 , S-38 68 % . ( 95 %) . RS-1- 137 , S-38, , , 38 , , Lux® Amylose-1 250 x 4.6 , 5 , . , (S)- . Phenomenex , 85 S-38 * 86. [157]. 38* * 81 , 85 5.3 86 38, 77, , . , (30-35 ) ESHFLC , , ( , PS, . ) , ~40 DHFLC. , , , , 22.5 138 5 1. -2, (1:1500), ( 20–40 . 2. 1,1,1-21,1,115 –1. 1,1,1- ), , , -2- -2. % - 100 , . 3. , , R-FOTDA-7 SR-LACTAF-9. R-FOTDA-7, SR-LACTAF-9) . 4. (R)(S), , . (R)(S)-38. S,S-2. -1-1,3, , rac-38 (S)- - [92, 94, 115, 118, 124, 125] 139 6 6.1 1 H ) CDCl3 DMSO-d6; Varian VX-200 (200 ) Varian MR-400 (400 [158]. Varian 1200L GC-MS, , Bischoff Lambda 1010 120-5-C18H» (4,0 250 ) ( ) «Prontosil ( , 70 . ) ( ) ( «Ascentis Si» (4,6×250 , 5 ) ). -4. Agilent 7890A GC System, HP-5 (5 % , 30 ×0,32 Agilent 7890A GC System DB-5HT (5 % , N, N (S)(R)( , ), N,N' ), Lipase MY, LiOH, ((R)-MTPA), (SDS), Na2SO4 ( PdCl2dppf· H2Cl2, SOCl2, , (TBDMS-Cl), ), 3,3-1-1,1,1-1,3, (S)-2, (S)-1, ), ×0,25 ). Agilent 5975C inert MSD, , 10 ×0,25 , ( ×0,1 ). , ), , NaOH, , KOH, KHSO4, CaCl2 ( -( , 10% Pd/ , (TBAF), – (PTSA), AlCl3 , (S,S)-2, - 140 (96%), , , CS2, . KOH . CaCl2 Na CuCl, KOH, NaOH . , ( ( . , , , , , . 5 . . . .) , , , , ) ) KOH, . NaOH . . . 18 , « » 17, . , , , . 15-20 . , 141 , i Polam P-111. , , . , R-FOTDA-4–8, SS- LACTAF-6 , 75 ( . 6.1, . 89), Polam P-111, Ocean Optics USB 4000. . FOTDA-Ar, SR-LACTAF-5–10, , ptics 6.1 max ( C* 5 % , , 15 , 20 max) . 150 ° , 15–20 . . , max , , [39, 40] ( . 142 . 6.1) . 6.2). , 75 n – n = 1,5. p0 < 130 Origin®. 60 , max 1.2 ( . 35). 76 1,6; 40 68.8 C, o 72.8 C, o 75.6 C, o 79.4 C, o 79.4 C, o = 80 o = 80 o = 80 o = 90 o = 80 o Transmission, AU 20 0 -20 -40 300 400 500 600 700 800 900 1000 1100 , nm 6.2 ) , , ( ( ) FOTDA 26 . LACTAF 30, 78 . 26 , , 6.2 6.2.1 1,1,1. (1140 (165 ). ) . (R-35, S-35, R-46) -2(500 ) FOTDA-n , 26 . LACTAF-n 10 .% 143 54 ° . , , 60 %. (rac-35). , 34,6 Mg (1,43 , ) I2. 284 50 (1,42 ). 1. 3 , , 1 67,6 (0,57 25 ° . ) , 3 , CaCl2 60–60,5 ° . (50–51 ° ). , , NH4Cl (20 200 ) . HCl (50 ). (3 100 , . . 1,1,11 3 , (100 .), , ), Na2SO4 rac-35 , , -2(200 M , (rac-35 ). 86 %. -d6): 48–49° (12 . .). ), H 0,84 (3 , , J = 6,75 ). ), 1,59–1,10 (6 , 3,94–3,68 (1 , ), 6.00 (1H, d, J = 6,9 (DEP, 70 eV): m/z 138 (2,5), 123(1,8), 87 (35), 69 (100). 1,1,11 -2(200 , (rac-35 ). 95 %. -d6): 54–55° (15 144 . .). ), H 0,84 (3 , , J = 6,55 ). ), 1,62–1,05 (8 , 3,94–3,67 (1 , ), 6,00 (1H, , J = 6,8 (DEP, 70 1,1,11 ): m/z 152 (1,3), 123 (9,3), 103 (10), 56 (100). -2(rac-35 ). -d6): 76 %. 65–67° (12 . .). ), H (200 , 0,88 (3 , , J = 6,70 ). ), 1,67–1,08 (10 , 3,95–3,72 (1 , ), 6,02 (1H, , J = 6,9 (DEP, 70 1,1,11 ): m/z 166 (0,7), 138 (0,6), 97 (8), 70 (100). -2(rac-35 ). -d6): 79 %. 70–72 ° (15 . .). ), H (200 , 0,88 (3 , , J = 6,65 ). ), 1,67–1,10 (12 , 3,94–3,71 (1 , ), 6,02 (1H, , J = 6,9 (DEP, 70 1,1,11 ): m/z 180 (10), 152 (2,5), 138 (42), 69 (100). -2(rac-35 ). -d6): 82 %. 93–95° (15 . . .). ), H (200 , 0,87 (3 , , J = 6,68 ). 88%. ), 1,67–1,09 (14 , 3,96–3,71 (1 , ), 6,02 (1H, , J = 6,9 1,1,11 -2(200 , (rac-35 ). -d6): 116-120° (15 . .). ), H 0,88 (3 , , J = 6,66 ). ), 1,64–1,03 (16 , 4,06–3,81 (1 , ), 6,02 (1H, , J = 6,8 (rac-53, rac-56). 1,5 .) 0 °C, (50,8 , 0,45 , 1,5 0,3 (200 , .) rac-35 ) 30 10 °C HCl. (3×70 ). , . (rac-53 ). (51,1 , 0,45 , 2 , , , . 1 Na2SO4, (1,1,1(15 . . .). HCl (2×30 , -2- ) )-2- 79 %. 95–96 ° 1 H NMR (200 , -d6): 0,92 (3H, , J = 6,85 145 ), 1,15–1,94 (6H, ), 4,62 (2H, ), 5,34–5,67 (1H, ). (DEP, 70 (1,1,1(12 1 ): m/z 203 (10,3), 183 (12,5), 155 (10), 95 (100). -2)-2(rac-53 ). 78 %. 98–100 ° . . .). , -d6): 0,91 (3H, , J= 6,90 ), 1,16–1,93 (8H, ), 4,58 H NMR (200 (2H, c), 5,36–5,59 (1H, ). (DEP, 70 (1,1,1(12 1 ): m/z 203 (10,3), 183 (12,5), 155 (10), 95 (100), 56 (100). -2)-2(rac-53 ). 82 %. 100–101 ° . . .). , -d6): 0,93 (3H, , J= 6,80 ), 1,15–1,95 (10H, ), 4,61 H NMR (200 (2H, c), 5,38–5,61 (1H, ). (DEP, 70 (1,1,1(15 1 ): m/z 211 (10,2), 183 (3,5), 166 (1,5), 70 (100). -2)-2(rac-53 ). 81 %. 120–122 ° . . .). , -d6): 0,91 (3H, , J= 6,50 ), 1,13–1,87 (12H, ), 4,62 H NMR (200 (2H, c), 5,41–5,64 (1H, ). (DEP, 70 (1,1,1(15 . . .). -2. . .). )-294 % (GC-MS). (R)-1,1,137 °C MY. 15 , , . , 30 rac-32 40 % (pH 7,28) rac-53 (0,22 (rac-56). 71%. 120–125 ° )-2( rac -53 ). 76 %. ): m/z 225 (7), 231 (10), 197 (1,5), 70 (100). -2)-2(rac-53 ). 79 %. 132–135 ° (1,1,1158–160 ° (15 (2,2,2(12 . . .). -1- (GC-MS): 266 (M+). -2(R-35). 0,025 Lipase ). - 146 . (3×60 (50 ), . Na2SO4 , . (R)-1,1,1(R)-1,1,1(R)-1,1,1(R)-1,1,1(R)-1,1,1(R)-1,1,1-2-2-2-2-2-2(R-35 ). (R-35 ). (R-35 ). (R-35 ). (R-35 ). (R-35 ). 70%. [ ]D25 + 23,6 ( 0,154 MeOH). 68%. [ ]D25 + 24,0 ( 0.157 MeOH). 66%. [ ]D25 + 25,0 ( 0.168 MeOH). 60%. [ ]D25 + 25,1 ( 0,159 MeOH). 61 %. [ ]D25 + 25,0 ( 0,151 MeOH). 62 %. [ ]D25 + 23,0 ( 0,141 MeOH). (R)-1,1,1-2(R-35 –35 ). (R)-1,1,1-2R-35 –35 ). (50 ), . R-35 , HCl . , , 53 –53 R-35 –35 (S)-1,1,185 %. , . -238 ° ( . (S-53). 100 700 Lipase MY. 15 . 7,28 R-35,). 37 ° , , 53. , HCl. (3×25 , ). Na2SO4 . , – 100 , 4 , 30% Lipase MY. (~100 ) - 147 , . (20 S-53 (S)-(1,1,1(12 . . ). -2- )-2. ). -2- )-2. ). -2- )-2. ). (S)-1,1,1S-53 (400 ) (160 3 , (100 (3×50 ), . , (S)-1,1,1rac-35 ). (S)-1,1,1rac-35 ). (S)-1,1,1rac-35 ). (S)-1,1,1rac-35 ). S-35 -2(S-35 ). . . 70 % (25 % .). [ ]D25 –29,1 ( 0,155 MeOH). 74 % (24 % . . .). [ ]D25 –30,3 ( 0,167 MeOH). 78 % (27 % . . .). [ ]D25 –28,0 ( 0,207 MeOH). 68 % (23 % . . .). [ ]D25 –28,2 ( 0,170 MeOH). , , , . , , ), CaCl2 ). , (500 ) -2(51,1 , 0,91 (S-35). 0,23 ,4 .) (S-53 ). 47 %. 110–111 ° (S-53 ). 51 %. 100–101 ° (S-53 ). 50 %. 98–100 ° -2- )-2(S-53 ). . 48 %. 95–96 ° . .), (S)-(1,1,1(12 . (S)-(1,1,1(12 . (S)-(1,1,1(12 . 49–51 ° (15 -2(S-35 ). 54–55 ° (15 -2(S-35 ). 58–59 ° (15 -2(S-35 ). 58–59 ° (15 148 6.2.2 (R)- 2,2,2. (150 (17 . 62,3 ° . , P2O5 72,5 ° . 52 %. 2,2,2-1(rac-46). 2,4 Mg , 45 (54, 19,2 ) (45 ), 54 ~3 . (55) . Mg. , CaCl2 , ). ) -1(R-46) (50 ) , (11,8 –80 ° –75 ° , –70 ° . NH4Cl (10 , , Na2SO4 (GC-MS): 176 (M+). . . 77 %. – , , 92–97 ° . 100 ) . HCl (25 (2 50 ). ), . 1 , (30 ) ) (290 ). 149 (R)-2,2,2rac-56 , Lipase MY. , : 3 % , CDCl3): . 77 %. ]D25 -31,8 ( 0,101 MeOH). 1H NMR (200 (1H, c), 4,98 (1H, 6.2.3 l , d(rac-47), d-/l . N(11 ) l 1,6 30 (11 ) 1,7 -l20 . (14 , 30 , , , . 70 NNaOH ): m/z 261 (M+) (1,0), 148 (100). -l250 ), 1,7 (15 (40). l 5° , ) 4 100 (3×10 (73 %). N-d) (DEP, 70 eV): m/z 269 (M+) (1.5), 179 (100). (50). H2O/20 2,5 Et2O) 20 1,8 (15,4 (14 ) d3° , ) . 1 HCl. , , , , . 3 . 20 (1,9 2 . (2×10 1,9 ) (DEP, ) , . , (39). , 15 . . 1,8 , (43) 12,2,2-2-1(48) (45), (±)-2J= 6,65 -1(R-46). , 2,38 (3H, c), 2,55–2,74 ). ), 7,22 (2H, J= 7,90 ), 7,36 (2H, J= 7,90 (67 %). (1,78 NaOH/230 3 , , . 70 eV): m/z 179 (2), 105 (100). l(51). (200 ) 12,9 (87 ,1 .) l , 8,8 (87 , 200 (2 100 . ), Na2SO4, . , . [159]). 1 100 (3×10 0,8 ) 1 HCl. 150 , (25 %). (DEP, , 1,5 .) , 0,2 .) , 9,1 (58 . 1,2 (11,6 10 . 100 , , – , 1,5 .) 50 CCl4, . 8,8 (50 %). 109–110 °C ( . 108–109 °C H (200 , -d6): 11,06–8,32 ( , 1H), 7,92 ( , 1 ), 7,67 ( , 1 ), 7,56 , J2 = 10,8 ), 2,23 ( , 1H), 1,99 ( , 1H), 1,71 ( , 2H), 1.51 ), 0.90 ( , 3H, J = 7,2 ), 0,83 ( , 3H, , 2 ), 4,98 ( , 1 , J1 = 4,2 , 2H), 1,24–0,96( , 3 ), 0.94 ( , 3 , J = 6,5 J = 6,9 ). (DEP, 70 ): m/z 305 (M+) (0,1), 166 (35), (149) (100), 138 (44). l( ). 1 (0,100 ,l (0,043 , 0,140 .). , 1,4 .) – 0° ), (0,005 , 0,044 , 0,44 (0,030 , 0,140 , 1,4 .) 2 , . 151 N, . R-35 , S-35 ( l , (R)-1,1,1-d6): , -2l (R-44 ). 1H R-44 , S-44 . (200 , ). 0,67–0,95 (13H, ), 0,95–1,13 (2H, ), 1,14–1,54 (10H, ), 1,58–1,74 , J1 = 6,6 , J2 = 4,2 ), (2H, ), 1,74–1,95 (3H, ), 1,96–2,11 (1H, ), 4,8 (1H, 5,51–5,72 (1H, ), 7,73 (4H, ). (DEP, 70 (S)-1,1,1-d6): ): m/z 471 ( -2l + ) (9), 333 (79), 315 (30), 149 (100), 138 (90). (S-44 ). 1H NMR (200 , 0,70–0,94 (12H, ), 0,98–1,22 (3H, ), 1,24–1,57 (10H, ), 1,58–1,73 , J1 = 6,6 , J2 = 4,3 ), (2H, ), 1,74–1,97 (3H, ), 1,97–2,11 (1H, ), 4,8 (1H, 5,50–5,71 (1H, ), 7,73 (4H, ). (DEP, 70 ): m/z 471 ( + ) (35), 333 (71), 315 (72), 149 (100), 138 (81). (S)-1,1,1-2. ) (S-35 ) (R)- (R-35 ) S-35 (mS=34,46 25 . (R-35 ) (mR1=0,2052 , mR2=0,1912 , mR3=0,2179 ). vS1=0,373 , vS2=0,346 . . 10 6.1, – . , vS3=0,395 . 6.2. Xi : ; Xi– – ; ; Sx X – ; n – , , i – [160]: – 152 Sx (X X i )2 n(n 1) , t S x [160], (6.1) t – f n 1 2 – C P , (t 0 , 95 ). 4 ,3 - 6.1 Xi ,% Xi, % X ,% Sx 1 2 3 0,25; 0,24; 0,21 0,21; 0,25; 0,25 0,21; 0,23; 0,19 0,23 0,24 0,21 6.2 0,23 0,01 0,23±0,04 Xi ,% Xi, % X ,% Sx 1 2 3 6.3 (R)-3,3,33,3,3- 0,42; 0,42; 0,42 0,42; 0,49; 0,49 0,29; 0,29; 0,28 -2-2, 0,576 ) ., – 0,42 0,47 0,29 0,39 0,05 0,39±0,23 (38). 57 79, 30 %. (3 75 (2 50 ), ). l. ) , 20 . 1 . NaOH (23,0 28,63 (0,144 3 , . 20 . , : 13,15 (63 %) 1 50 . (2 10 (200 ), 4,56 (1 , . , J = 7,7 . ). , CD3OD): 153 2-(42 )-3,3,338 (1,2 , 8,34 ) ). 20 2–5 10 (50 (3 20 ), , 1,62 (88 %). 1 J = 8,6 ), 6,05 (1 , (200 , J = 7,5 ). 2-(4(83) 83 (0,547 (20 , 0,17 ) 6 (0,414 , 2,01 ) 3 , . (1,4 ). (DEP, 70 -2) S, 1,67 ), (S)-1,1,135 (0,37 ) 15 % 82 (2,014 . . HCl (20 l ), , 9,18 ) . : (1:3). ), 7,80 (2 , , , CDCl3): 7,91 (2 , , J = 8,6 )-3,3,3-2, 2,01 ) 5 , , (35 ). 83 ): m/z 492 ( + ). . 3,3,3(7 90 60 0 , , 50 (6,4 , 50 (3Å) ) 2 3 7 50 (3 50 20 . ). 20 . , 32 %. 1 (400 0,1 HCl, , . . . (2 10 (1 , ) , J = 7,8 ). . , CD3OD): . 4,55 154 6.4 6.4.1 1,1,1( 58) [9] . (12,6 , 1,0 .) 70 58. 37,1 37,2 .) , . HCl. (2 50 ), Na2SO4 . , 30,2 , , – , (1,2 .) 150 50 (0,47 , . SOCl2 4,48 . , , 47 3 40 % (R,R)-(1,1,1. -2- )-4,4''. , 254 1 , - , – (R)-FOTDA-4). 31 %. >99,7 % ( , ). , CDCl3): 8,18 (4 , , J = 8,1 ), 7,74 (4 , , J = 8,1 ). ), 7,74 (200 (4 , ), 5,58 (2 , ), 1,92 (4 , ), 1,35 (8 , ), 0,87 (6 , , J = 6,3 (R,R)-(1,1,1-2)-4,4''. , 254 ). ), 7,74 (4 , , J = 8,1 ), 0,87 (6 (R-FOTDA-5). 99,6% ( (200 5,58 (2 , 30 %. , CDCl3): 8,18 (4 , , J = 8,1 , J = 6,8 ), 7,74 (4 ). ), ), 1,92 (4 ), 1,25-1,56 (12 , J =6,3 155 (R,R)-(1,1,1-2)-4,4''. >99 % ( (200 , , 254 ). 42,1–42,2 ° . ), 7,74 (4 , , J = 8,2 ), 7,74 (R-FOTDA-6). 23 %. 1 , CDCl3): 8,17 (4 , , J = 8,2 , J = 6,6 (4 , ), 5,57 (2 , (6 , , J = 6,3 ). ), 1,90 (4 , , J = 7,1 + ), 1,33 (16 , ), 0,86 (DEP, 70 ): m/z 650 (100, ), 484 (34,6), 467 (45,1), 439 (5,0), 318 (74,1), 228 (34,8), 202 (6,0). (S,S)-(1,1,1-2- )-4,4''. >99 % ( (DEP, 70 (R,R)-(1,1,1, , 254 ): m/z 650 (100, ). + (S-FOTDA-6). 20 %. 42,0–42,3 ° . ), 484 (34,6). (R-FOTDA-7). . -2- )-4,4''1 >99,5 % ( 1 , , 254 , J = 8,2 ). ), 7,74 (4 , J = 8,1 ), 7,74 (4 , ), ). (200 ,CDCl3): 8,17 (4 , J = 6,8 5,57 (2 (R,R)- ), 1,91 (4 -(1,1,1- ), 1,24–1,55 (20 ), 0,86 (6 , , J = 6,2 -2- )-4,4''1 (R-FOTDA-8). . >99,5 % ( 1 , , 254 , J = 8,2 ). ), 7,74 (4 , J = 8,1 ), 7,74 (4 , ), ). (200 ,CDCl3): 8,17 (4 , J = 6,8 -1- 5,57 (2 -(2,2,2- ), 1,91 (4 , ), 1,24-1,55 (20 , ), 0,86 (6 , , J = 6,2 )-4,4''. 8 %. (FOTDA-Ar). >99% ( , , 254 1 ). 58 °C. ), 7,76 (4 , , J = 8,2 , J =7,0 ), 7,75 (4 , ), (200 , J = 7,9 ,CDCl3): 8,22 (4 , , J = 8,2 ), 7,25 (4 , J = 7,9 + 7,48 (4 ), 6,37 (2 ). ), 2,38 (6 , ). (DEP, 70 ): m/z 662 ( 6.4.2 2- -2(S)(500 12 . (12 142–143 ° . . 33 %. (S)-1-(( (9,7 , 48.2 43,3 ) (590 , 4,8 94 % (GC-MS; -4, 1.1 , 0,11 (11,9 , 57,8 (60 ) 0–5°C . – (S-71). .), (S).) , 1,3 . . .) . ) , , , (S-70). (S)(100 ) (40 1,1,1- 156 - , 38,5 ) 100–110 ° , 200 K2CO3, , , S-70 - ). 4- (S-70, 7,8 , (90 .) ) , . , S-71, (78 %). (S)-1-(( , Pd/C , (S)-1-(( -4(9,4 , 11,8 , . HCl. – (3×100 ). Celite 450 98 % , (S-72). , 254 , ). . 21,5 10% Pd/C (1,0 ) (350 ) : !], (S-71) (21.5 , 5.9 ,2 .). ) , , , CaCl2, . , , , 10,3 . 1 157 , , . , S-72 64 %. /0,05 % (200 111–112 . , 254 97,5 % ( ). . , 70 % , DMSO-d6): 7,89–8,07 ( , 2H), 7,53–7,85 ( , 2H), 5,19 ( , 1H), 3,66 ( , 1H), 1,57 ( , 3H). (S)-2-(4(S -63). S-72 (2,8 (R-35 –35 ) S-35 ; 9,10 (20 ) , 10,0 ) , 1,1 (126 , (2,5 , 12,3 (15 ). , 1,35 .), , 1,0 , 0,11 0–5 °C .) , . .) , -63 . (S)-1-(((R)-1,1,1(SR-63 ). 100%. -299,4% ( -299,5% ( -299,7% ( -2100 %. , -4, -4, 254 ). , -4, 254 ). -4, 254 ). , (S)-1-(((R)-1,1,1(SR-63 ). 100 %. (S)-1-(((S)-1,1,1(SS-63 ). 95 %. (S)-1-(((R)-1,1,1(SR-63 ). 158 (S)-1-(((R)-1,1,1(SR-63 ). 99 %. -298 %. -2-4-4-2-4- (S)-1-(((R)-1,1,1(SR-63 ). (S)-1-(((R)-1,1,1(SR-63 ). 97 %. S -63 1,4). 4,9 , 1,2 -63 (8,2 ), 1,4, 0,3 H2O (2 , , (690 , 49,2 , 6 .) H2O (18 ). 1 (1 ) – Na2SO4, (3×20 . HCl ). . . pH 1. , ., , , NaHCO3 , 0,04 )5 .), (815 SDS (300 ) , .), PdCl2dppf·CH2Cl2 (267 (18 ), (3 ) , ((S)-1-(((R)-1,1,1(SR-LACTAF-5). 32 %. 1 50 % -2)-4,4''- . . 99,4 % ( , CDCl3): 50 % , 254 ). H (400 8,18 ( , 4H), 7,74 ( , 8H), 5,37 ( , 4H), 1,80 ( , 4H), 1,69 ( , 6H), 1,25–1,45 ( , 12H), 0,89 ( , 6H). ((S)-1-(((R)-1,1,1(SR-LACTAF-6). 25%. 1 -2- )-4,4''- . 99,6 % ( , CDCl3): 50 % , 254 ). H (400 8,18 ( , 4H), 7,74 ( , 8H), 5,37 ( , 4H), 1,80 ( , 4H), 1,69 ( , 6H), 1,25–1,45 ( , 16H), 0,89 ( , 6H). 159 (DEP, 70 ((S)-1-(((S)-1,1,1(SS-LACTAF-6). 23 %. 1 ): m/z 794 ( + , 30). )-4,4''. -2- 99,2 % ( , CDCl3): 50 % , 254 ). H (400 8,17 ( , 4H), 7,75 ( , 8H), 5,37 ( , 4H), 1,80 ( , 4H), + 1,69 ( , 6H), 1,26–1,45 ( , 16H), 0,89 ( , 6H). (DEP, 70 ((S)-1-(((R)-1,1,1(SR-LACTAF-7). 36 %. 1 ): m/z 794 ( , 46). )-4,4''- -2- 99,7 % ( , CDCl3): 50 % , 254 ). H (400 8,18 ( , 4H), 7,74 ( , 8H), 5,37 ( , 4H), 1,65–1,83 , 10H), 1,25–1,45 ( , 20H), 0,89 ( , 6H). ((S)-1-(((R)-1,1,1(SR-LACTAF-8). 31 %. 1 -2- )-4,4''- - 99,5 % ( , CDCl3): 50 % , 254 ). H (400 8,17 ( , 4H), 7,74 ( , 8H), 5,38 ( , 4H), 1,67–1,85 , 10H), 1,25–1,45 ( , 24H), 0,89 ( , 6H). ((S)-1-(((R)-1,1,1(SR-LACTAF-9). 25 %. 1 -2- )-4,4''- - 99,3 % ( , CDCl3): 100 % 8,18 ( , 4H J = 8,2 , 254 ). ), 7,74 H (400 ), 7,75 ( , 4H J = 7,4 , 4 ), 5,28–5,37 ( , 4H), 1,67–1,85 ( , 10H), 1,22–1,51 ( , 28H), 0,88 ( , 6H). ((S)-1-(((R)-1,1,1-2(SR-LACTAF-10). 2,00 (0,0040 ) 63 )-4,4''(100 ) 97,8 % ( 8,17 ( , 4H J = 8,2 , , 254 ).1H (400 , CDCl3), , .: ), 7,76 ( , 4H J = 7,4 ), 7,73 ( , 4 ), 5,30–5,39 ( , 4H), 1,66–1,83 , 10H), 1,20–1,52 ( , 32H), 0,90 ( , 6H). 160 6 1. . 2. . [92, 94, 96, 109, 113, 115, 118] 161 . , . . 1. ( ), . : ) ( ). 2. l ( , – , . 3. (R)-1,1,1-2>99.5% . 85% Lipase MY. -2(R): (S)-1,1,1- - Lipase MY 30 % 162 , (S)4. 4. 1,4(S), , -2. 5. n-C5–C9), , (20–33 1,1,1, 1,1,1- - -2- . %) SmC* . , 7- 9- , 15 . - 6. -2- -2: . , (S,R)-1,1,1- 16-18 .% . SS, . , , . 7. 1,1,1-21,1,115 .% -2- -2- 163 100 –1 . . , 8. 1,1,1-2, (1:1500), ( 20–40 ), , . 164 1. Yang D. Fundamentals of Liquid Crystal Devices, Second edition / D. Yang, S. Wu. – NJ : Wiley, 2014. – 592 p. 2. Tsujimura T. OLED Display Fundamentals and Applications / T. Tsujimura. – NJ : Wiley Series in Display Technology, 2017. – 320 p. 3. Goodby J. W. Ferroelectric Liquid Crystals. Principles, Properties and Applications / J. W. Goodby. – London : Gordon and Breach Science Publishers S. A. – 1991. – 474 p. 4. . . / . . . 163, 10. – 28. , . . // . – 1993. – 5. Srivastava A. K. Ferroelectric liquid crystals: Excellent tool for modern displays and photonics / A. K. Srivastava, V. G. Chigrinov, H. S. Kwok // Journal of the Society for Information Display. – 2015. – Vol. 23. – P. 253–270. 6. Ferroelectric Liquid Crystal / R. B. Meyer, L. Liebert, L. Strzelecki, P. Keller // Journal of Physics Letters (Orsay, Fr.). – 1975. –Vol. 36. – P. 69–71. 7. Clark N. A. Submicrosecond bistable electrooptic switching in liquid crystals / N. A. Clark, S. T. Lagerwall // Applied Physics Letters. – 1980. – Vol. 36. – P. 899–901. 8. Deformed helix ferroelectric liquid crystal display: A new electrooptic mode in ferroelectric smectic C liquid crystals / L. A. Beresnev, V. G. Chigrinov, D. I. Dergachev [et al.] // Liquid Crysals. – 1989. – Vol. 5. – P. 1171–1177. 9. New Chiral Dopant Possessing High Twisting Power / E. P. Pozhidaev, S. I. Torgova, V. M. Molkin [et al.] // Mol. Cryst. Liq. Cryst. – 2009. – V. 509. – P. 1042–1050. 10. Manifestation of chiral asymmetry of ferroelectric liquid crystals induced by optically active dipole dopants in a linear electrooptic effect / A. Z. Rabinovich, M. V. Loseva, N. I. Chernova [et al.] // Liquid Crysals. – 1989. – Vol. 6. – P. 533–543. 165 11. Structure of optically active compounds and ferroelectric properties of liquid crystals / M. Loseva, N. Chernova, A. Rabinovich [et al.] // Ferroelectrics. – 1991. – P. 357–377. 12. Synthesis and ferroelectric properties of some chiral dopants with a therphenyl central core / N. Chernova, M. Loseva, E. Pozhidaev, N. Korotkova // Ferroelectrics. – 1993. – Vol. 138. P. 95–102. 13. . . , 1983. – 320 c. 14. Bukingham A. D. The addition of optically active compounds to nematic liquid crystalls / A. D. Bukingham, G. P. Caesar, M. B. Dunn // Chem. Phys. Lett. – 1969. – Vol. 3, 7. – P. 540–541. / . . .– : 114. – 15. Gottarelli G. Induction of cholesteric mesophases in nematic liquid crystals, and correlation of absolute configurations of some chiral oxiranes and thiiranes / G. Gottarelli // Tetrahedron. – 1983. – Vol. 39, 8. – P. 1337–1344. 16. Kuczynski W. Ferroelectric properties of smectic C liquid crystals with induced helical structure / W. Kuczynski, H. Stegemeyer // Chem. Phys. Lett. – 1980. – Vol. 70. – P. 123. 17. Dierking I. Textures of Liquid Crystals / I. Dierking. – Weinheim : WILEY-VCH Verlag GmbH & Co. KGaA, 2003. – 218 p. 18. Dierking I. Chiral liquid crystals: Structure, Phases, Effect / I. Diercing // Symmetry. – 2014. – Vol. 6. – P. 444–472. 19. Handbook of Liquid Crystals, 8 Wolume set / J. W. Goodby, P. J. Collings, T. Kato [et al.]. NJ : Wiley, 2014. –584 p. 20. Coles H. J. Liquid crystal ‘blue phases’ with a wide temperature range / H. J. Coles, M. N. Pivnenko // Nature. – 2005. – Vol. 436. – P. 997-1000. 166 21. Optimized blue-phase liquid crystal for fieldsequential- color displays / Y. Huang, H. Chen, G. Tan [et al. // Optical Materials Express. – 2017. – Vol. 7, P. 641–650. 22. A new molecular ordering in helical liquid crystals / J.W. Goodby, M. A. Waugh, S. M. Stein [et al. // Journal of American Chemistry Society. – 1989. – Vol. 111, 21. – P. 8119–8125. 23. Dierking I. A review of textures of the TGBA* phase under different anchoring geometries / I. Dierking, S. T. Lagerwall // Liquid Crystals. – 2002. – Vol. 26, P. 83–95. 24. Ribeiro A.C. Optical textures in TGBA mesophases / A. C. Ribeiro, H. T. Nguyen, Y. Galerne, D. Guillon // Liquid Crystals. – 2002. – Vol. 27, 25. . . , . . , . . / . // . 1. – P. 27–34. , . . . , . 1. – 2. – ». – 1990. – . 3. – . 1–192. 26. A novel property caused by frustration between ferroelectricity and antiferroelectricity and its application to liquid crystal displays – frustoelectricity and V-shape switching / T. Matasumoto, A. Fukuda, M. Johno [et al. // Journal of Material Chemistry. – 1999. – Vol. 9. – P. 2051–2080. 27. Dahl I. Elastic and flexoelectric properties of chiral smectic-C phase and symmetry considerations on ferroelectric liquid-crystal cells / I. Dahl, S.T. Lagerwall // Ferroelectrics. – 1984. – Vol. 58. – P. 215–218. 28. Ferrielectric chiral smectic liquid crystalline phase / H. Takezoe, J. Lee, Y. Ouchi, A. Fukuda // Mol. Cryst. Liq. Cryst. – 1991. – Vol. 202. – P. 85–90. 29. The design, synthesis and structure-property relationships of ferroelectric and antiferroelectric liquid crystal materials / M. Hird, J. W. Goodby, P. Hindmarsh, R. A. Lewis, K. J. Toyne // Ferroelectrics. – 2002. – Vol. 276. – P. 219. 30. . . * 167 : .– . … . .. : 01.04.07 / , 2005. – 375 . 31. Takezoe H. Antiferroelectric liquid crystals: Interplay of simplicity and complexity / H. Takezoe, E. Gorecka, M. epi // Reviews of Modern Physics. – 2010. – Vol. 82. – P. 897. 32. Phases, phase transitions and confinement effects in a series of antiferroelectric liquid crystals / J. P. F. Lagerwall, D. D. Parghi, D. Kruerke [et al. // Liquid Crystals. – 2002. – Vol. 29, 2. – P. 163–178. 33. On the phase sequence of antiferroelectric liquid crystals and its relation to orientational and translational order / J. P. F. Lagerwall, P. Rudquist, S. T. Lagerwall, F. Giedelmann // Liquid Crystals. – 2003. – Vol. 30, 4. – P. 399–413. 34. Blue phases and twist grain boundary phases (TGBA and TGBC) in a series of fluorosubstituted chiral tolane derivatives / M. H. Li, V. Laux, H. T. Nguyen [et al. // Liquid Crystals – 1997. – Vol. 23, 3. – P. 389–408. 35. The antiferroelectric TGB phase: textures, field-induced effects and microscopic model / J. G. Meier, P. Rudquist, A. S. Petrenko [et al. // Liquid Crystals. – 2002. – Vol. 29, 2. – P. 179–189. 36. Becker J. B. Optical measurements on the BP III to isotropic phase transition in highly chiral liquid crystals / J. B. Becker, P. J. Collings // Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. – 1995. – Vol. 265. – P. 163–170. 37. A new series with smectic blue phases and SmC*–BPSm2 direct transition / C. D. Cruz, E. Grelet, J. C. Rouillon et al. // Liquid Crystals. – 2001. – Vol. 28, 9. – P. 1415–1423. 38. Grellet E. A chiral material with a new phase sequence: twist grain boundary smectic C phase-smectic blue phases / E. Grellet, B. Pansu, H. T. Nguyen // Liquid Crystals. – 2001. – Vol. 28, 7. – P. 1121–1125. 39. Berreman D.W. Twisted smectic C phase: Unique optical properties / D. W. Berreman // Mol. Cryst. Liq. Cryst. – 1973. – Vol. 22. – P. 175–184. 168 40. Hori K. Angular dependence of selective reflection from the chiral smectic C phase / K. Hori // Mol. Cryst. Liq. Cryst. – 1982. – Vol. 82. – P. 13–17. 41. Jeu W. H. Thermotropic Liquid Crystals, Fundamentals / W. H. de Jeu, G. Vertogen. – Berlin : Springer, 1988. – 384 . 42. Pelzl G. Birefringence and phase transitions in liquid crystals / G. Pelzl, A. Hauser // Phase Transitions: A Multinational Journal. – 1991. – Vol. 37. – P. 33–62. 43. Lagerwall S. T. Ferroelectric Liquid Crystals / Handbook of liquid crystals, Second Edition. S. T. Lagerwall; Edited by J. W. Goodby, P. J. Collings, T. Kato [et al.]. – NJ: Wiley-VCH Verlag GmbH & Co. KGaA. – 2014. – Vol. 4. –779 p. 44. LiqCryst. – // URL: http://www.lci- publisher.com/index.php?c=product_liqcryst. 45. Investigation of the helix unwinding process in thick freely suspended smectic films / A. Dahlgren, M. Buiydas, F. Gouda [et al.] // Liquid Crystals. – 1998. – Vol. 25, 5. – P. 553–560. 46. An influence of the fluorosubstitution and the spacer length on the phase transitions and helical pitch value in high tilted antiferroelectric esters, Molecular crystals and liquid crystals / W. Rejmer, M. urowska, R. D browski [et al.] // Molecular Crystals and Liquid Crystals. – 2009. – Vol. 509, 47. / . . // . , . – 1997. – . 42, . . , . . 1. – P. 195/[937]–205/[947]. 3. – . 499–501. 48. Degenerasy lifting to thermal fluctuations around the frustration point between acticlinic antiferroelectric SmCA* and synclinic ferroelectric SmC* / K. L. Sandhya, A. D. L. Chandani, A. Fukuda [et al. // Physical Review E. – 2013. – Vol. 87. – P. 012502. 49. . . .– . : / . . . . – , 1980. – 344 . 169 50. Podolskyy D. Simple method for accurate measurement of the cholesteric pitch using a “stripe-wedge” Greandjean-Cano cell / D. Podolskyy, O. Banji, P. Rudquist // Liquid Crystals. – 2008. – Vol. 35, 7. – P. 789–791. 51. Brunet M. Periodic structures in smectic C*–pitch and unwinding lines / M. Brunet, N. Isaert // Ferroelectrics. – 1988. – Vol. 84, 1. – P. 25–52. 52. Helicity of SmC* phase / V. Laux, N. Isaert, H. T. Nguyen [et al. // Ferroelectrics. – 1996. – Vol. 179. – P. 25–31. 53. Polymer-induced improvements in ferroelectric liquid crystal / R. Manohar, A. K. Misra, A. K. Srivastava // Polymer Composites. – 2010. – Vol. 31. – P. 1776–1781. 54. Lagerwall S. T. Ferroelectric and antiferroelectric liquid crystals / S. T. Lagerwall // Ferroelectrics. – 2004. – Vol. 301. – . 15–45. 55. Chigrinov V. G. Liquid Crystal Devices: Physics and Applications / V. G. Chigrinov. – Boston–London : Artech-House, 1999. – 366 p. 56. Lagerwall S. T. Ferroelectric and Antiferroelectric Liquid Crystals / S. T. Lagerwall. – Germany : WILEY-VCH Verlag GmbH, 1999. – P. 241–257. 57. Free J. / Electronic Nwesfront / J.Free // Popular Science. – 1992. – Vol. 240. – P. 32–36. 58. Takezoe H. Polar liquid crystals – ferro, antiferro,banana, and columnar / H. Takezoe. // Molecular Crystals and Liquid Crystals. – 2017. – Vol. 646. – P. 46–65. 59. Rudquist P. Smectic LCD Modes / Handbook of Visual Display Technology. P. Rudquist; Edited by J. Chen, W. Cranton, Mark Fihn: Springer International Publishing Switzerland. – 2016. – 3564 p. 60. / . . , . . 8. – , . . , . . // . – 1987. – . 46, . 28–330. 170 61. Beresnev L. A. Electro-optical response of a thin layers of a ferroelectric liquid crystal with a small pitch and high spontaneous polarization / L. A. Beresnev, L. M. Blinov, D. I. Dergachev // Ferroelectrics. – 1988. – Vol. 85. – P. 173–186. 62. Polarization-gratings approach to deformed-helix ferroelectric liquid crystals with subwavelength pitch / A. D.Kiselev, E. P. Pozhidaev, V. G. Chigrinov, H. S. Kwok. // Phys. Rev. E. – 2011. – 83. – P. 031703. 63. Orientational Kerr effect and phase modulation of light in deformed-helix ferroelectric liquid crystals with subwavelength pitch / E. P. Pozhidaev, A. D. Kiselev, A. K. Srivastava [et al. // Physical review E. – 2013. – Vol. 87. – P. 052502-1–052502-8. 64. Enhanced orientational Kerr effect in vertically aligned deformed helix ferroelectric liquid crystals / E. P. Pozhidaev, A. K. Srivastava, A. D. Kiselev [et al. // Optics Letters. – 2014. – Vol. 39, 10. – P. 2900–2903. 65. Electrically controlled birefringence colours in deformed helix ferroelectric liquid crystals / G. Hegde, P. Xu, E. Pozhidaev [et al. // Liquid Crystals – 2008. – Vol. 35, 9. – P. 1137–1144. 66. Zaschke H. Synthese niedrigschmelzeder kristallin-flussiger Heterocyclen. I 5-nAlkyl-2-(4-n-alkoxy-phenyl)-pyrimidine / H. Zaschke // J. Prakt. Chem. – 1975. – B. 317, H. 4. – S. 617–630. 67. Pat. 0293763A2 EP Smectic liquid crystal mixture / T. Kanetsugu, I. Mitsuyoshi, T. Fusayuki, K. Makoto, F. Kenji. – URL : https://worldwide.espacenet.com. 68. Pat. 3919104 DE Fluorphenylpyrimidine / A. Wachtler, H.M. Kompter, E. Poetsch, T. Geelhaar. – URL: https://patentswamp.de/patent/DE3919104.html 69. Pat. 4118279 DE / A. Wachtler, E. Poetsch, T. Geelhaar, H. M. Kompter, R. Hittich. – URL: https://patentswamp.de/patent/DE4118279.html 70. Hird M. / Ferroelectricity in liquid crystals – materials, properties and applications / M. Hird // Liq. Cryst. – 2011. – Vol. 38. – P. 1467. 171 71. Pat. EP1039329 (A3). Liquid crystal composition / Y. Yasue, J. Masahiro, Y. Tomoyuki, M. Takahiro. – URL : https://worldwide.espacenet.com. 72. New ferroelectric liquid crystalline materials with an azo group in the molecular core / M. Kašpar, A. Bubnov, V. Hamplová [et al. // Liquid Crystals. – 2004. – Vol. 31 – P. 821–830. 73. Design of advanced multicomponent ferroelectric liquid crystalline mixtures with submicrometre helical pitch / K. Kurp, M. Czerwi ski, M. Tykarska, A. Bubnov // Liquid Crystals. – 2017. – Vol. 44 – P. 748–756. 74. New ferroelectric and antiferroelectric liquid crystals studied by complementory metods / J. Fitas, A. D ubacz, P. Fry [et al. / Liquid Crystals. – 2017. – Vol. 38 – P. 566–576. 75. Design of polar self-assembling lactic acid derivatives possessing submicrometre helical pitch / A. Bubnov, M. Chervi ski, T. V. Jurkovi ová, W. A. Piecek // Beilstein Journal of Nanotechnology. – 2018. – Vol. 9 – P. 333–341. 76. Dielectric method for determining the rotational viscosity in thick samples of ferroelectric chiral smectic-C* liquid crystals / A. Levstik, Z. Kutnjak, C. Filipic [et al. // Physical Review A. – 1990. – Vol. 42, 4. – P. 2204–2210. 77. Chiral Organic Compounds in Liquid Crystal Systems with Induced Helical Structure / L. Kutulya, V. Vashchenko, G. Semenkova [et al. // Mol. Cryst. Liq. Cryst. Sci. Tech. Sect. A. – 2001. – 78. , .… . . , . : 02.00.03 / – . 361. – P. 125–134. 3: : , 2004. – 162 . 79. Vill V. Helical twisting power of carbohydrate derivatives / V. Vill, F. Fischer, J. Thiem // Zeitschrift fuer Naturforschung, A: Physical Sciences. – 1988. – Vol. 43, 12. – . 1119–1125. 172 80. Hird M. Fluorinated liquid crystals – properties and applications / M. Hird // Chemical Society Review. – 2007. – Vol. 36. – P. 2070–2095. 81. Pat. 5231528 US. Ferroelectric liquid crystal components having high spontaneous polarization and low helical pitch / Escher C., Hemmerling W., Illian G., Harada T., Murakami M. – URL: http://www.freepatentsonline.com. 82. Ferroelectric Liquid Crystal Induced by Atropisomeric Dopants: Depedens of the Polarization Power on the Core Struture of the Smectic C Host / D. Vizitiu, C. Lazar, B. J. Halden, R. P. Lemieux // Journal of the American chemical society. – 1999.– Vol. 121. – P. 8229–8236. 83. Lemieux R. P. Chirality Transfer in Ferroelectric Liquid Crystals / R. P. Lemieux // Accounts of Chemical Research. – 2001. – Vol. 34. – P. 845–853. 84. Ferroelectric Liquid Crystal Induced by Atropisomeric Dopants: Depedens of the Polarization Power on the Nature of the Symmetry-Breaking Groups / D. Vizitiu, C. Lazar, J. P. Radke [et al. // Chem. Mat. – 2001. – Vol. 13. – P. 1692–1699. 85. Strong helical structures produced by dimeric liquid crystals possessing the chiral centre in the central region of the molecular structure / I. Nishiyama, H. Ishizuka, A. Yoshizawa // Ferroelectrics. – 1993. – Vol. 147, 1.– P. 193–204. 86. Yoshizawa A. Amplification of the twisting power by modification of the chiral spacer in a smectic liquid-crystalline phase / A. Yoshizawa // Ferroelectrics. – 1998. – Vol. 214. – P. 67–74. 87. Helicoid-Stabilized Tristable Switching in Ferroelectric Liquid Crystal Mixtures with Ultrashort Pitch / K. Itoh, Y. Takanishi, J. Yokoyama [et al. // Japanese Journal of Applied Physics. – 1997. – Vol. 36. – P. L784. 88. Trifluoromethylated pyranose derivatives as the chiral dopant for ferroelectric liquid crystals / K. Itoh, M. Takeda, M. Namekawa [et al. // Ferroelectrics. – 1993. – Vol. 148. – P. 85–102. 89. Pat. 5539555A US. High contrast distorted helex effect electro-optic devices and tight ferroelectric pitch ferroelectric liquid crystal compositions useful therein / 173 Wand M. D., Escher C., Handschy M. A., Vohra R. T. – URL: http://www.freepatentsonline.com. 90. . . : . 91. . . : 02.00.03 / . : 02.00.03 / .– .– -3.… . . .… , 1992. – 461 c. 2: , 1997. – 150 c. 92. The nano-scale pitch ferroelectric liquid crystal materials for modern display and photonic application employing highly effective chiral components: trifluoromethylalkyl diesters of p-terphenyldicarboxylic acid / V. Mikhailenko, A. Krivoshey, E. Pozhidaev [et al.] // Journal of Molecular Liquids. — 2019. — Vol. 281. — P. 185–196. 93. Relationship between flexoelectricity and helical pitch in ferroelectric liquid crystal mixtures containing host achiral compounds and chiral dopants / Y. Takanishi, J. Yokoyama, K. Ishikawa [et al.] // Jpn. J. Appl. Phys. – 1999. – Vol. 38. – P. 580–582. 94. Ultrashort helix pitch antiferroelectric liquid crystals based on chiral esters of terphenyldicarboxylic acid / E. P. Pozhidaev, V. V. Vashchenko, V. V. Mikhailenko [et al.] // Journal of Materials Chemistry C. – 2016. – Vol. 4, 4. – P. 10339–10339. 95. Walba D. M. Advances in the Synthesis and Reactivity of Solids / D. M. Walba. : JAI Press, 1991. – P. 173–235. 96. Syntheses of (R)- and (S)-enantiomeric 1,1,1-trifluoromethyl-2-alkanols with high enantiomeric purity controlled through derivatization with L-menthyl phthalate / V. Mikhailenko, D. Yedamenko, G. Vlasenko [et al.] // Tetrahedron Lett. – 2015. – Vol. 56. – P. 5956–5959. 97. Hiyama T. Organofluorine Compounds: Chemistry and Applications / T. Hiyama; Yamamoto H. – Berlin : Springer-Verlag, 2000. – 365 p. 174 98. Selective GlyT1 Inhibitors: Discovery of [4-(3-Fluoro-5-trifluoromethylpyridin-2yl)piperazin-1-yl][5-methanesulfonyl-2-((S)-2,2,2-trifluoro-1-methylethoxy)phenyl]methanone (RG1678), a Promising Novel Medicine to Treat Schizophrenia / E. Pinard, A. Alanine, D. Alberati [et al. // J. Med. Chem. – 2010. – Vol. 53. – P. 4603-4614. 99. Helical twisting power of three-ring chiral molecules and polymerization in cholesteric electrolyte solutions / H. Hayashi, A. Wang, K. Kawabata, H. Goto // Mater. Chem. Phys. – 2013. – Vol. 137. – P. 816–824. 100. Selective reductions. 53. Asymmetric reduction of -fluoromethyl ketones with Bchlorodiisopinocampheylborane and B-isopinocampheyl-9-borabicyclo[3.3.l]nonane. Combined electronic and steric contributions to the enantiocontrol process / P. V. Ramachandran, A. V. Teodorovic, B. Gong, H. C. Brown // Tetrahedron: Asymmetry. – 1994. – Vol. 5. – P. 1075. 101. Highly efficient synthetic method of pptically active 1,1,1-trifluoro-2-alkanols by enzymatic hydrolysis of the corresponding 2-chloroacetates / T. Yonezawa, Y. Sakamoto, K. Nogawa [et al. // Chem. Lett. – 1996. – Vol. 25, 10. – P. 855–856. 102. Study for the determination of the absolute configuration of fluoromethylated secondary alcohols by the modified Mosher method / L. Xiao, T. Yamazaki, T. Kitazume [et al. // J. Fluor. Chem. – 1997. – Vol. 84. – P. 19–23. 103. : . : , 1984. – 391 . / . .– 104. Enantioselectivity of Candida antarctica lipase for some synthetic substrates including aliphatic secondary alcohols / T. Ohtani, H. Nakatsukasa, M. Kamezawa [et al.] // J. Mol. Catalysis B: Enzymatic. – 1998. – Vol. 4. – P. 53–60. 105. Kubota T. Application of (S)-trifluorolactic acid for chiral derivatizing agent / T. Kubota, J. Kanega, T. Katagiri // J. Fluor. Chem. – 1999. – Vol. 97. – P. 213–221. 106. Olefin Metathesis Iodoetherification Dehydroiodination Strategy for Spiroketal Subunits of Polyether Antibiotics / A. Kurissery, D. Darrin, J. Li [et al. // J. Org. Chem. – 2009. – Vol. 74, 20. – P. 7774–7780. 175 107. Resolution of ortho- and meta-substituted 1-phenylethylamines with isopropylidene glycerol hydrogen phthalate / M. Pallavicini, E. Valoti, L. Villa, O. Picolo. // Tetrahedron: Asymmetry. – 2001. – Vol. 12. – P. 1071–1075. 108. Maywald M. Chromatography-free enzymatic kinetic resolution of secondary alcohols / M. Maywald, A. Pfaltz // Synthesis. – 2009. – Vol. 21. – P. 3654–3660. 109. . 113594 / . ., 10.02.17, . 3. – 8 c.. . . – . . ., 2016 00060 ; . ., . 04.01.16 ; . ., . 110. Hassner A. / Direct room temperature esterification of carboxylic acids / A. Hassner, V. Alexanian // Tetrahedron Lett. – 1978. – Vol. 19, 46. – P. 4475–4478. 111. Neises B. / Simple method of esterification of carboxylic acids / B. Neises, W. Steglich. // Angew. Chem. Int. Ed. En. – 1978. – Vol. 17. – P. 522–523. 112. Cambell K. N. / The preparation and some reactions of 1,1,1-trifluoroalkenes / K. N. Cambell, J. O. Knopbloch, B. K. Cambell. // J. Am. Chem. Soc. – 1950. – Vol. 72. – P. 4380-4383. 113. . 113595 -2. ., 10.02.17, . 3. – 7 c. . . – 2016 00112 ; . 1,1,1/ . 04.01.16 ; . ., . 114. Unusual reactions of Grignard reagents toward fluoroalkylated esters / T. Yamazaki, T. Terajima, T. Kawasaki-Taskasuka // Tetrahedron. – 2008. – Vol. 64. – P. 2419–2424. 115. Vashchenko V. V. Esters of p-terphenyldicarboxylic acid and chiral trifluoromethyl alcohols as chiral dopants for short-pitch induced ferroelectric liquid crystals / V. V. Mikhailenko, A. I. Krivoshey, V. V. Vashchenko // 25rd International Liquid Crystal Conference, 29 June – 4 Jule 2014 : abstr. – Dublin, 2014. – P. 104. 176 116. Nonenzymatic kinetic resolution of racemic 2,2,2-trifluoro-1-aryl ethanol via enantioselective acylation / Q. Xu, H. Zhou, X. Geng, P. Chen // Tetrahedron. – 2009. – Vol. 65. – P. 2232–2238. 117. Cambell T. W. / Dicarboxylation of terphenyl. / T. W. Cambel // J. Am. Chem. Soc. – 1960. – Vol. 82. – P. 3126–3128. 118. Chiral trifluoromethylalkyl esters of terphenyldicarboxylic acid – highly effective conponents for short-pitch FLC mixtures / V.V. Mikhailenko, A.I. Krivoshey, E.P. Pozhidaev [et al.] // 16th International Conference on Ferroelectric Liquid Crystals, 4–7 December 2017 : abstr. – Hong Kong, 2017. – P. 64. 119. Williams T. M. dl-Isoserine and related compounds / T. M. Williams, R. Crumbie, H. S. Mosher // J. Org. Chem. – 1985. – Vol. 50. – P. 91–97. 120. Arumugam P. A Mild, Efficient, and inexpensive protocol for the selective deprotection of TBDMS ethers using KHSO4 / P. Arumugam, G. Karthikeyan, P. T. Perumal // Chem Lett. – 2004. – Vol. 33, 9. – P. 1146–1147. 121. Palladium-catalyzed Suzuki cross-coupling reaction in a microemulsion / V. Vashchenko, A. Krivoshey, I. Knyazeva [et al. // Tetrahedron Lett. – 2008. – Vol. 49, 9. – . 1445–1449. 122. Phase diagrams of liquid crystalline systems with a smectic C phase / J. Narkevich, A. Rabinovich, N. Chernova [et al. // Ferroelectrics. – 1991. – 114. – P. 385–399. 123. Control of free volume through size exclusion inthe formation of smectic C phases for displayapplications / R. J. Mandle, E. J. Davis, J. P. Sarju [et al.] // J. Mater. Chem. C. – 2015. – Vol. 3. – P. 4333-4344. 124. . 119903 . ((S))-1-(((S)((S)-1-(((R)-2-2i / . 14.08.17 ; . ., . 27.08.19, . . ., 16. – 19 c. . .– )-4,4'')-4,4''i 2017 08371 ; 177 125. Induced helical nanostructures in ferroelectric liquid crystals / V. Mikhailenko, E. Popova, S. Gamzaeva, E. Pozhidaev, V. Vashchenko // Nanotechnology and nanomaterials NANO-2016 : 4th International research and practice conference, 24–27 August 2016 : abstr. – Lviv, 2016. – P. 103. 126. . . , (+): 02.00.03 / .– : .… . . .– 2003. – 139 . 127. Song J. K. Dynamic Mechanism of the Ferroelectric to Antiferroelectric Phase Transition in Chiral Smectic Liquid Crystals / J. K Song, A. Fukuda, J. K. Vij // Phys. Rev. Let. – 2008. – 101. – P. 09781-1–09781-4. 128. Yoshizawa A. Interlayer Correlation in Smectic Phases Induced by Chiral Twin Molecules / A. Yoshizawa, I. Nishiyama // Mol. Cryst. Liq. Cryst. – 1995. – Vol. 260. – P. 403. 129. Tykarska M. The Influence of the Concentration of Fluoro- and Cyanoterminated Compounds on the Induction of Antiferroelectric Phase and on Helical Pitch / M. Tykarska, K. Garbat, W. Rejmer / Mol. Cryst. Liq. Cryst. – 2011. – Vol. 547. – P. 65/[1755]–73/[1763]. 130. Pozhidaev E. Phase modulation and ellipticity of the light transmitted through a smectic C* layer with short helix pitch / E. Pozhidaev, S. Torgova, M. Minchenko [et al. // Liq. Cryst. – 2010. – Vol. 37. – P. 1067–1069. 131. Effect of alkyl chain length of chiral dopants on rotational viscosity of FLC mixtures / I. Nishiyama, A. Yokoyama, M. Fukumasa [et al. // Jap. J. Appl. Phys. – 1989. – P. L1851–L1855. 132. Different effects of alkyl chain length on rotational viscosity in two types of FLC mixtures / I. Nishiyama, N. Shiratori. M. Fukumasa [et al.] // Jap. J. Appl. Phys. – 1990. – 29. – P. L326–L329. 28. – 178 133. Advances in ferroelectric liquid crystals for high-speed spatial-light modulators / A. L. Andreev, N. I. Chernova, I. N. Kompanets [et al.] // Proc. SPIE. – 1993. – Vol. 2051. – P. 212. 134. Ferroelectric liquid crystals induced by atropisomeric dopants: Dependence of the polarization power on the core structure of the smectic C host / D. Vizitiu, C. Lazar, B. J. Halden, R. P. Lemieux // J. Am. Chem. Soc. – Vol. 121, 36. – . 8229–8236. 135. Pandey M. B. Advanced Energy Materials / M. B. Pandey, R. Dabrowski, R. Dhar ed. A. Tiwari and S. Valyukh.: WILEY–Scrivener, 2014. – 431 p. 136. Dierking I. A Review of polymer-stabilized ferroelectric liquid crystals / I. Dierking // Materials. – 2014. – 7. – P. 3568–3587. 137. Pandey M. B. Dielectric and electro-optical properties of antiferroelectric liquid crystalline materials / M. B. Pandey, R. Verma, R. Dhar // Israel Journal of Chemistry. – 2012. – 52. – P. 895–907. 138. Rudquist P. Orthoconic antiferroelectric liquid crystals / P. Rudquist // Liquid Crystals. – 2013. – Vol. 40. – P. 1678–1697. 139. Ferroelectric liquid crystal display using tristable switahing / Y. Yamada, N. Yamamoto, K. Mori [et al.] // Jpn. J. Appl. Phys. – 1990. – Vol. 29. – P. 1757–1764. 140. Full-color antierroelectric liquid crystal display / N. Yamamoto, N. Koshoubu, K. Mori [et al.] // Ferroelectrics. – 1993. – Vol. 149. – P. 295–304. 141. Ultrafast AFLC passive display for true 3D images / M. A. Geday, D. Poudereux, L. Crespo [et al.] // Ferroelectrics. – 2016. – Vol. 495. – P. 158–166. 142. Wakita N. Shock-problem free flcds and mechanism of alignment destruction by mechanical shock / N. Wakita, T. Uemoda, H. Ohnishi // Ferroelectrics. – 1993. – Vol. 149. – P. 229–238. 143. Darrall R. A Organic fluorides. Part IX. The formation and resolution of -hydroxy- trifluoromethyl-propionic acid / R. A. Darrall, F. Smith, J. C. Tatlow // J. Chem. Soc. – 1951. – P. 2329–2332. 179 144. Bussche-Hünnefeld C. V. D. Ergiebige Herstellung von (R)- und (S)-3,3,3-Trifluormilchsäure und von (R)- und (S)-(Trifluormethy1)oxiran / C. V. D. Bussche-Hünnefeld, C. Cescato, D. Seebach // Chem. Ber. – 1992. – 125. – P. 2795–2802. 145. Lermontov S. . Uncatalyzed Meerwein–Ponndorf–Verley reduction of trifluoromethyl carbonyl compounds by high-temperature secondary alcohols / S. A. Lermontov, S. V. Shkavrov, N. V. Kuryleva // Journal of fluorine chemistry. – 2003. – P. 223–225. 146. Synthetic application of 3,3-dichloro-1,1,1-trifluoroacetone (DCTFA) and 3,3,3trichloro-1,1,1-trifluoroacetone (TCTFA) for trifluorolactic acid derivatives / I. Ishii, M. Kanai, M. Yasumoto [et al. // Journal of fluorine chemistry. – 2004. – P. 567–571. 147. Pat. JP 2006232726 A 20060907 Efficient optical resolution of trifluorolactic acid / A. Ishii, M. Yasumoto, H. Tsuruta, N. Inomiya, T. Otsuka. – URL : https://worldwide.espacenet.com. 148. Self-disproportionation of enantiomers of isopropyl 3,3,3-(trifluoro)lactate via sublimation: Sublimation rates vs. enantiomeric composition / M. Yasumoto, H. Ueki, T. Ono [et al. // Journal of fluorine chemistry. – 2010. – 131. – P. 535–539. 125. – 121.– 149. Ramachandran P.V. Chiral synthesis via organoboranes. 40. Selective reductions. 55. A simple one-pot synthesis of the enantiomers of (trifluoromethy1)oxirane. A general synthesis in high optical purities of -trifluoromethyl secondary alcohols via the ringcleavage reactions of the epoxide / P. V. Ramachandran, B. Gong, H. C. Brown // J. Org. Chem. – 1995. – 60. – P. 41–46. 150. Katadiri T. Synthesis of Trifluorolactic acid from 1,1-epoxy-3,3,3-trifluoropropane. – One pot Tandem ring oprning-oxidation reaction of epoxide / T. Katagiri, F. Obara, S. Toda, K. Furuhashi // Synlett. – 1994. – 07. – P. 507–508. 151. Enantioselective synthesis of 1,1,1-trifuoroalkan-2-ols by ruthenium-catalyzed hydrogenation / Y. Kuroki, D. Asada, Y. Sakamaki, K. Iseki // Tetrahedron Lett. – 2008. – Vol. 41. – P. 4603–4607. 180 152. Pat. WO 2015005341 A1 20150115 Method for manufacturing optically active fluorolactic acid derivative / Sawai N., Ishii S., Nishii T. [et al. – URL : https://worldwide.espacenet.com. 153. McBee E. T. The preparation and propertiesof 3,3,3-trifluoro-1,2-epoxypropane / E. T. McBee, T. M. Burton // Journal of American Chemical Sosiety. – 1952. – Vol. 74. – P. 3022–3023. 154. Preparation of trifluorolactic aldehyde / T. katagiri, K. Kutose, N. Shimokawa [et al. // Tatrahedron. – 1999. – 55. – P. 9163–9170. 155. Fortes C. C. Synthesis of carboxylic acids and their methyl esters from alkyl phenyl sulphides / C. C. Fortes, H. C. Fortes, D. C. R. G. Gonsalves // J. Chem. Soc. Chem. Commun. – 1982. – P. 857–858. 156. Lermontov S. A. Uncatalyzed Meerwein–Ponndorf–Verley reduction of trifluoromethyl carbonyl compounds by high-temperature secondary alcohols / S. A. Lermontov, S. V. Shkavrov, N. V. Kuryleva // Journal of fluorine chemistry. – 2003. – Vol. 121. – P. 223–225. 157. Tandem crystallization strategies for resolution of 3,3,3-trifluorolactic acid [CF3CH(OH)COOH] by chiral benzylamines / L. W-Y. Wong, E. V. Vashchenko, Y. Zhao [et al.] // Chirality. – 2019. – Vol. 31, 11. – P. 979–991. 158. Gottlieb H. E. NMR chemical shifts of common laboratory solvents as trace impurities / H. E. Gottlieb, V. Kotlyar, A. Nudelman // J. Org. Chem. – 1997. – Vol. 62. – P. 7512. 159. Asymmetric rhodium carbene insertion into the Si-H bond: identification of new dirhodium(II) carboxylate catalysts using parallel synthesis techniques / R. Buck, L. Ferris, D. Haigh [et al. // Tetrahedron: Asymmetry. – 2003. – 160. . . . .– : , 1994. – 268 . / . 14. – . 791–816. ; . . 181 , , : 1. Syntheses of (R)- and (S)-enantiomeric 1,1,1-trifluoromethyl-2-alkanols with high enantiomeric purity controlled through derivatization with L-menthyl phthalate / V. Mikhailenko, D. Yedamenko, G. Vlasenko, A. Krivoshey, V. Vashchenko // Tetrahedron Lett. – 2015. – Vol. 56, Is. 43. – P. 5956–5959. (Scopus Web of Science). , , 1,1,1, , . 2. Ultrashort helix pitch antiferroelectric liquid crystals based on chiral esters of terphenyldicarboxylic acid / E. P. Pozhidaev, V. V. Vashchenko, V. V. Mikhailenko, A. I. Krivoshey, V. A. Barbashov, L. Shi, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok // Journal of Materials Chemistry C. – 2016. – Vol. 4, Is. 43. – P. 10339–10346. (Scopus). , , 3. . The nano-scale pitch ferroelectric liquid crystal materials for modern display and photonic application employing highly effective chiral components: trifluoromethylalkyl diesters of p-terphenyldicarboxylic acid / V. Mikhailenko, A. Krivoshey, E. Pozhidaev, E. Popova, A. Fedoryako, S. Gamzaeva, V. Barbashov, A. K. Srivastava, H. S. Kwok, V. Vashchenko // Journal of Molecular Liquids. – 2019. – Vol. 281. – P. 186–195. (Scopus Web of Science). 182 , . 4. Tandem rystallization strategies for resolution of 3,3,3-trifluorolactic acid , [CF3CH(OH)COOH] by chiral benzylamines / L. W-Y. Wong, E. V. Vashchenko, Y. Zhao, H. H-Y. Sung, V. V. Vashchenko, V. Mikhailenko, A. I. Krivoshey, Web of I. D. Williams // Chirality. – 2019. – Vol. 31, Is. 11. – P. 979–991. (Scopus Science). . : 5. . 113595 -2. ., 10.02.17, . 3. – 7 c. . 6. . 113594 . / . ., . 10.02.17, . . ., 3. – 8 c. . 7. 4,4''4,4''/ . 14.08.17 ; . ., . 27.08.19, , , . . . ., 16. – 19 c. . 119903 . ((S))-1-(((S)((S)-1-(((R)-2-2i . . – . .– . ., 2016 00060 ; . . – 2016 00112 ; . / . 04.01.16 ; 1,1,1- . ., . . ., . 04.01.16 ; ))i 2017 08371 ; 183 , : 8. Mikhailenko V. V. Esters of p-terphenyldicarboxylic acid and chiral trifluoromethyl alcohols as chiral dopants for short-pitch induced ferroelectric liquid crystals / V. V. Mikhailenko, A. I. Krivoshey, V. V. Vashchenko // 25th International Liquid Crystal Conference, 29 June – 4 Jule 2014 : abstr. – Dublin, 2014. – P. 104. , . 9. Induced V. Mikhailenko, helical nanostructures in ferroelectric E. Pozhidaev, liquid crystals / // E. Popova, S. Gamzaeva, V. Vashchenko Nanotechnology and nanomaterials NANO-2016 : 4th International research and practice conference, 24–27 August 2016 : abstr. – Lviv, 2016. – P. 103. , . 10. Chiral trifluoromethylalkyl esters of terphenyldicarboxylic acid – highly effective conponents for short-pitch FLC mixtures / V. V. Mikhailenko, A. I. Krivoshey, E. P. Pozhidaev, E. V. Popova, A. P. Fedoryako, V. G. Chigrinov, H. S. Kwok, V. V. Vashchenko // 16th International Conference on Ferroelectric Liquid Crystals, 4–7 December 2017 : abstr. – Hong Kong, 2017. – P. 64. , , .