4 «Â³ñíèê Õàðê³âñüêîãî óí³âåðñèòåòó», ¹ 880, 2009 ñåð³ÿ ô³çè÷íà «ßäðà, ÷àñòèíêè, ïîëÿ», âèï. 4 /44/ Â.Ä. Ñàðàíà, Í.Ñ. Ëóöàé... ßäåðíûå ðåàêöèè, âûçâàííûå... ɍȾɄ 539.17 əȾȿɊɇɕȿ ɊȿȺɄɐɂɂ, ȼɕɁȼȺɇɇɕȿ 3ɇɟ ɇȺ əȾɊȿ 19F, ɉɊɂ ɇɂɁɄɂɏ ɗɇȿɊȽɂəɏ 1 Ɏɢɡɢɤɨ-ɬɟɯɧɢɱɟɫɤɢɣ ɮɚɤɭɥɶɬɟɬ, ɏɚɪɶɤɨɜɫɤɢɣ ɧɚɰɢɨɧɚɥɶɧɵɣ ɭɧɢɜɟɪɫɢɬɟɬ ɢɦ. ȼ.ɇ. Ʉɚɪɚɡɢɧɚ ɩɥ. ɋɜɨɛɨɞɵ, 4, ɝ. ɏɚɪɶɤɨɜ, 61077, ɍɤɪɚɢɧɚ 2 ɇɚɰɢɨɧɚɥɶɧɵɣ ɧɚɭɱɧɵɣ ɰɟɧɬɪ”ɏɚɪɶɤɨɜɫɤɢɣ ɮɢɡɢɤɨ-ɬɟɯɧɢɱɟɫɤɢɣ ɢɧɫɬɢɬɭɬ” ɭɥ. Ⱥɤɚɞɟɦɢɱɟɫɤɚɹ 1, ɝ. ɏɚɪɶɤɨɜ, 61108, ɍɤɪɚɢɧɚ ɉɨɫɬɭɩɢɥɚ ɜ ɪɟɞɚɤɰɢɸ 1 ɞɟɤɚɛɪɹ 2009 ɝ. ȼ.Ⱦ. ɋɚɪɚɧɚ1, ɇ.ɋ. Ʌɭɰɚɣ1, ɇ.Ⱥ. ɒɥɹɯɨɜ2 Ɋɚɛɨɬɚ ɩɨɫɜɹɳɟɧɚ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨɦɭ ɢɫɫɥɟɞɨɜɚɧɢɸ ɫɟɱɟɧɢɣ ɭɩɪɭɝɨɝɨ ɪɚɫɫɟɹɧɢɹ 3ɇɟ ɧɚ 19F ɢ ɹɞɟɪɧɵɯ ɪɟɚɤɰɢɣ 19F (3ɇɟ,ɪ) 21 Ne ɢ 19F (3ɇɟ,Į)18F ɜ ɢɧɬɟɪɜɚɥɟ ɷɧɟɪɝɢɣ 3ɇɟ 2,3 ÷ 4,2 Ɇɷȼ. ɂɡɦɟɪɟɧɵ ɮɭɧɤɰɢɢ ɜɨɡɛɭɠɞɟɧɢɹ ɢ ɭɝɥɨɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɞɥɹ ɩɟɪɟɯɨɞɨɜ ɜ ɨɫɧɨɜɧɨɟ ɢ ɩɟɪɜɵɟ ɞɜɚ ɜɨɡɛɭɠɞɟɧɧɵɯ ɫɨɫɬɨɹɧɢɹ 21Ne ɢ ɜ ɨɫɧɨɜɧɨɟ, 5, 6, 7 ɜɨɡɛɭɠɞɟɧɧɵɟ ɫɨɫɬɨɹɧɢɹ 18F. ɇɚ ɨɫɧɨɜɟ ɯɚɪɚɤɬɟɪɚ ɩɨɜɟɞɟɧɢɹ ɫɟɱɟɧɢɹ ɨɩɪɟɞɟɥɹɥɫɹ ɦɟɯɚɧɢɡɦ ɪɟɚɤɰɢɣ. ɂɡ ɮɥɭɤɬɭɚɰɢɨɧɧɨɝɨ ɚɧɚɥɢɡɚ ɮɭɧɤɰɢɣ ɜɨɡɛɭɠɞɟɧɢɹ ɢ ɨɩɢɫɚɧɢɹ ɭɝɥɨɜɵɯ ɪɚɫɩɪɟɞɟɥɟɧɢɣ ɬɟɨɪɢɟɣ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ ɏɚɭɡɟɪɚ-Ɏɟɲɛɚɯɚ ɩɨɥɭɱɟɧɵ ɜɟɪɯɧɢɣ Ƚɷɤɫɩ = 135 ± 23 ɤɷȼ ɢ ɧɢɠɧɢɣ Ƚ = 70 ɤɷȼ ɩɪɟɞɟɥɵ ɡɧɚɱɟɧɢɣ ɲɢɪɢɧɵ ɭɪɨɜɧɟɣ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ 22Na ɩɪɢ ɷɧɟɪɝɢɢ ɜɨɡɛɭɠɞɟɧɢɹ 21 Ɇɷȼ, ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ. Ƚɪɭɛɵɟ ɨɰɟɧɤɢ ɮɨɪɦɵ ɭɝɥɨɜɵɯ ɪɚɫɩɪɟɞɟɥɟɧɢɣ ɫɟɱɟɧɢɹ ɪɟɚɤɰɢɢ 19F (3ɇɟ,ɪ) 21Ne ɜ ɪɚɦɤɚɯ Ȼɉɂȼ ɩɨɤɚɡɵɜɚɸɬ, ɱɬɨ, ɟɫɥɢ ɩɪɨɢɫɯɨɞɢɬ ɩɪɹɦɚɹ ɨɞɧɨɫɬɚɞɢɣɧɚɹ ɩɟɪɟɞɚɱɚ np-ɩɚɪɵ ɧɭɤɥɨɧɨɜ, ɬɨ ɷɬɨ ɩɪɨɢɫɯɨɞɢɬ ɫ ɩɟɪɟɞɚɱɟɣ ɩɪɟɢɦɭɳɟɫɬɜɟɧɧɨ ɫɥɟɞɭɸɳɢɯ ɨɪɛɢɬɚɥɶɧɵɯ ɭɝɥɨɜɵɯ ɦɨɦɟɧɬɨɜ - ɩɪɢ ɩɟɪɟɯɨɞɟ ɜ ɨɫɧɨɜɧɨɟ ɫɨɫɬɨɹɧɢɟ (3/2+) - L = 2, ɜ 1-ɟ ɜɨɡɛɭɠɞɟɧɧɨɟ ɫɨɫɬɨɹɧɢɟ (5/2+) ɥɢɛɨ ɫ ɨɞɧɢɦ L = 2, ɥɢɛɨ ɫ L = 2 + 4 ɢ ɫ L = 4 ɞɥɹ ɩɟɪɟɯɨɞɚ ɜɨ 2-ɟ ɜɨɡɛɭɠɞɟɧɧɨɟ ɫɨɫɬɨɹɧɢɟ (7/2+). ɂɡ-ɡɚ ɫɢɥɶɧɨɝɨ ɜɤɥɚɞɚ ɦɟɯɚɧɢɡɦɚ ɨɛɪɚɡɨɜɚɧɢɹ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ, ɞɥɹ ɩɨɞɬɜɟɪɠɞɟɧɢɹ ɜɨɡɦɨɠɧɨɫɬɢ ɩɪɹɦɨɝɨ ɦɟɯɚɧɢɡɦɚ ɪɟɚɤɰɢɢ ɢ ɞɨɫɬɨɜɟɪɧɨɫɬɢ ɧɚɣɞɟɧɧɵɯ ɜɟɥɢɱɢɧ L, ɬɪɟɛɭɸɬɫɹ ɷɤɫɩɟɪɢɦɟɧɬɵ ɩɪɢ ɛɨɥɟɟ ɜɵɫɨɤɢɯ ɷɧɟɪɝɢɹɯ. ɄɅɘɑȿȼɕȿ ɋɅɈȼȺ: ɹɞɟɪɧɵɟ ɪɟɚɤɰɢɢ ɫ 3-ɝɟɥɢɟɦ, ɹɞɪɨ-ɦɢɲɟɧɶ ɮɬɨɪ, ɩɟɪɟɯɨɞɵ ɜ 18-ɮɬɨɪ ɢ 21-ɧɟɨɧ, ɫɟɱɟɧɢɹ, ɮɭɧɤɰɢɢ ɜɨɡɛɭɠɞɟɧɢɹ, ɭɝɥɨɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ, ɦɟɯɚɧɢɡɦ ɪɟɚɤɰɢɢ, ɬɟɨɪɢɹ ɏɚɭɡɟɪɚ-Ɏɟɲɛɚɯɚ, ɦɟɬɨɞ ɢɫɤɚɠɟɧɧɵɯ ɜɨɥɧ. NUCLEAR REACTIONS INDUCED BY 3He ON 19F NUCLEUS AT LOW ENERGIES V.D. Sarana1, N.S. Lutsay1, N.A. Shlyahov2 1 V.N. Karazin Kharkiv National University 61077, Svobody sq. 4, Kharkiv, Ukraine 2 National Science Center “Kharkov Institute of Physics and Technology” Akademicheskaya St.1, 61108 Kharkiv, Ukraine This work deal with experimental investigation cross sections of the elastic scattering 3He on 19F and nuclear reactions 19 3 F( ɇɟ,ɪ)21Ne and 19F(3ɇɟ,Į) 18F with energies between 2.3 and 4,2 MeV. Excitation functions and angular distributions for transitions to ground and first two excite states of 21Ne and to ground, 5, 6, 7 excite states of 18F are measured. From a fluctuation analysis and comparison of experimental cross sections with expected on the theory of Hauser-Feshbach upper Ƚexp = 135 ± 23 ɤeV and lower Ƚexp = 70 ɤeV limits of values of widths levels of compound nucleus 22Na at energy excitation 21 MeV are deduced, correspondingly. Rough estimations of form of the angular distributions of cross section in the framework DWBA, show that, if there is a direct single-stage transition of np-pair of nucleons, then it takes place transitions with the transfers of mainly next orbital angular momentum - in transition to the ground-state of (3/2+) - L = 2, to the 1-th excited states of (5/2+) or with one L = 2, or with L = 2+4 and with L = 4 for transfer to the 2-th excited states (7/2+). In view of the strong contribution of compound nucleus mechanism, for legality of these values L are required experiments with more high energies. KEY WORDS: nuclear reactions with 3-helium, nucleus-target are a fluorine, transitions to the 18-fluorine and 21-neon, cross sections, excitation function, angular distribution, mechanism of reaction, theory of Hauser-Feshbach, distorted waves method. əȾȿɊɇȱ ɊȿȺɄɐȱȲ ȼɂɄɅɂɄȺɇȱ 3ɇɟ ɇȺ əȾɊȱ 19F ɉɊɂ ɇɂɁɖɄɂɏ ȿɇȿɊȽȱəɏ ȼ.Ⱦ. ɋɚɪɚɧɚ1, ɇ.ɋ. Ʌɭɰɚɣ1, Ɇ.Ⱥ. ɒɥɹɯɨɜ2 1 Ɏɿɡɢɤɨ-ɬɟɯɧɿɱɧɢɣ ɮɚɤɭɥɶɬɟɬ, ɏɚɪɤɿɜɫɶɤɢɣ ɧɚɰɿɨɧɚɥɶɧɢɣ ɭɧɿɜɟɪɫɢɬɟɬ ɿɦ. ȼ.Ɇ. Ʉɚɪɚɡɿɧɚ ɩɥ. ɋɜɨɛɨɞɢ, 4, ɦ. ɏɚɪɤɿɜ, 61077, ɍɤɪɚʀɧɚ 2 ɇɚɰɿɨɧɚɥɶɧɢɣ ɧɚɭɤɨɜɢɣ ɰɟɧɬɪ”ɏɚɪɤɿɜɫɶɤɢɣ ɮɿɡɢɤɨ-ɬɟɯɧɿɱɧɢɣ ɿɧɫɬɢɬɭɬ” ɜɭɥ. Ⱥɤɚɞɟɦɿɱɧɚ 1, ɝ. ɏɚɪɤɿɜ, 61108, ɍɤɪɚʀɧɚ Ɋɨɛɨɬɚ ɩɪɢɫɜɹɱɟɧɚ ɟɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨɦɭ ɞɨɫɥɿɞɠɟɧɧɸ ɩɟɪɟɪɿɡɿɜ ɩɪɭɠɧɨɝɨ ɪɨɡɫɿɹɧɧɹ 3ɇɟ ɧɚ 19F, ɬɚ ɹɞɟɪɧɢɯ ɪɟɚɤɰɿɣ 19 3 F( ɇɟ,ɪ) 21Ne ɿ 19F(3ɇɟ,Į)18F ɜ ɿɧɬɟɪɜɚɥɿ ɟɧɟɪɝɿɣ 3ɇɟ ɜɿɞ 2,3 ɞɨ 4,2 Ɇɟȼ. ȼɢɦɿɪɹɧɿ ɮɭɧɤɰɿʀ ɡɛɭɞɠɟɧɧɹ ɬɚ ɤɭɬɨɜɿ ɪɨɡɩɨɞɿɥɢ ɞɥɹ ɩɟɪɟɬɢɧɿɜ ɞɨ ɨɫɧɨɜɧɨɝɨ ɬɚ ɩɟɪɲɢɯ ɞɜɨɯ ɡɛɭɞɠɟɧɢɯ ɫɬɚɧɿɜ 21Ne, ɚ ɬɚɤɨɠ ɞɨ ɨɫɧɨɜɧɨɝɨ, 5, 6, 7 ɡɛɭɞɠɟɧɢɯ ɫɬɚɧɿɜ 18F. ɇɚ ɩɿɞɫɬɚɜɿ ɯɚɪɚɤɬɟɪɭ ɩɨɜɟɞɿɧɤɢ ɩɟɪɟɪɿɡɭ ɜɢɡɧɚɱɚɜɫɹ ɦɟɯɚɧɿɡɦ ɪɟɚɤɰɿɣ. Ɂ ɮɥɭɤɬɭɚɰɿɣɧɨɝɨ ɚɧɚɥɿɡɭ ɮɭɧɤɰɿɣ ɡɛɭɞɠɟɧɧɹ ɬɚ ɨɩɢɫɭ ɤɭɬɨɜɢɯ ɪɨɡɩɨɞɿɥɿɜ ɬɟɨɪɿɽɸ ɫɤɥɚɞɟɧɨɝɨ ɹɞɪɚ ɏɚɭɡɟɪɚ-Ɏɟɲɛɚɯɚ ɡɧɚɣɞɟɧɨ ɜɟɪɯɧɸ Ƚɟɤɫɩ = 135 ± 23 ɤɟȼ ɿ ɧɢɠɧɸ Ƚɟɤɫɩ = 70 ɤɟȼ ɦɟɠɭ ɡɧɚɱɟɧɶ ɲɢɪɢɧɢ ɪɿɜɧɿɜ ɫɤɥɚɞɟɧɨɝɨ ɹɞɪɚ 22Na ɩɪɢ ɟɧɟɪɝɿʀ ɡɛɭɞɠɟɧɧɹ 21 Ɇɟȼ, ɜɿɞɩɨɜɿɞɧɨ. Ƚɪɭɛɿ ɨɰɿɧɤɢ ɮɨɪɦɢ ɤɭɬɨɜɢɯ ɪɨɡɩɨɞɿɥɿɜ ɩɟɪɟɪɿɡɿɜ ɜ ɦɟɠɚɯ Ȼɨɪɧɿɜɫɶɤɨɝɨ ɧɚɛɥɢɠɟɧɧɹ ɡɛɭɪɟɧɢɯ ɯɜɢɥɶ ɜɤɚɡɭɸɬɶ, ɳɨ, ɹɤ ɛɢ ɡɞɿɣɫɧɸɜɚɜɫɹ ɩɪɹɦɢɣ ɨɞɧɨ ɫɬɚɞɿɣɧɢɣ ɩɟɪɟɬɢɧ np-ɩɚɪɢ, ɬɨ ɜɿɧ ɜɿɞɛɭɜɚɜɫɹ ɛɢ ɡ ɩɟɪɟɞɚɜɚɧɧɹɦ ɩɟɪɟɜɚɠɧɨ ɧɚɫɬɭɩɧɢɯ ɨɪɛɿɬɚɥɶɧɢɯ ɤɭɬɨɜɢɯ ɦɨɦɟɧɬɿɜ – ɩɪɢ ɩɟɪɟɬɢɧɿ ɜ ɨɫɧɨɜɧɢɣ ɫɬɚɧ (3/2+) – L = 2, ɜ 1- ɲɢɣ ɡɛɭɞɠɟɧɢɣ ɫɬɚɧ (5/2+) – ɚɛɨ ɡ L = 2, ɚɛɨ ɡ L = 2 + 4, ɬɚ ɡ L = 4 ɞɥɹ ɩɟɪɟɬɢɧɭ ɭ 2-ɣ ɡɛɭɞɠɟɧɢɣ ɫɬɚɧ (7/2+) . ȱɡ-ɡɚ ɫɢɥɶɧɨɝɨ ɜɤɥɚɞɭ ɦɟɯɚɧɿɡɦɭ ɭɬɜɨɪɟɧɧɹ ɫɤɥɚɞɟɧɨɝɨ ɹɞɪɚ, ɞɥɹ ɩɿɞɬɜɟɪɞɠɟɧɧɹ ɦɨɠɥɢɜɨɫɬɿ ɩɪɹɦɨɝɨ ɦɟɯɚɧɿɡɦɭ ɪɟɚɤɰɿʀ ɿ ɞɨɫɬɨɜɿɪɧɨɫɬɿ ɡɧɚɣɞɟɧɢɯ ɜɟɥɢɱɢɧ L, ɩɨɬɪɿɛɧɿ ɟɤɫɩɟɪɢɦɟɧɬɢ ɩɪɢ ɜɢɳɢɯ ɟɧɟɪɝɿɹɯ. ɄɅɘɑɈȼȱ ɋɅɈȼȺ: ɹɞɟɪɧɿ ɪɟɚɤɰɿʀ ɡ 3-ɝɟɥɿɽɦ, ɹɞɪɨ-ɦɿɲɟɧɶ 19-ɮɬɨɪ, ɩɟɪɟɬɢɧɢ ɭ 18-ɮɬɨɪ ɬɚ 21-ɧɟɨɧ, ɩɟɪɟɪɿɡɢ, ɮɭɧɤɰɿʀ ɡɛɭɞɠɟɧɧɹ, ɤɭɬɨɜɿ ɪɨɡɩɨɞɿɥɢ, ɦɟɯɚɧɿɡɦ ɪɟɚɤɰɿʀ, ɬɟɨɪɿɹ ɏɚɭɡɟɪɚ-Ɏɟɲɛɚɯɚ ɬɚ ɦɟɬɨɞ ɡɛɭɪɟɧɢɯ ɯɜɢɥɶ. 5 ñåð³ÿ ô³çè÷íà «ßäðà, ÷àñòèíêè, ïîëÿ», âèï. 4 /44/ ßäåðíûå ðåàêöèè, âûçâàííûå... ɂɡɭɱɟɧɢɸ ɤɚɤ ɫɬɪɭɤɬɭɪɵ ɬɚɤ ɢ ɩɪɨɰɟɫɫɨɜ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɥɟɝɤɢɯ ɫɥɨɠɧɵɯ ɹɞɟɪ ɫ ɹɞɪɚɦɢ ɧɚɱɚɥɚ sdɨɛɨɥɨɱɤɢ ɢ ɜ ɨɛɥɚɫɬɢ ɹɞɪɚ 20Nɟ, ɜ ɱɚɫɬɧɨɫɬɢ, ɭɞɟɥɹɥɨɫɶ ɛɨɥɶɲɨɟ ɜɧɢɦɚɧɢɟ ɜ ɬɟɱɟɧɢɢ ɜɫɟɣ ɢɫɬɨɪɢɢ ɪɚɡɜɢɬɢɹ ɹɞɟɪɧɨɣ ɮɢɡɢɤɢ ɜɩɥɨɬɶ ɞɨ ɧɚɫɬɨɹɳɟɝɨ ɜɪɟɦɟɧɢ[1-4]. ȼ ɩɨɫɥɟɞɧɟɟ ɜɪɟɦɹ ɢɧɬɟɪɟɫ ɤ ɷɬɢɦ ɹɞɪɚɦ ɫɜɹɡɚɧ ɬɚɤ ɠɟ ɫ ɚɫɬɪɨɮɢɡɢɱɟɫɤɢɦɢ ɚɫɩɟɤɬɚɦɢ ɷɜɨɥɸɰɢɢ ɡɜɟɡɞ ɧɚ ɢɯ ɩɨɫɥɟɞɧɢɯ ɮɚɡɚɯ. Ɉɞɧɚɤɨ, ɞɨ ɫɟɝɨɞɧɹɲɧɟɝɨ ɞɧɹ ɫɭɳɟɫɬɜɭɟɬ ɨɱɟɧɶ ɨɝɪɚɧɢɱɟɧɧɨɟ ɤɨɥɢɱɟɫɬɜɨ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɯ ɞɚɧɧɵɯ ɨ ɯɚɪɚɤɬɟɪɢɫɬɢɤɚɯ ɹɞɟɪɧɵɯ ɪɟɚɤɰɢɣ, ɜɵɡɜɚɧɧɵɯ 3ɇɟ ɧɚ ɧɟɱɟɬɧɵɯ ɩɨ ɦɚɫɫɟ ɹɞɪɚɯ 19F, 21Ne ɢ 23Na. Ɋɟɚɤɰɢɹ 19 3 F( He,p)21Ne ɢɡ-ɡɚ ɛɨɥɶɲɨɣ ɩɨɥɨɠɢɬɟɥɶɧɨɣ ɜɟɥɢɱɢɧɵ ɬɟɩɥɨɬɵ ɪɟɚɤɰɢɢ ɢɫɩɨɥɶɡɨɜɚɥɚɫɶ ɞɥɹ ɩɨɥɭɱɟɧɢɹ ɜɨɡɛɭɠɞɟɧɧɵɯ ɫɨɫɬɨɹɧɢɣ 21Ne [5] ɢ ɞɥɹ ɡɚɫɟɥɟɧɢɹ ɭɪɨɜɧɟɣ ɩɪɢ ɢɫɫɥɟɞɨɜɚɧɢɢ ɭɝɥɨɜɵɯ ɪ-Ȗ ɤɨɪɪɟɥɹɰɢɣ, ɫ ɰɟɥɶɸ ɨɩɪɟɞɟɥɟɧɢɹ ɤɜɚɧɬɨɜɵɯ ɯɚɪɚɤɬɟɪɢɫɬɢɤ ɭɪɨɜɧɟɣ [6, 7]. ɂɡɭɱɟɧɢɸ ɮɭɧɤɰɢɣ ɜɨɡɛɭɠɞɟɧɢɹ (Ɏȼ) ɢ ɭɝɥɨɜɵɯ ɪɚɫɩɪɟɞɟɥɟɧɢɣ ɫɟɱɟɧɢɣ, ɯɚɪɚɤɬɟɪɢɡɭɸɳɢɯ ɦɟɯɚɧɢɡɦ ɩɪɨɬɟɤɚɧɢɹ ɪɟɚɤɰɢɢ, ɧɟ ɛɵɥɨ ɩɨɫɜɹɳɟɧɨ ɧɢ ɨɞɧɨɣ ɪɚɛɨɬɵ. ȼ ɪɟɚɤɰɢɢ 19F(3He,n)21Na ɩɪɢ ɷɧɟɪɝɢɢ ɧɚɥɟɬɚɸɳɢɯ ɱɚɫɬɢɰ 3ɇɟ 5,85 Ɇɷȼ ɢɫɫɥɟɞɨɜɚɥɢɫɶ ɭɝɥɨɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɞɥɹ ɫɢɥɶɧɨ ɡɚɫɟɥɹɟɦɵɯ ɜɵɫɨɤɨɜɨɡɛɭɠɞɟɧɧɵɯ ɫɨɫɬɨɹɧɢɣ 21Na ɫ ɢɡɨɫɩɢɧɨɦ Ɍ = 3/2. ɉɥɨɯɨɟ ɷɧɟɪɝɟɬɢɱɟɫɤɨɟ ɪɚɡɪɟɲɟɧɢɟ ɜ ɜɵɫɨɤɨɷɧɟɪɝɟɬɢɱɟɫɤɨɣ ɱɚɫɬɢ ɫɩɟɤɬɪɚ ɧɟɣɬɪɨɧɨɜ ɧɟ ɩɨɡɜɨɥɢɥɨ ɪɚɡɪɟɲɢɬɶ ɧɢɡɤɨɷɧɟɪɝɟɬɢɱɟɫɤɢɟ ɫɨɫɬɨɹɧɢɹ ɹɞɪɚ 21Na. ɏɚɪɚɤɬɟɪ ɭɝɥɨɜɵɯ ɡɚɜɢɫɢɦɨɫɬɟɣ ɞɥɹ ɜɵɞɟɥɟɧɧɵɯ ɫɨɫɬɨɹɧɢɣ ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɩɪɹɦɨɦɭ ɩɪɨɰɟɫɫɭ. [8]. Ɋɟɚɤɰɢɹ ɢɡɭɱɚɥɚɫɶ ɜ ɢɧɬɟɪɜɚɥɟ ɷɧɟɪɝɢɣ 4,2 – 10,0 Ɇɷȼ. ȼ ɪɟɚɤɰɢɢ 19F(3He,Į)18F ɢɫɫɥɟɞɨɜɚɥɢɫɶ ɮɭɧɤɰɢɢ ɜɨɡɛɭɠɞɟɧɢɹ ɢ ɭɝɥɨɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɞɥɹ ɩɟɪɟɯɨɞɨɜ ɜ ɞɜɚ ɨɬɧɨɫɢɬɟɥɶɧɨ ɫɢɥɶɧɨ ɡɚɫɟɥɹɟɦɵɯ ɫɨɫɬɨɹɧɢɹ 3,063 Ɇɷȼ 2+ Ɍ = 1 ɢ 3,134 Ɇɷȼ 1– Ɍ = 0 [9]. ɍɝɥɨɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɢɦɟɸɬ ɯɚɪɚɤɬɟɪ ɩɨɜɟɞɟɧɢɹ ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɣ ɩɪɹɦɨɦɭ ɨɞɧɨɫɬɚɞɢɣɧɨɦɭ ɩɪɨɰɟɫɫɭ ɩɨɞɯɜɚɬɚ ɩɪɢ ɷɧɟɪɝɢɹɯ 3ɇɟ ɜɵɲɟ 4 Ɇɷȼ. Ɏɭɧɤɰɢɢ ɜɨɡɛɭɠɞɟɧɢɹ ɷɬɨɣ ɪɟɚɤɰɢɢ ɜ ɢɧɬɟɪɜɚɥɟ ɷɧɟɪɝɢɣ 3ɇɟ 4,0 – 10,1 Ɇɷȼ ɩɨɤɚɡɵɜɚɸɬ ɮɥɭɤɬɭɢɪɭɸɳɢɣ ɯɚɪɚɤɬɟɪ ɫɨ ɫɬɪɭɤɬɭɪɚɦɢ, ɢɦɟɸɳɢɦɢ ɛɨɥɶɲɢɟ ɲɢɪɢɧɵ. ɗɬɨ ɦɨɠɟɬ ɭɤɚɡɵɜɚɬɶ ɧɚ ɡɧɚɱɢɬɟɥɶɧɵɣ ɜɤɥɚɞ ɦɟɯɚɧɢɡɦɨɜ ɨɛɪɚɡɨɜɚɧɢɹ ɫɨɫɬɚɜɧɨɣ ɫɢɫɬɟɦɵ, ɩɪɢɜɨɞɹɳɢɯ ɤɚɤ ɤ ɨɛɵɱɧɵɦ ɜɵɫɨɤɨɜɨɡɛɭɠɞɟɧɧɵɦ ɫɨɫɬɨɹɧɢɹɦ ɢɫɩɚɪɢɬɟɥɶɧɨɣ ɦɨɞɟɥɢ ɬɚɤ ɢ ɤ ɛɨɥɟɟ ɩɪɨɫɬɵɦ ɜɯɨɞɧɵɦ ɫɨɫɬɨɹɧɢɹɦ. ɉɪɢ ɛɨɥɟɟ ɜɵɫɨɤɢɯ ɷɧɟɪɝɢɹɯ ɜ ɪɚɛɨɬɟ [10]. ɞɥɹ ɞɚɧɧɨɣ ɪɟɚɤɰɢɢ ɢɡɭɱɚɥɚɫɶ ɩɟɪɟɯɨɞɵ ɜ ɫɨɫɬɨɹɧɢɹ ɫ ɨɬɪɢɰɚɬɟɥɶɧɨɣ ɱɟɬɧɨɫɬɶɸ. Ɉɞɧɚɤɨ, ɮɭɧɤɰɢɢ ɜɨɡɛɭɠɞɟɧɢɹ ɪɟɚɤɰɢɢ 19 3 F( He,6Li0)16Oɨ.ɫ. ɜ ɢɧɬɟɪɜɚɥɟ ɷɧɟɪɝɢɣ 3ɇɟ 2,0 – 6,0 Ɇɷȼ ɩɨɤɚɡɵɜɚɟɬ ɩɥɚɜɧɵɣ ɯɨɞ ɫ ɦɚɤɫɢɦɭɦɨɦ ɜ ɪɚɣɨɧɟ 4,5 – 5 Ɇɷȼ. ɍɝɥɨɜɨɟ ɪɚɫɩɪɟɞɟɥɟɧɢɟ ɩɪɢ ɷɧɟɪɝɢɢ 3ɇɟ 5,0 Ɇɷȼ ɩɨɤɚɡɵɜɚɟɬ ɯɚɪɚɤɬɟɪɧɵɟ ɨɫɨɛɟɧɧɨɫɬɢ ɩɪɹɦɨɝɨ ɩɪɨɰɟɫɫɚ ɢ ɨɩɢɫɵɜɚɟɬɫɹ Ȼɨɪɧɨɜɫɤɢɦ ɩɪɢɛɥɢɠɟɧɢɟɦ ɢɫɤɚɠɟɧɧɵɯ ɜɨɥɧ (Ȼɉɂȼ) ɫ ɧɭɥɟɜɵɦ ɪɚɞɢɭɫɨɦ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɞɥɹ ɩɟɪɟɞɚɱɢ ɬɪɢɬɨɧɚ, ɱɬɨ ɦɨɠɟɬ ɛɵɬɶ ɨɞɧɢɦ ɢɡ ɩɪɢɡɧɚɤɨɜ ɩɪɢɫɭɬɫɬɜɢɹ ɬɪɟɯɧɭɤɥɨɧɧɨɣ ɤɨɦɩɨɧɟɧɬɵ ɜ ɜɨɥɧɨɜɵɯ ɮɭɧɤɰɢɹɯ ɨɫɧɨɜɧɵɯ ɫɨɫɬɨɹɧɢɣ 19F ɢ 6Li [11]. ȼ ɪɹɞɟ ɪɚɛɨɬ ɩɪɟɞɫɬɚɜɥɟɧɵ ɚɧɚɥɢɡɵ ɭɝɥɨɜɵɯ ɪɚɫɩɪɟɞɟɥɟɧɢɣ ɪɟɚɤɰɢɢ 19F(3He,d)20Ne, ɢɡɦɟɪɟɧɧɵɯ ɩɪɢ ɷɧɟɪɝɢɹɯ ɜɵɲɟ 9,5 Ɇɷȼ ɢ ɢɦɟɸɳɢɟ ɯɚɪɚɤɬɟɪɧɵɟ ɩɪɢɡɧɚɤɢ ɩɪɹɦɨɝɨ ɩɪɨɰɟɫɫɚ ɪɟɚɤɰɢɢ ɩɪɨɬɨɧɧɨɣ ɩɟɪɟɞɚɱɢ. ɉɟɪɟɯɨɞɵ ɜ ɩɟɪɜɵɟ 0+ ɢ 2+ ɫɨɫɬɨɹɧɢɹ 20 Ne ɯɨɪɨɲɨ ɨɩɢɫɵɜɚɸɬɫɹ Ȼɉɂȼ ɫ ɧɭɥɟɜɵɦ ɪɚɞɢɭɫɨɦ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ [12]. Ɋɨɥɶ ɜɤɥɚɞɨɜ ɩɪɹɦɵɯ ɦɟɯɚɧɢɡɦɨɜ ɜɬɨɪɨɝɨ ɩɨɪɹɞɤɚ ɜ ɞɚɧɧɭɸ ɪɟɚɤɰɢɸ ɢɡɭɱɚɥɚɫɶ ɜ ɪɚɛɨɬɚɯ [13]. ɉɪɟɞɜɚɪɢɬɟɥɶɧɵɟ ɪɟɡɭɥɶɬɚɬɵ ɢɡɦɟɪɟɧɢɣ ɞɥɹ ɭɩɪɭɝɨɝɨ ɪɚɫɫɟɹɧɢɹ 3ɇɟ ɧɚ 19F ɢ ɪɟɚɤɰɢɢ 19F(3He,p)21Ne ɨɩɭɛɥɢɤɨɜɚɧɵ ɜ ɪɚɛɨɬɚɯ [14, 16, 17]. Ɋɟɡɭɥɶɬɚɬɵ ɢɡɦɟɪɟɧɢɣ ɮɭɧɤɰɢɣ ɜɨɡɛɭɠɞɟɧɢɹ ɢ ɭɝɥɨɜɵɯ ɪɚɫɩɪɟɞɟɥɟɧɢɣ ɞɥɹ ɪɟɚɤɰɢɢ 19F(3He,Į)18F ɩɪɟɞɫɬɚɜɥɟɧɵ ɜ ɞɚɧɧɨɣ ɪɚɛɨɬɟ. Ɋɚɛɨɬɚ ɩɨɫɜɹɳɟɧɚ ɢɫɫɥɟɞɨɜɚɧɢɸ ɜɨɡɦɨɠɧɵɯ ɦɟɯɚɧɢɡɦɨɜ ɩɪɨɬɟɤɚɧɢɹ ɹɞɟɪɧɵɯ ɪɟɚɤɰɢɣ ɜɵɡɜɚɧɧɵɯ ɧɢɡɤɨɷɧɟɪɝɟɬɢɱɟɫɤɢɦɢ ɢɨɧɚɦɢ 3ɇɟ ɧɚ ɹɞɪɟ 19F. Ɋɚɫɫɦɚɬɪɢɜɚɟɬɫɹ ɪɨɥɶ ɦɟɯɚɧɢɡɦɚ ɨɛɪɚɡɨɜɚɧɢɹ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ 22Na ɧɚ ɨɫɧɨɜɟ ɫɬɚɬɢɫɬɢɱɟɫɤɨɣ ɬɟɨɪɢɢ ɏɚɭɡɟɪɚɎɟɲɛɚɯɚ (ɏ-Ɏ), ɚ ɬɚɤɠɟ ɜɨɡɦɨɠɧɨɫɬɶ ɜɤɥɚɞɚ ɨɞɧɨɫɬɚɞɢɣɧɨɝɨ ɩɪɹɦɨɝɨ ɩɪɨɰɟɫɫɚ ɩɟɪɟɞɚɱɢ n-p ɩɚɪɵ ɧɭɤɥɨɧɨɜ ɧɚ ɨɫɧɨɜɟ ɨɰɟɧɨɤ ɨɩɢɫɚɧɢɹ ɮɨɪɦɵ ɭɝɥɨɜɵɯ ɪɚɫɩɪɟɞɟɥɟɧɢɣ ɜ ɪɚɦɤɚɯ Ȼɉɂȼ ɫ ɧɭɥɟɜɵɦ ɪɚɞɢɭɫɨɦ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɞɥɹ ɩɟɪɟɯɨɞɨɜ ɜ ɩɟɪɜɵɟ ɬɪɢ ɫɨɫɬɨɹɧɢɹ ɨɫɬɚɬɨɱɧɨɝɨ ɹɞɪɚ 21Ne ɜ ɪɟɚɤɰɢɢ 19F(3He,p)21Ne. ɋ ɩɨɦɨɳɶɸ ɬɟɨɪɢɢ ɏ-Ɏ ɢ Ȼɉɂȼ ɭɞɚɟɬɫɹ ɩɟɪɟɞɚɬɶ ɯɚɪɚɤɬɟɪ ɩɨɜɟɞɟɧɢɹ ɭɝɥɨɜɵɯ ɪɚɫɩɪɟɞɟɥɟɧɢɣ ɩɪɢ ɨɬɞɟɥɶɧɵɯ ɷɧɟɪɝɢɹɯ ɧɚɥɟɬɚɸɳɢɯ ɱɚɫɬɢɰ. Ɉɞɧɚɤɨ ɞɨɜɨɥɶɧɨ ɛɵɫɬɪɨɟ ɢɡɦɟɧɟɧɢɟ ɮɨɪɦɵ ɭɝɥɨɜɵɯ ɪɚɫɩɪɟɞɟɥɟɧɢɣ ɜ ɨɬɧɨɫɢɬɟɥɶɧɨ ɭɡɤɨɦ ɢɧɬɟɪɜɚɥɟ ɷɧɟɪɝɢɣ ɧɚɥɟɬɚɸɳɢɯ ɱɚɫɬɢɰ ɭɤɚɡɵɜɚɟɬ ɧɚ ɫɭɳɟɫɬɜɟɧɧɵɣ ɜɤɥɚɞ ɢɧɬɟɪɮɟɪɟɧɰɢɨɧɧɵɯ ɹɜɥɟɧɢɣ ɫɜɹɡɚɧɧɵɯ ɫ ɫɭɳɟɫɬɜɟɧɧɵɦ ɜɤɥɚɞɨɦ ɨɛɪɚɡɨɜɚɧɢɹ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ. 21 ɐɟɥɶ ɪɚɛɨɬɵ - ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨɟ ɢɫɫɥɟɞɨɜɚɧɢɟ ɫɟɱɟɧɢɣ ɭɩɪɭɝɨɝɨ ɪɚɫɫɟɹɧɢɹ 3ɇɟ ɧɚ 19F ɢ ɹɞɟɪɧɵɯ ɪɟɚɤɰɢɣ 19F (3ɇɟ,ɪ) Ne ɢ 19F (3ɇɟ,Į)18F ɜ ɢɧɬɟɪɜɚɥɟ ɷɧɟɪɝɢɣ 3ɇɟ 2,3 ÷ 4,2 Ɇɷȼ. ɆȿɌɈȾɂɄȺ ɗɄɋɉȿɊɂɆȿɇɌȺ ɂɡɦɟɪɟɧɢɹ ɩɪɨɜɨɞɢɥɢɫɶ ɧɚ ɜɟɪɬɢɤɚɥɶɧɨɦ ɷɥɟɤɬɪɨɫɬɚɬɢɱɟɫɤɨɦ ɭɫɤɨɪɢɬɟɥɟ ɗȽ-5 Ʌɚɛɨɪɚɬɨɪɢɢ ɧɟɣɬɪɨɧɧɨɣ ɮɢɡɢɤɢ Ɉɂəɂ ɝ. Ⱦɭɛɧɚ. ɍɫɤɨɪɟɧɧɵɣ ɩɭɱɨɤ ɢɨɧɨɜ 3ɇɟ ɩɨɫɥɟ ɩɪɨɯɨɠɞɟɧɢɹ 90º-ɦɚɝɧɢɬɧɨɝɨ ɚɧɚɥɢɡɚɬɨɪɚ ɮɨɤɭɫɢɪɨɜɚɥɫɹ ɫɢɫɬɟɦɨɣ ɤɜɚɞɪɭɩɨɥɶɧɵɯ ɥɢɧɡ ɢ, ɩɪɨɣɞɹ ɚɡɨɬɧɭɸ ɥɨɜɭɲɤɭ, ɪɚɡɞɚɬɨɱɧɵɣ ɦɚɝɧɢɬ ɢ ɫɢɫɬɟɦɭ ɤɨɥɥɢɦɚɬɨɪɨɜ, ɩɨɩɚɞɚɥ ɜ ɤɚɦɟɪɭ ɪɚɫɫɟɹɧɢɹ ɧɚ ɢɫɫɥɟɞɭɟɦɭɸ ɦɢɲɟɧɶ. ɂɫɩɨɥɶɡɨɜɚɥɢɫɶ ɦɢɲɟɧɢ ɞɜɭɯ ɬɢɩɨɜ: ɫɥɨɣ ɋɚF2 ɧɚɧɟɫɟɧɧɵɣ ɧɚ ɬɨɧɤɭɸ ɭɝɥɟɪɨɞɧɭɸ ɩɨɞɥɨɠɤɭ ɬɨɥɳɢɧɨɣ 10-15 ɦɤɝ/ɫɦ2 ɢɥɢ ɧɚ ɛɨɥɟɟ ɬɨɥɫɬɭɸ ɧɢɤɟɥɟɜɭɸ ɬɨɥɳɢɧɨɣ ~35 ɦɤɦ. ɉɪɢ ɢɡɦɟɪɟɧɢɹ ɮɭɧɤɰɢɣ ɜɨɡɛɭɠɞɟɧɢɢ ɢɫɩɨɥɶɡɨɜɚɥɢɫɶ ɦɢɲɟɧɢ ɬɨɥɳɢɧɨɣ ~40 ɦɤɝ/ɫɦ2,ɤɨɬɨɪɵɟ ɩɪɢ ɷɧɟɪɝɢɢ 3ɇɟ ɪɚɜɧɨɣ 3,4 Ɇɷȼ ɞɚɜɚɥɢ ɩɨɬɟɪɢ ɷɧɟɪɝɢɢ ¨ȿ~55 ɤɷȼ, ɩɪɢ ɢɡɦɟɪɟɧɢɢ ɭɝɥɨɜɵɯ ɪɚɫɩɪɟɞɟɥɟɧɢɣ ɫɟɱɟɧɢɣ ɢɫɩɨɥɶɡɨɜɚɥɢɫɶ ɛɨɥɟɟ ɬɨɥɫɬɵɟ ɦɢɲɟɧɢ ~80 ɦɤɝ/ɫɦ2.ɑɢɫɥɨ ɱɚɫɬɢɰ 3ɇɟ, ɩɚɞɚɸɳɢɯ ɧɚ ɦɢɲɟɧɶ, ɨɩɪɟɞɟɥɹɥɨɫɶ ɩɨ ɢɡɦɟɪɟɧɢɸ ɨɛɳɟɝɨ ɡɚɪɹɞɚ ɩɭɱɤɚ ɫ ɩɨɦɨɳɶɸ ɥɢɛɨ ɰɢɥɢɧɞɪɚ Ɏɚɪɚɞɟɹ ɭɫɬɚɧɨɜɥɟɧɧɨɝɨ ɡɚ ɦɢɲɟɧɶɸ ɫ ɬɨɧɤɨɣ ɩɨɞɥɨɠɤɨɣ, ɥɢɛɨ ɫ ɩɨɦɨɳɶɸ ɫɚɦɨɣ ɦɢɲɟɧɢ ɧɚ ɬɨɥɫɬɨɣ ɩɨɞɥɨɠɤɟ ɨɤɪɭɠɟɧɧɨɣ ɡɚɳɢɬɧɵɦ ɫɬɚɤɚɧɨɦ. Ⱦɥɹ ɢɡɦɟɪɟɧɢɹ ɫɩɟɤɬɪɨɜ ɭɩɪɭɝɨ ɪɚɫɫɟɹɧɧɵɯ 3ɇɟ ɢ Į-ɱɚɫɬɢɰ ɢɡ ɪɟɚɤɰɢɢ 19F(3He,Į)18F ɢɫɩɨɥɶɡɨɜɚɥɢɫɶ ɦɢɲɟɧɢ ɧɚ ɭɝɥɟɪɨɞɧɵɯ ɩɨɞɥɨɠɤɚɯ, ɚ ɩɪɨɬɨɧɨɜ ɢɡ ɪɟɚɤɰɢɢ 19F(3He,p)21Ne ɦɢɲɟɧɢ ɧɚ ɧɢɤɟɥɟɜɵɯ ɩɨɞɥɨɠɤɚɯ. ɗɧɟɪɝɟɬɢɱɟɫɤɢɟ ɫɩɟɤɬɪɵ ɱɚɫɬɢɰ ɢɡ ɪɟɚɤɰɢɣ ɢɡɦɟɪɹɥɢɫɶ ɩɨɥɭɩɪɨɜɨɞɧɢɤɨɜɵɦɢ ɫɩɟɤɬɪɨɦɟɬɪɚɦɢ ɧɚ ɨɫɧɨɜɟ: 6 «Â³ñíèê Õàðê³âñüêîãî óí³âåðñèòåòó», ¹ 880, 2009 Â.Ä. Ñàðàíà, Í.Ñ. Ëóöàé... ɚ) ɩɨɜɟɪɯɧɨɫɬɧɨ-ɛɚɪɶɟɪɧɵɯ ɡɨɥɨɬɨ-ɤɪɟɦɧɢɟɜɵɯ ɞɟɬɟɤɬɨɪɨɜ, ɢɡɝɨɬɨɜɥɟɧɧɵɯ ɢɡ ɧɢɡɤɨɨɦɧɨɝɨ ɤɪɟɦɧɢɹ (ȡ ~ 250 Ɉɦ/ɫɦ3) ɫ ɫɨɛɫɬɜɟɧɧɵɦ ɷɧɟɪɝɟɬɢɱɟɫɤɢɦ ɪɚɡɪɟɲɟɧɢɟɦ ɧɚ ɩɨɥɨɜɢɧɟ ɜɵɫɨɬɵ ɩɢɤɚ ¨ȿ1/2 ~25 - 30 ɤɷȼ ɞɥɹ ɢɡɦɟɪɟɧɢɹ Į-ɱɚɫɬɢɰ ɫ ɷɧɟɪɝɢɟɣ ɞɨ 10 Ɇɷȼ; ɢ ɛ) ɤɪɟɦɧɢɣ-ɥɢɬɢɟɜɵɯ ɫ P-i-N ɫɬɪɭɤɬɭɪɨɸ, ɪɚɛɨɱɚɹ ɬɨɥɳɢɧɚ ɤɨɬɨɪɵɯ ɩɨɡɜɨɥɹɥɚ ɢɡɦɟɪɹɬɶ ɷɧɟɪɝɢɢ ɩɪɨɬɨɧɨɜ ɞɨ 18-20 Ɇɷȼ ɫ ɫɨɛɫɬɜɟɧɧɵɦ ɷɧɟɪɝɟɬɢɱɟɫɤɢɦ ɪɚɡɪɟɲɟɧɢɟɦ ɞɥɹ ɩɪɨɬɨɧɨɜ ɧɚ ɩɨɥɭɜɵɫɨɬɟ ɩɢɤɚ ¨ȿ1/2 ~ 80 -100 ɤɷȼ ɩɪɢ ɤɨɦɧɚɬɧɨɣ ɬɟɦɩɟɪɚɬɭɪɟ. Ⱦɟɬɟɤɬɨɪɵ ɢɡɝɨɬɨɜɥɹɥɢɫɶ ɜ Ʌɚɛɨɪɚɬɨɪɢɢ ɹɞɟɪɧɵɯ ɩɪɨɛɥɟɦ Ɉɂəɂ. Ɋɢɫ. 2. ɋɩɟɤɬɪ ɩɪɨɬɨɧɨɜ ɢɡ ɪɟɚɤɰɢɢ 19F(3He,p)21Ne ɩɪɢ ɷɧɟɪɝɢɢ 3ɇɟ 3,58 Ɇɷȼ, ɢɡɦɟɪɟɧɧɨɝɨ ɩɨɞ ɭɝɥɨɦ șɥ = 80º. EĮ Ɇɷȼ Ɋɢɫ. 1. Ɋɟɡɭɥɶɬɚɬɵ ɢɫɫɥɟɞɨɜɚɧɢɹ ɭɩɪɭɝɨɝɨ ɪɚɫɫɟɹɧɢɹ 3ɇɟ ɧɚ 19F. ɚ – ɷɧɟɪɝɟɬɢɱɟɫɤɚɹ ɡɚɜɢɫɢɦɨɫɬɶ ɩɪɨɢɡɜɟɞɟɧɢɹ ɱɢɫɥɚ ɫɱɟɬɨɜ ɩɨɞ ɩɢɤɨɦ ɨɬ ɭɩɪɭɝɨɝɨ ɪɚɫɫɟɹɧɢɹ 3ɇɟ ɧɚ 19F ɧɚ ɤɜɚɞɪɚɬ ɷɧɟɪɝɢɢ ɧɚɥɟɬɚɸɳɢɯ ɱɚɫɬɢɰ. ɛ – ɫɩɟɤɬɪ ɭɩɪɭɝɨ ɪɚɫɫɟɹɧɧɵɯ ɢɨɧɨɜ 3ɇɟ+ ɧɚ ɦɢɲɟɧɢ ɋɚF2 + C (ɩɨɞɥɨɠɤɚ) ɩɪɢ ɷɧɟɪɝɢɢ 3,4 Ɇɷȼ ɧɚ ɭɝɨɥ șɥ = 80º . ɜ – ɭɝɥɨɜɨɟ ɪɚɫɩɪɟɞɟɥɟɧɢɟ ɨɬɧɨɲɟɧɢɹ ɢɡɦɟɪɟɧɧɨɝɨ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɝɨ ɫɟɱɟɧɢɹ ɭɩɪɭɝɨ ɪɚɫɫɟɹɧɢɹ 3ɇɟ ɧɚ 19F ɤ ɫɟɱɟɧɢɸ ɤɭɥɨɧɨɜɫɤɨɝɨ ɪɚɫɫɟɹɧɢɹ ɩɪɢ ɷɧɟɪɝɢɢ ɧɚɥɟɬɚɸɳɢɯ ɱɚɫɬɢɰ 3ɇɟ 4,0 Ɇɷȼ. (ɱɢɫɥɨ ɫɱɟɬɨɜ) NĮ (ɧɨɦɟɪ ɤɚɧɚɥɚ ) n Ɋɢɫ. 3. ɋɩɟɤɬɪ Į-ɱɚɫɬɢɰ ɢɡ ɪɟɚɤɰɢɢ 19F(3He,Į)18F ɢɡɦɟɪɟɧɧɵɣ ɩɪɢ ɷɧɟɪɝɢɢ 3 ɇɟ 3,40 Ɇɷȼ ɩɨɞ ɭɝɥɨɦ șɥ =160º. ɂɡɦɟɪɟɧɢɟ ɮɭɧɤɰɢɣ ɜɨɡɛɭɠɞɟɧɢɹ ɢ ɭɝɥɨɜɵɯ ɪɚɫɩɪɟɞɟɥɟɧɢɣ ɩɪɨɢɡɜɨɞɢɥɨɫɶ ɨɞɧɨɜɪɟɦɟɧɧɨ ɫ ɩɨɦɨɳɶɸ ɩɹɬɢ ɤɪɟɦɧɢɣ-ɥɢɬɢɟɜɵɯ ɢɥɢ ɬɪɟɯ ɩɨɜɟɪɯɧɨɫɬɧɨ-ɛɚɪɶɟɪɧɵɯ ɞɟɬɟɤɬɨɪɨɜ, ɪɚɫɩɨɥɨɠɟɧɧɵɯ ɧɚ ɜɪɚɳɚɸɳɟɟɫɹ ɬɭɪɟɥɢ, ɢ ɨɞɧɨɝɨ ɦɨɧɢɬɨɪɧɨɝɨ ɞɟɬɟɤɬɨɪɚ ɪɚɫɩɨɥɨɠɟɧɧɨɝɨ ɩɨɞ ɭɝɥɨɦ 90º ɨɬɧɨɫɢɬɟɥɶɧɨ ɧɚɩɪɚɜɥɟɧɢɹ ɩɭɱɤɚ ɛɨɦɛɚɪɞɢɪɭɸɳɢɯ ɢɨɧɨɜ. ȼɪɚɳɟɧɢɟɦ ɬɭɪɟɥɢ ɨɛɟɫɩɟɱɢɜɚɥɢɫɶ ɢɡɦɟɪɟɧɢɹ ɜ ɢɧɬɟɪɜɚɥɟ ɭɝɥɨɜ 0 – 160°. Ⱦɢɚɦɟɬɪ ɩɹɬɧɚ ɩɭɱɤɚ ɧɚ ɦɢɲɟɧɢ ɫɨɫɬɚɜɥɹɥ ɩɪɢɛɥɢɡɢɬɟɥɶɧɨ 2 ɦɦ. Ⱥɩɟɪɬɭɪɚ ɩɭɱɤɚ ɱɚɫɬɢɰ, ɜɵɥɟɬɚɸɳɢɯ ɢɡ ɦɢɲɟɧɢ, ɡɚɞɚɜɚɥɚɫɶ ɞɢɚɮɪɚɝɦɚɦɢ, ɪɚɫɩɨɥɨɠɟɧɧɵɦɢ ɜɨɡɥɟ ɜɯɨɞɧɨɝɨ ɨɤɧɚ ɞɟɬɟɤɬɨɪɨɜ ɢ ɫɨɫɬɚɜɥɹɥɚ 7,5º ɞɥɹ ɢɡɦɟɪɟɧɢɹ ɩɪɨɬɨɧɧɨɝɨ ɫɩɟɤɬɪɚ ɢ 10° ɞɥɹ ɢɡɦɟɪɟɧɢɹ ɫɩɟɤɬɪɨɜ Į-ɱɚɫɬɢɰ. Ⱦɥɹ ɭɦɟɧɶɲɟɧɢɹ ɡɚɝɪɭɡɤɢ ɤɪɟɦɧɢɣ-ɥɢɬɢɟɜɵɯ ɞɟɬɟɤɬɨɪɨɜ ɨɬ ɭɩɪɭɝɨ ɪɚɫɫɟɹɧɧɵɯ 3ɇɟ ɢ ɞɥɹ ɨɱɢɫɬɤɢ ɫɩɟɤɬɪɚ 7 ñåð³ÿ ô³çè÷íà «ßäðà, ÷àñòèíêè, ïîëÿ», âèï. 4 /44/ ßäåðíûå ðåàêöèè, âûçâàííûå... ɩɪɨɬɨɧɨɜ ɨɬ ɡɚɝɪɹɡɧɟɧɢɹ Į-ɩɢɤɚɦɢ ɩɟɪɟɞ ɞɢɚɮɪɚɝɦɚɦɢ ɞɟɬɟɤɬɨɪɨɜ ɩɪɨɬɨɧɨɜ ɭɫɬɚɧɚɜɥɢɜɚɥɢɫɶ ɚɥɸɦɢɧɢɟɜɵɟ ɮɨɥɶɝɢ ɨɛɳɟɣ ɬɨɥɳɢɧɨɣ 60 – 100 ɦɤɦ. (ɩɪɢ ɢɡɦɟɪɟɧɢɹɯ ɜ ɡɚɞɧɟɣ ɩɨɥɭɫɮɟɪɟ). ɉɪɢ ɢɡɦɟɪɟɧɢɹɯ (3ɇɟ,ɪ) ɪɟɚɤɰɢɣ ɜ ɩɟɪɟɞɧɟɣ ɩɨɥɭɫɮɟɪɟ ɪɨɥɶ ɬɨɪɦɨɡɹɳɢɯ ɮɨɥɶɝ ɩɟɪɟɞ ɞɟɬɟɤɬɨɪɨɦ ɜɵɩɨɥɧɹɥɚ ɬɨɥɫɬɚɹ ɩɨɞɥɨɠɤɚ ɦɢɲɟɧɢ. ɉɪɢ ɪɟɝɢɫɬɪɚɰɢɢ Į-ɱɚɫɬɢɰ ɭɫɬɚɧɚɜɥɢɜɚɥɚɫɶ ɦɢɧɢɦɚɥɶɧɚɹ ɬɨɥɳɢɧɚ ɞɟɬɟɤɬɨɪɚ ɧɟɨɛɯɨɞɢɦɚɹ ɞɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɷɧɟɪɝɢɢ ɭ ɫɚɦɨɣ ɜɵɫɨɤɨɷɧɟɪɝɟɬɢɱɟɫɤɨɣ ɝɪɭɩɩɵ ɢ ɭɫɬɚɧɚɜɥɢɜɚɥɢɫɶ ɮɨɥɶɝɢ ɞɥɹ ɨɬɫɟɤɚɧɢɹ ɭɩɪɭɝɨ ɪɚɫɫɟɹɧɧɨɝɨ 3ɇɟ ɞɥɹ ɢɡɦɟɪɟɧɢɣ ɩɨɞ ɩɟɪɟɞɧɢɦɢ ɭɝɥɚɦɢ. ɂɦɩɭɥɶɫɵ ɨɬ ɞɟɬɟɤɬɨɪɨɜ ɱɟɪɟɡ ɡɚɪɹɞɨɜɨ-ɱɭɜɫɬɜɢɬɟɥɶɧɵɟ ɩɪɟɞɭɫɢɥɢɬɟɥɢ, ɮɨɪɦɢɪɭɸɳɢɟ ɭɫɢɥɢɬɟɥɢ, ɩɨɪɨɝɨɜɵɟ ɭɫɢɥɢɬɟɥɢ ɩɨɞɚɜɚɥɢɫɶ ɧɚ ɤɨɞɢɪɨɜɳɢɤ ɧɨɦɟɪɚ ɝɪɭɩɩɵ ɤɚɧɚɥɨɜ ɦɧɨɝɨɤɚɧɚɥɶɧɨɝɨ ɚɧɚɥɢɡɚɬɨɪɚ Ⱥɂ4096 (ɦɚɝɧɢɬɧɚɹ ɩɚɦɹɬɶ ɚɧɚɥɢɡɚɬɨɪɚ ɪɚɡɛɢɜɚɥɚɫɶ ɧɚ 8 ɝɪɭɩɩ ɩɨ 512 ɤɚɧɚɥɨɜ ɜ ɤɚɠɞɨɣ ɝɪɭɩɩɟ). Ⱦɥɹ ɭɱɟɬɚ ɩɪɨɫɱɟɬɨɜ ɚɧɚɥɢɡɚɬɨɪɚ ɜ ɫɩɟɤɬɪɚɯ ɧɨɪɦɢɪɨɜɤɭ ɱɢɫɥɚ ɫɱɟɬɨɜ ɩɨɞ ɩɢɤɚɦɢ ɩɪɨɢɡɜɨɞɢɥɢ ɧɚ ɱɢɫɥɨ ɫɱɟɬɨɜ ɢɦɩɭɥɶɫɨɜ ɜ ɥɢɧɢɢ ɫɩɟɤɬɪɚ ɨɬ ɢɦɩɭɥɶɫɨɜ ɢɧɬɟɝɪɚɬɨɪɚ ɬɨɤɚ ɫ ɰɢɥɢɧɞɪɚ Ɏɚɪɚɞɟɹ ɡɚɩɢɫɚɧɧɨɝɨ ɜ ɨɬɞɟɥɶɧɨɣ ɝɪɭɩɩɟ ɚɧɚɥɢɡɚɬɨɪɚ ɜ ɧɨɦɟɪɚɯ ɤɚɧɚɥɨɜ ɩɪɢɛɥɢɡɢɬɟɥɶɧɨ ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɯ ɫɪɟɞɧɟ ɜɡɜɟɲɟɧɧɨɦɭ ɩɨ ɢɡɦɟɪɹɟɦɵɦ ɫɩɟɤɬɪɚɦ ɜ ɞɪɭɝɢɯ ɝɪɭɩɩɚɯ. ɗɬɨ ɱɢɫɥɨ ɨɬɫɱɟɬɨɜ ɤɨɧɬɪɨɥɢɪɭɟɬɫɹ ɫ ɩɨɦɨɳɶɸ ɨɬɞɟɥɶɧɨɝɨ ɩɟɪɟɫɱɟɬɧɨɝɨ ɩɪɢɛɨɪɚ. ɂɧɮɨɪɦɚɰɢɹ ɨ ɫɩɟɤɬɪɚɯ, ɧɚɤɨɩɥɟɧɧɚɹ ɜ ɦɚɝɧɢɬɧɨɦ ɡɚɩɨɦɢɧɚɸɳɟɦ ɭɫɬɪɨɣɫɬɜɟ ɚɧɚɥɢɡɚɬɨɪɚ ɱɟɪɟɡ ɤɨɦɦɭɬɚɬɨɪ ɜɵɜɨɞɢɥɚɫɶ ɥɢɛɨ ɧɚ ɰɢɮɪɨɩɟɱɚɬɶ, ɥɢɛɨ ɧɚ ɝɪɚɮɨɩɨɫɬɪɨɢɬɟɥɶ ɢɥɢ ɡɚɩɨɦɢɧɚɥɚɫɶ ɜ ɜɵɱɢɫɥɢɬɟɥɶɧɨɣ ɦɚɲɢɧɟ ȻɗɋɆ -3. Ȼɨɥɟɟ ɞɟɬɚɥɶɧɨɟ ɨɩɢɫɚɧɢɟ ɷɥɟɤɬɪɨɧɧɨɝɨ ɨɛɨɪɭɞɨɜɚɧɢɹ ɞɚɧɨ ɜ ɪɚɛɨɬɟ [14]. ɇɚ ɪɢɫ. 1ɛ, 2 ɢ 3 ɩɪɟɞɫɬɚɜɥɟɧɵ ɩɪɢɦɟɪɵ ɫɩɟɤɬɪɨɜ ɢɡɦɟɪɟɧɧɵɯ ɜ ɭɩɪɭɝɨɦ ɪɚɫɫɟɹɧɢɢ 3ɇɟ ɧɚ ɦɢɲɟɧɢ ɢɡ ɋɚF2 ɧɚ ɭɝɥɟɪɨɞɧɨɣ ɩɨɞɥɨɠɤɟ, ɢ ɜ ɪɟɚɤɰɢɹɯ 19F(3He,Į)18F ɢ 19F(3He,p)21Ne, ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ. ɉɨɥɧɨɟ ɷɧɟɪɝɟɬɢɱɟɫɤɨɟ ɪɚɡɪɟɲɟɧɢɟ ɷɤɫɩɟɪɢɦɟɧɬɚ (ɩɭɱɟɤ + ɦɢɲɟɧɶ + ɝɟɨɦɟɬɪɢɹ ɷɤɫɩɟɪɢɦɟɧɬɚ + ɞɟɬɟɤɬɨɪ) ɫɨɫɬɚɜɥɹɥɨ ɞɥɹ 3ɇɟ ǻȿ1/2= 30 ɤɷȼ, ɞɥɹ Į-ɫɩɟɤɬɪɨɜ ǻȿ1/2=45 – 55 ɤɷȼ, ɞɥɹ ɫɩɟɤɬɪɚ ɩɪɨɬɨɧɨɜ ǻȿ1/2 = 140 – 150 ɤɷȼ. ɉɪɢ ɨɩɪɟɞɟɥɟɧɢɢ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɝɨ ɫɟɱɟɧɢɹ ɢɡɦɟɪɹɥɢ ɩɥɨɳɚɞɶ ɩɢɤɚ ɞɥɹ ɢɫɫɥɟɞɭɟɦɨɝɨ ɭɪɨɜɧɹ ɨɫɬɚɬɨɱɧɨɝɨ ɹɞɪɚ. ɑɢɫɥɨ ɚɬɨɦɨɜ ɜ ɦɢɲɟɧɢ ɧɚ ɭɝɥɟɪɨɞɧɨɣ ɩɨɞɥɨɠɤɟ ɨɩɪɟɞɟɥɹɥɢ ɩɨ ɭɩɪɭɝɨɦɭ ɪɚɫɫɟɹɧɢɸ 3ɇɟ. ɍɩɪɭɝɨɟ ɪɚɫɫɟɹɧɢɟ ɩɪɟɞɩɨɥɚɝɚɥɨɫɶ ɱɢɫɬɨ ɪɟɡɟɪɮɨɪɞɨɜɫɤɢɦ. ɋɩɪɚɜɟɞɥɢɜɨɫɬɶ ɷɬɨɝɨ ɩɪɟɞɩɨɥɨɠɟɧɢɹ ɩɨɞɬɜɟɪɠɞɚɟɬɫɹ ɞɜɭɦɹ ɤɨɧɬɪɨɥɶɧɵɦɢ ɨɩɵɬɚɦɢ. ȼ ɩɟɪɜɨɦ ɢɡɦɟɪɹɥɚɫɶ ɮɭɧɤɰɢɹ ɜɨɡɛɭɠɞɟɧɢɹ ɜ ɢɧɬɟɪɜɚɥɟ ɷɧɟɪɝɢɣ ɛɨɦɛɚɪɞɢɪɭɸɳɢɯ ɢɨɧɨɜ 3ɇɟ ɨɬ 3,6 ɞɨ 4.1 Ɇɷȼ. ɉɨɤɚɡɚɧɨ (ɫɦ. ɪɢɫ. 1ɚ), ɱɬɨ ɡɚɜɢɫɢɦɨɫɬɶ NE2 ɨɬ ȿ(3ɇɟ) (N– ɱɢɫɥɨ ɫɱɟɬɨɜ ɩɨɞ ɩɢɤɨɦ) ɜ ɢɧɬɟɪɜɚɥɟ ɨɲɢɛɨɤ ɷɤɫɩɟɪɢɦɟɧɬɚ (§ 2%) ɩɨɫɬɨɹɧɧɚ ɢ ɧɟ ɡɚɜɢɫɢɬ ɨɬ ɷɧɟɪɝɢɢ. ȼ ɞɪɭɝɨɦ ɷɤɫɩɟɪɢɦɟɧɬɟ ɢɡɦɟɪɹɥɚɫɶ ɭɝɥɨɜɚɹ ɡɚɜɢɫɢɦɨɫɬɶ ɫɟɱɟɧɢɹ ɨɬ ɭɝɥɚ (ɪɢɫ. 1 ɜ). ȼɢɞɧɨ, ɱɬɨ ɨɬɧɨɲɟɧɢɟ ɢɡɦɟɪɟɧɧɨɝɨ ɫɟɱɟɧɢɹ ı(ș) ɤ ɪɟɡɟɪɮɨɪɞɨɜɫɤɨɦɭ, ɪɚɫɫɱɢɬɚɧɧɨɦɭ ɩɪɨɝɪɚɦɦɨɣ ɞɥɹ ɨɩɬɢɱɟɫɤɨɣ ɦɨɞɟɥɢ [15] ɬɨɥɶɤɨ ɫ ɨɞɧɢɦ ɤɭɥɨɧɨɜɫɤɢɦ ɩɨɬɟɧɰɢɚɥɨɦ - ıR(ș) ɜ ɩɪɟɞɟɥɚɯ ɫɬɚɬɢɫɬɢɱɟɫɤɢɯ ɨɲɢɛɨɤ ( § 3%) ɹɜɥɹɟɬɫɹ ɩɨɫɬɨɹɧɧɵɦ ɢ ɛɥɢɡɤɢɦ ɤ ɟɞɢɧɢɰɟ. ɗɧɟɪɝɟɬɢɱɟɫɤɚɹ ɲɤɚɥɚ ɷɥɟɤɬɪɨɫɬɚɬɢɱɟɫɤɨɝɨ ɝɟɧɟɪɚɬɨɪɚ ɤɚɥɢɛɪɨɜɚɥɚɫɶ ɩɨ ɩɨɪɨɝɭ ɪɟɚɤɰɢɢ 7Li(p,n)7Be ɫ ɩɨɝɪɟɲɧɨɫɬɶɸ ɧɟ ɛɨɥɟɟ 1%. Ɋɚɡɛɪɨɫ ɩɨ ɷɧɟɪɝɢɢ ɞɥɹ ɩɭɱɤɚ ɜ ɰɟɧɬɪɟ ɦɢɲɟɧɢ ɧɟ ɩɪɟɜɵɲɚɥ 8 ɤɷȼ. ɊȿɁɍɅɖɌȺɌɕ ɂɁɆȿɊȿɇɂɃ ɋɩɟɤɬɪɵ ɪɟɝɢɫɬɪɢɪɭɟɦɵɯ ɱɚɫɬɢɰ ɇɚ ɪɢɫ. 1ɛ ɩɨɤɚɡɚɧ ɫɩɟɤɬɪ ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɣ ɭɩɪɭɝɨɦɭ ɪɚɫɫɟɹɧɢɸ ɢɨɧɨɜ 3ɇɟ ɫ ɷɧɟɪɝɢɟɣ ȿ(3ɇɟ) =3,4 Ɇɷȼ ɧɚ ɦɢɲɟɧɢ ɢɡ ɋɚF2 ɫ ɬɨɧɤɨɣ ɭɝɥɟɪɨɞɧɨɣ ɩɨɞɥɨɠɤɨɣ ɩɨɞ ɭɝɥɨɦ ɢɡɦɟɪɟɧɢɹ 80º. ȼ ɫɩɟɤɬɪɟ ɧɚɛɥɸɞɚɟɬɫɹ ɡɚɝɪɹɡɧɟɧɢɟ ɤɢɫɥɨɪɨɞɨɦ ɢ ɬɹɠɟɥɵɦ ɷɥɟɦɟɧɬɨɦ ɢɡ ɦɚɬɟɪɢɚɥɚ ɋɚF2, ɢɫɩɨɥɶɡɨɜɚɧɧɨɝɨ ɞɥɹ ɢɡɝɨɬɨɜɥɟɧɢɹ ɦɢɲɟɧɢ. ɉɪɢ ɷɧɟɪɝɢɢ ɧɚɥɟɬɚɸɳɢɯ ɱɚɫɬɢɰ 4,0 Ɇɷȼ ɪɚɡɪɟɲɟɧɢɟ ɫɩɟɤɬɪɨɦɟɬɪɚ ɩɨɡɜɨɥɹɟɬ ɪɚɡɞɟɥɹɬɶ ɩɢɤɢ 19F ɢ 16Ɉ ɩɪɢ ɭɝɥɚɯ ɪɚɫɫɟɹɧɢɹ ɞɨ 30º. ɋ ɩɨɦɨɳɶɸ ɭɩɪɭɝɨɝɨ ɪɚɫɫɟɹɧɢɹ ɨɩɪɟɞɟɥɹɥɚɫɶ ɭɫɬɨɣɱɢɜɨɫɬɶ ɦɢɲɟɧɢ ɩɨɞ ɩɭɱɤɨɦ ɩɭɬɟɦ ɨɩɪɟɞɟɥɟɧɢɹ ɫɬɟɯɢɨɦɟɬɪɢɢ ɋɚF2 ɞɨ ɢ ɩɨɫɥɟ ɧɟɩɪɟɪɵɜɧɨɝɨ ɨɛɥɭɱɟɧɢɹ ɦɢɲɟɧɢ ɧɚ ɭɝɥɟɪɨɞɧɨɣ ɩɨɞɥɨɠɤɟ ɜ ɬɟɱɟɧɢɟ ɞɜɭɯ ɫɭɬɨɤ. Ɋɚɡɧɢɰɚ ɫɨɫɬɚɜɥɹɥɚ ɧɟ ɛɨɥɟɟ 2% ɩɪɢ ɫɪɟɞɧɟɦ ɬɨɤɟ ɩɭɱɤɚ ɱɟɪɟɡ ɦɢɲɟɧɶ ɩɨɪɹɞɤɚ 0,5 ɦɤȺ. ɇɚ ɪɢɫ. 2 ɩɪɟɞɫɬɚɜɥɟɧ ɬɢɩɢɱɧɵɣ ɫɩɟɤɬɪ ɩɪɨɬɨɧɨɜ ɢɡ ɪɟɚɤɰɢɢ 19F(3He,p)21Ne, ɢɡɦɟɪɟɧɧɵɣ ɩɨɞ ɭɝɥɨɦ 80º ɩɪɢ ɷɧɟɪɝɢɢ ȿ(3ɇɟ) = 3,58 Ɇɷȼ. ɂɡ ɫɪɚɜɧɟɧɢɹ ɫ ɢɡɜɟɫɬɧɵɦ ɫɩɟɤɬɪɨɦ ɨɫɬɚɬɨɱɧɨɝɨ ɹɞɪɚ 21Ne, ɩɪɟɞɫɬɚɜɥɟɧɧɵɦ ɧɚ ɷɬɨɦ ɠɟ ɪɢɫɭɧɤɟ ɜ ɫɨɨɬɜɟɬɫɬɜɭɸɳɟɦ ɦɚɫɲɬɚɛɟ ɩɨɤɚɡɵɜɚɟɬ, ɱɬɨ ɜ ɫɩɟɤɬɪɟ ɧɚɛɥɸɞɚɟɬɫɹ ɪɹɞ ɱɟɬɤɨ ɪɚɡɪɟɲɟɧɧɵɯ ɩɨ ɷɧɟɪɝɢɢ ɝɪɭɩɩ ɩɪɨɬɨɧɨɜ ɪɨ, ɪ1 ɢ ɪ2, ɤɨɬɨɪɵɟ ɫɨɨɬɜɟɬɫɬɜɭɸɬ ɨɫɧɨɜɧɨɦɭ 3/2+, ɜɨɡɛɭɠɞɟɧɧɵɦ ɫɨɫɬɨɹɧɢɹɦ 0,35 Ɇɷȼ 5/2+ ɢ 1.75 Ɇɷȼ 7/2+. Ⱦɪɭɝɢɟ ɧɚɛɥɸɞɚɟɦɵɟ ɨɬɞɟɥɶɧɵɟ ɝɪɭɩɩɵ ɩɪɨɬɨɧɨɜ ɨɬɧɨɫɹɬɫɹ ɤ ɩɟɪɟɤɪɵɜɚɸɳɢɦɫɹ ɢɡ-ɡɚ ɧɟɞɨɫɬɚɬɨɱɧɨɝɨ ɷɧɟɪɝɟɬɢɱɟɫɤɨɝɨ ɪɚɡɪɟɲɟɧɢɹ ɦɭɥɶɬɢɩɥɟɬɚɦ ɭɪɨɜɧɟɣ. Cɩɟɤɬɪ ɯɨɪɨɲɨ ɫɨɝɥɚɫɭɟɬɫɹ ɫɨ ɫɩɟɤɬɪɨɦ ɢɡɦɟɪɟɧɧɵɦ ɧɚ ɦɚɝɧɢɬɧɨɦ ɫɩɟɤɬɪɨɦɟɬɪɟ [5]. ɇɚɛɥɸɞɚɟɬɫɹ ɬɚɤ ɠɟ ɜɤɥɚɞ ɫɨɩɭɬɫɬɜɭɸɳɟɣ ɪɟɚɤɰɢɟɣ 13ɋ(3ɇɟ,ɪ)15Nɨ.ɫ. ɨɬ 13ɋ ɜɯɨɞɹɳɟɝɨ ɜ ɫɨɫɬɚɜ ɩɨɞɥɨɠɤɢ, ɱɬɨ ɩɪɢɜɨɞɢɥɨ ɤ ɧɟɨɛɯɨɞɢɦɨɫɬɢ ɜɜɨɞɢɬɶ ɩɨɩɪɚɜɤɢ ɜ ɪɟɡɭɥɶɬɚɬɵ ɢɡɦɟɪɟɧɢɣ ɭɝɥɨɜɵɯ ɪɚɫɩɪɟɞɟɥɟɧɢɣ ɩɪɢ ɷɧɟɪɝɢɹɯ ɧɚɥɟɬɚɸɳɢɯ ɱɚɫɬɢɰ ɜɵɲɟ 3,7 Ɇɷȼ, ɱɬɨ ɩɨɧɢɠɚɟɬ ɞɨɫɬɨɜɟɪɧɨɫɬɶ ɩɨɥɭɱɟɧɧɵɯ ɪɟɡɭɥɶɬɚɬɨɜ ɞɥɹ ɝɪɭɩɩɵ ɪ2. ɋɥɟɞɭɟɬ ɨɬɦɟɬɢɬɶ ɨɬɫɭɬɫɬɜɢɟ ɡɧɚɱɢɬɟɥɶɧɵɯ ɨɬɥɢɱɢɣ ɜ ɢɧɬɟɧɫɢɜɧɨɫɬɢ ɡɚɫɟɥɟɧɢɹ ɷɬɢɯ ɧɢɡɤɨɥɟɠɚɳɢɯ ɭɪɨɜɧɟɣ ɨɫɬɚɬɨɱɧɨɝɨ ɹɞɪɚ ɜ ɞɚɧɧɨɣ ɪɟɚɤɰɢɢ. ɗɬɨ ɦɨɠɟɬ ɛɵɬɶ ɫɜɹɡɚɧɨ ɫ ɨɛɳɟɣ (ɨɞɢɧɚɤɨɜɨɣ) ɩɪɢɪɨɞɵ ɷɬɢɯ ɭɪɨɜɧɟɣ. ɗɬɢ ɭɪɨɜɧɢ ɹɜɥɹɸɬɫɹ ɱɥɟɧɚɦɢ ɯɨɪɨɲɨ ɪɚɡɜɢɬɨɣ Ʉʌ = 3/2+ (ɨɫɧɨɜɧɨɟ ɫɨɫɬɨɹɧɢɟ) ɜɪɚɳɚɬɟɥɶɧɨɣ ɩɨɥɨɫɵ ɫɜɹɡɚɧɧɨɣ ɫ ɩɨɥɨɠɟɧɢɟɦ ɧɟ ɫɩɚɪɟɧɧɨɝɨ ɧɭɤɥɨɧɚ (ɧɟɣɬɪɨɧɚ) ɧɚ ɇɢɥɶɫɨɧɨɜɫɤɨɣ ɨɪɛɢɬɟ Į = 7 ɩɨɜɟɪɯ ɜɵɬɹɧɭɬɨɝɨ ɤɨɪɚ, ɯɚɪɚɤɬɟɪɢɡɭɟɦɨɝɨ ɞɟɮɨɪɦɚɰɢɟɣ Ș = + 4 [18]. Ɍɨɝɞɚ ɤɚɤ, ɜ ɦɢɤɪɨɫɤɨɩɢɱɟɫɤɨɦ ɨɩɢɫɚɧɢɢ ɨɛɨɥɨɱɟɱɧɨɣ ɦɨɞɟɥɢ ɜɨɡɧɢɤɚɸɬ ɬɪɭɞɧɨɫɬɢ ɫɜɹɡɚɧɧɵɟ ɫ ɫɭɳɟɫɬɜɨɜɚɧɢɟɦ ɧɢɡɤɨɷɧɟɪɝɟɬɢɱɟɫɤɢɯ ɫɨɫɬɨɹɧɢɣ ɩɨɥɨɠɢɬɟɥɶɧɨɣ ɱɟɬɧɨɫɬɢ ɫ ɜɵɫɨɤɢɦ ɫɩɢɧɨɦ, ɬɚɤɢɯ, ɤɚɤ 1,75 Ɇɷȼ 7/2+ ɢ 2,809 Ɇɷȼ 9/2+ , ɜ ɬɟɪɦɢɧɚɯ ɦɨɞɟɥɢ ɨɛɨɥɨɱɟɤ ɧɚɡɵɜɚɟɦɵɯ ”J-ɡɚɩɪɟɳɟɧɧɵɦɢ”, ɩɨɫɤɨɥɶɤɭ ɨɧɢ ɩɨɱɬɢ ɧɟ ɫɨɞɟɪɠɚɬ ɜɤɥɚɞɚ ɨɬ g7/2 ɢ ɞɪɭɝɢɯ ɛɨɥɟɟ ɜɵɫɨɤɢɯ ɨɞɧɨɧɟɣɬɪɨɧɧɵɯ ɨɪɛɢɬ. ɋɥɟɞɭɸɳɢɟ ɬɪɢ 8 «Â³ñíèê Õàðê³âñüêîãî óí³âåðñèòåòó», ¹ 880, 2009 Â.Ä. Ñàðàíà, Í.Ñ. Ëóöàé... ɢɡɨɥɢɪɨɜɚɧɧɵɯ ɩɢɤɚ ɨɛɪɚɡɨɜɚɧɵ ɝɪɭɩɩɚɦɢ ɩɪɨɬɨɧɨɜ ɪ3-5, ɪ6-8 ɢ ɪ9-12 ɹɜɥɹɸɬɫɹ ɫɭɦɦɨɣ ɫɢɥɶɧɨ ɩɟɪɟɤɪɵɜɚɸɳɢɯɫɹ ɬɪɢɩɥɟɬɨɜ ɢ ɤɜɚɞɪɭɩɥɟɬɚ ɝɪɭɩɩ ɩɪɨɬɨɧɨɜ. ȼ ɨɛɥɚɫɬɢ ɧɢɡɤɢɯ ɷɧɟɪɝɢɣ ɧɚɥɟɬɚɸɳɢɯ ɱɚɫɬɢɰ ɧɟɬ ɩɪɟɞɩɨɫɵɥɨɤ ɤ ɬɨɦɭ, ɱɬɨ ɜ ɷɬɢɯ ɩɢɤɚɯ ɛɭɞɟɬ ɞɨɦɢɧɢɪɭɸɳɢɣ ɜɤɥɚɞ ɨɬ ɤɚɤɨɣ ɥɢɛɨ ɨɞɧɨɣ ɢɥɢ ɞɜɭɯ ɝɪɭɩɩ, ɱɬɨ ɩɨɡɜɨɥɢɥɢ ɛɵ ɜɵɞɟɥɢɬɶ ɢɯ ɜɤɥɚɞ. ɉɨ ɷɬɨɦɭ ɷɬɢ ɝɪɭɩɩɵ ɜ ɪɚɛɨɬɟ ɧɟ ɪɚɫɫɦɚɬɪɢɜɚɥɢɫɶ. ɇɚ ɪɢɫ. 3 ɩɪɟɞɫɬɚɜɥɟɧ ɬɢɩɢɱɧɵɣ ɫɩɟɤɬɪ Į-ɱɚɫɬɢɰ ɩɨɥɭɱɚɟɦɵɯ ɜ ɹɞɟɪɧɨɣ ɪɟɚɤɰɢɢ 19F(3He,Į)18F, ɢɡɦɟɪɟɧɧɵɣ ɩɨɞ ɭɝɥɨɦ 160º ɩɪɢ ɷɧɟɪɝɢɢ ɧɚɥɟɬɚɸɳɢɯ ɢɨɧɨɜ 3ɇɟ ȿ(3ɇɟ) = 3,4 Ɇɷȼ. ɗɧɟɪɝɟɬɢɱɟɫɤɚɹ ɤɚɥɢɛɪɨɜɤɚ ɫɩɟɤɬɪɚ ɩɪɨɢɡɜɨɞɢɥɚɫɶ ɧɚ ɨɫɧɨɜɚɧɢɢ ɯɨɪɨɲɨ ɢɡɜɟɫɬɧɵɯ ɡɧɚɱɟɧɢɣ ɷɧɟɪɝɢɣ ɭɪɨɜɧɟɣ [19] ɢ ɩɨɤɚɡɚɧɚ ɧɚ ɷɬɨɦ ɪɢɫɭɧɤɟ ɩɪɹɦɨɣ ɥɢɧɢɟɣ. ɏɚɪɚɤɬɟɪ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɢɧɬɟɧɫɢɜɧɨɫɬɟɣ ɥɢɧɢɣ ɯɨɪɨɲɨ ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɫɩɟɤɬɪɭ, ɢɡɦɟɪɟɧɧɨɦɭ ɦɚɝɧɢɬɧɵɦ ɫɩɟɤɬɪɨɦɟɬɪɨɦ ɩɪɢ ɛɨɥɟɟ ɜɵɫɨɤɨɣ ɷɧɟɪɝɢɢ [20]. ɂɫɫɥɟɞɨɜɚɥɢɫɶ ɩɟɪɟɯɨɞɵ ɜ ɨɫɧɨɜɧɨɟ 1+, 1,701 Ɇɷȼ 1+, 2,101 Ɇɷȼ 2 -, 2,524 Ɇɷȼ 2+ ɢ 3,351 Ɇɷȼ 3+ ɫɨɫɬɨɹɧɢɹ, ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɟ ɯɨɪɨɲɨ ɪɚɡɪɟɲɟɧɧɵɦ ɝɪɭɩɩɚɦ Įɱɚɫɬɢɰ Į0, Į5, Į6, Į7 ɢ Į10. ɉɪɢɪɨɞɚ ɷɬɢɯ ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ ɭɪɨɜɧɟɣ ɫɨɫɬɨɢɬ ɜ ɬɨɦ, ɱɬɨ ɨɫɧɨɜɧɨɟ ɫɨɫɬɨɹɧɢɟ ɹɜɥɹɟɬɫɹ ɞɜɭɯɱɚɫɬɢɱɧɵɦ (d5/2)2, ɚ ɫɨɫɬɨɹɧɢɹ ɫ ɩɨɥɨɠɢɬɟɥɶɧɨɣ ɱɟɬɧɨɫɬɶɸ Į5 (1,701 Ɇɷȼ), Į7 (2,524 Ɇɷȼ) ɢ Į10 (3,351 Mɷȼ) ɹɜɥɹɸɬɫɹ ɱɚɫɬɢɱɧɨ-ɞɵɪɨɱɧɵɦɢ (4ɪ-2h) ɞɟɮɨɪɦɢɪɨɜɚɧɧɵɦɢ ɫ ɤɨɧɮɢɝɭɪɚɰɢɟɣ ɪ -2(2s1d)4 ; ɞɥɹ ɧɢɯ ɨɞɧɨɫɬɚɞɢɣɧɵɟ ɩɪɹɦɵɟ ɪɟɚɤɰɢɢ ɨɞɧɨ ɢ ɞɜɭɯɧɭɤɥɨɧɧɨɣ ɩɟɪɟɞɚɱɢ ɩɨɞɚɜɥɟɧɵ. ɋɨɫɬɨɹɧɢɟ ɫ ɨɬɪɢɰɚɬɟɥɶɧɨɣ ɱɟɬɧɨɫɬɶɸ Į6 (2,101 Ɇɷȼ) ɩɨ-ɜɢɞɢɦɨɦɭ ɢɦɟɟɬ ɩɪɢɪɨɞɭ (3ɪ-1h) ɫɨɫɬɨɹɧɢɹ ɫ ɤɨɧɮɢɝɭɪɚɰɢɟɣ (ɪ1/2) -1(2s,1d)3, ɤɨɬɨɪɨɟ ɫɥɚɛɨ ɜɨɡɛɭɠɞɚɟɬɫɹ ɜ ɪɟɚɤɰɢɢ ɨɞɧɨɧɭɤɥɨɧɧɨɝɨ ɫɪɵɜɚ 17O(3He,d)18F [21] ɢ ɫɢɥɶɧɨ ɜ ɪɟɚɤɰɢɢ ɨɞɧɨɧɭɤɥɨɧɧɨɝɨ ɩɨɞɯɜɚɬɚ 19F(3He,Į)18F [22]. Ɉɬɧɨɫɢɬɟɥɶɧɨ ɫɥɚɛɚɹ ɢɧɬɟɧɫɢɜɧɨɫɬɶ ɝɪɭɩɩɵ Į6 ɩɨɞ ɡɚɞɧɢɦ ɭɝɥɨɦ ɦɨɠɟɬ ɨɡɧɚɱɚɬɶ, ɱɬɨ ɪɟɚɤɰɢɹ ɩɪɨɯɨɞɢɬ ɡɚ ɫɱɟɬ ɦɟɯɚɧɢɡɦɚ ɨɛɪɚɡɨɜɚɧɢɹ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ. Ɏɭɧɤɰɢɢ ɜɨɡɛɭɠɞɟɧɢɹ ɇɚ ɪɢɫ. 4 ɩɪɟɞɫɬɚɜɥɟɧɵ ɪɟɡɭɥɶɬɚɬɵ ɢɡɦɟɪɟɧɢɣ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɵɯ ɫɟɱɟɧɢɣ ɪɟɚɤɰɢɢ 19F(3He,p)21Ne ɞɥɹ ɨɫɧɨɜɧɨɝɨ (ɪ0) ɫɨɫɬɨɹɧɢɹ ɢ ɩɟɪɜɵɯ ɞɜɭɯ ɜɨɡɛɭɠɞɟɧɧɵɯ ɪɚɡɪɟɲɟɧɧɵɯ ɫɨɫɬɨɹɧɢɣ: ɝɪɭɩɩɵ ɩɪɨɬɨɧɨɜ ɪ1 (ȿɯ = 0,35 Ɇɷȼ 5/2+), ɪ2 (ȿɯ = 1,75 Ɇɷȼ 7/2+), ɚ ɬɚɤ ɠɟ ɞɥɹ ɩɢɤɚ ɫ ɧɟɪɚɡɪɟɲɟɧɧɵɦɢ ɝɪɭɩɩɚɦɢ ɩɪɨɬɨɧɨɜ ɪ3 + ɪ4 + ɪ5, ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɯ ɫɨɫɬɨɹɧɢɹɦ ȿɯ = 2,791 Ɇɷȼ 3/2; ȿɯ = 2,797 Ɇɷȼ ½+; ȿɯ = 2,869 Ɇɷȼ 9/2+ . Ⱦɥɹ ɝɪɭɩɩ ɪ0 (ɪɢɫ. 4ɚ), ɪ1 (ɪɢɫ. 4ɛ) ɢ ɪ3,4,5 (ɪɢɫ. 4ɝ) ɮɭɧɤɰɢɢ ɜɨɡɛɭɠɞɟɧɢɹ ɢɡɦɟɪɟɧɵ ɩɪɢ ɭɝɥɚɯ 10º, 40º, 100º, 130º ɢ 160º ɜ ɢɧɬɟɪɜɚɥɟ ɷɧɟɪɝɢɣ ɧɚɥɟɬɚɸɳɢɯ ɱɚɫɬɢɰ ȿ(3ɇɟ) = 2,4 ÷ 4,2 Ɇɷȼ, ɚ ɞɥɹ ɝɪɭɩɩɵ ɪ2 ɧɚ ɪɢɫ.4ɜ ɩɪɟɞɫɬɚɜɥɟɧɵ ɜ ɬɨɦ ɠɟ ɢɧɬɟɪɜɚɥɟ ɷɧɟɪɝɢɣ ɮɭɧɤɰɢɢ ɜɨɡɛɭɠɞɟɧɢɹ ɞɥɹ ɭɝɥɨɜ 10º ɢ 40º, ɚ ɞɥɹ 160º ɜ ɢɧɬɟɪɜɚɥɟ 3,2 ÷ 4,2 Ɇɷȼ ɢɡ-ɡɚ ɡɚɝɪɹɡɧɟɧɢɹ ɫɩɟɤɬɪɚ, ɨ ɤɨɬɨɪɨɦ ɝɨɜɨɪɢɥɨɫɶ ɜɵɲɟ. ɂɡɦɟɪɟɧɢɹ ɮɭɧɤɰɢɣ ɜɨɡɛɭɠɞɟɧɢɹ ɩɪɨɜɨɞɢɥɢɫɶ ɫ ɲɚɝɨɦ ɩɨ ɷɧɟɪɝɢɢ 50 ɤɷȼ ɫɨɢɡɦɟɪɢɦɵɦ ɫ ɷɧɟɪɝɟɬɢɱɟɫɤɢɦɢ ɩɨɬɟɪɹɦɢ ɛɨɦɛɚɪɞɢɪɭɸɳɢɯ ɱɚɫɬɢɰ ɜ ɦɢɲɟɧɢ. ɉɪɟɞɫɬɚɜɥɟɧɵ ɪɟɡɭɥɶɬɚɬɵ ɢɡɦɟɪɟɧɢɣ ɫ ɦɢɲɟɧɶɸ ɧɚ ɬɨɥɫɬɨɣ ɩɨɞɥɨɠɤɟ. Ɋɟɡɭɥɶɬɚɬɵ ɢɡɦɟɪɟɧɢɣ ɫ ɦɢɲɟɧɶɸ ɧɚ ɬɨɧɤɨɣ ɭɝɥɟɪɨɞɧɨɣ ɩɨɞɥɨɠɤɟ ɫɞɜɢɧɭɬɵɟ ɧɚ 25 ɤɷȼ ɩɨ ɷɧɟɪɝɢɢ ɧɚɥɟɬɚɸɳɢɯ ɱɚɫɬɢɰ ɜɟɥɢɤɨɥɟɩɧɨ ɥɨɠɚɬɫɹ ɦɟɠɞɭ ɬɨɱɟɤ ɩɪɟɞɵɞɭɳɢɯ ɢɡɦɟɪɟɧɢɣ, ɩɨɞɬɜɟɪɠɞɚɹ ɢɯ ɤɨɪɪɟɤɬɧɨɫɬɶ. ɋɪɟɞɧɟɤɜɚɞɪɚɬɢɱɧɚɹ ɫɬɚɬɢɫɬɢɱɟɫɤɚɹ ɨɲɢɛɤɚ ɢɡɦɟɪɟɧɢɹ ɜɵɯɨɞɚ ɪɟɚɤɰɢɢ ɫ ɭɱɟɬɨɦ ɜɵɞɟɥɟɧɢɹ ɮɨɧɚ ɫɨɫɬɚɜɥɹɥɚ ɩɨɪɹɞɤɚ 8% ɞɥɹ ɨɛɥɚɫɬɢ ɷɧɟɪɝɢɣ ɧɢɠɟ 3,3 Ɇɷȼ ɢ 6% ɞɥɹ ɢɡɦɟɪɟɧɢɣ ɜɵɲɟ 3,5 Ɇɷȼ. Ⱥɛɫɨɥɸɬɧɨɟ ɡɧɚɱɟɧɢɟ ɫɟɱɟɧɢɹ ɨɩɪɟɞɟɥɹɥɨɫɶ ɞɥɹ ɢɡɦɟɪɟɧɢɣ ɫ ɦɢɲɟɧɶɸ ɧɚ ɬɨɧɤɨɣ ɭɝɥɟɪɨɞɧɨɣ ɩɨɞɥɨɠɤɟ, ɚ ɡɚɬɟɦ ɩɪɨɢɡɜɨɞɢɥɚɫɶ ɧɨɪɦɢɪɨɜɤɚ ɧɚ ɷɬɢ ɡɧɚɱɟɧɢɹ ɜɵɯɨɞɨɜ ɩɨɥɭɱɟɧɧɵɯ ɫ ɦɢɲɟɧɶɸ ɧɚ ɬɨɥɫɬɨɣ ɩɨɞɥɨɠɤɟ (ɨɲɢɛɤɚ 5%). Ⱥɛɫɨɥɸɬɧɨɟ ɡɧɚɱɟɧɢɟ ɫɟɱɟɧɢɹ ɪɟɚɤɰɢɢ, ɢɡɦɟɪɟɧɧɨɣ ɨɞɧɨɜɪɟɦɟɧɧɨ ɫ ɭɩɪɭɝɢɦ ɪɚɫɫɟɹɧɢɟɦ ɧɚ ɭɝɨɥ 160º ɩɪɢ ɷɧɟɪɝɢɢ ȿ(3ɇɟ) = 4,0 Ɇɷȼ, ɨɩɪɟɞɟɥɹɥɨɫɶ ɫ ɬɨɱɧɨɫɬɶɸ § 13-15%. Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɩɨɥɧɚɹ ɫɪɟɞɧɟɤɜɚɞɪɚɬɢɱɧɚɹ ɨɲɢɛɤɚ ɨɩɪɟɞɟɥɟɧɢɹ ɚɛɫɨɥɸɬɧɨɝɨ ɡɧɚɱɟɧɢɹ ɫɟɱɟɧɢɹ ɫɨɫɬɚɜɥɹɥɚ ɩɨɪɹɞɤɚ 18%. Ʉɚɤ ɜɢɞɧɨ ɢɡ ɪɢɫ. 4 ɮɭɧɤɰɢɢ ɜɨɡɛɭɠɞɟɧɢɹ, ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɟ ɷɧɟɪɝɢɢ ɜɨɡɛɭɠɞɟɧɢɹ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ 22Na ɜ ɪɚɣɨɧɟ 21 Ɇɷȼ, ɢɦɟɸɬ ɪɹɞ ɨɫɨɛɟɧɧɨɫɬɟɣ ɩɨɜɟɞɟɧɢɹ: 1) ɜɫɟ ɨɧɢ ɢɦɟɸɬ ɜɨɡɪɚɫɬɚɸɳɢɣ ɯɚɪɚɤɬɟɪ; 2) ɞɥɹ ɜɫɟɯ ɮɭɧɤɰɢɣ ɜɨɡɛɭɠɞɟɧɢɹ ɜ ɨɛɥɚɫɬɢ ɷɧɟɪɝɢɣ ɨɬ 2,4 Ɇɷȼ ɞɨ ɩɪɢɛɥɢɡɢɬɟɥɶɧɨ 3,0 Ɇɷȼ ɫɟɱɟɧɢɹ ɩɨɞ ɜɫɟɦɢ ɭɝɥɚɦɢ ɜɨɡɪɚɫɬɚɸɬ ɦɨɧɨɬɨɧɧɨ ɢ ɛɥɢɡɤɢ ɩɨ ɜɟɥɢɱɢɧɟ, ɱɬɨ ɯɚɪɚɤɬɟɪɧɨ ɞɥɹ ɦɧɨɝɢɯ ɪɟɚɤɰɢɣ ɫɨ ɫɥɨɠɧɵɦɢ ɱɚɫɬɢɰɚɦɢ ɩɪɢ ɷɧɟɪɝɢɹɯ ɛɨɦɛɚɪɞɢɪɭɸɳɢɯ ɱɚɫɬɢɰ ɡɧɚɱɢɬɟɥɶɧɨ ɧɢɠɟ ɤɭɥɨɧɨɜɫɤɨɝɨ ɛɚɪɶɟɪɚ; 3) ɩɪɢ ɷɧɟɪɝɢɹɯ ɜɵɲɟ 3,0 Ɇɷȼ ɮɭɧɤɰɢɢ ɜɨɡɛɭɠɞɟɧɢɹ ɢɦɟɸɬ ɞɜɨɣɫɬɜɟɧɧɵɣ ɯɚɪɚɤɬɟɪ – ɨɞɧɢ ɩɪɨɞɨɥɠɚɸɬ ɩɥɚɜɧɨ ɜɨɡɪɚɫɬɚɬɶ, ɚ ɞɪɭɝɢɟ ɩɨɤɚɡɵɜɚɸɬ ɧɚɥɢɱɢɟ ɪɟɡɨɧɚɧɫɨɩɨɞɨɛɧɵɯ ɫɬɪɭɤɬɭɪ. Ɇɨɧɨɬɨɧɧɵɣ ɯɚɪɚɤɬɟɪ ɜɨɡɪɚɫɬɚɧɢɹ ɫɟɱɟɧɢɹ ɫ ɧɟɛɨɥɶɲɢɦɢ ɮɥɭɤɬɭɚɰɢɹɦɢ ɜ ɩɪɟɞɟɥɚɯ ɞɜɭɯ ɫɬɚɬɢɫɬɢɱɟɫɤɢɯ ɨɲɢɛɨɤ ɢɦɟɸɬ Ɏȼ ɞɥɹ ɝɪɭɩɩɵ ɪ0 ɩɨɞ ɭɝɥɚɦɢ 100º, 130º, 160º, ɯɨɬɹ ɩɨɞ ɭɝɥɚɦɢ 130º ɢ 160º, ɧɚɱɢɧɚɹ ɫ 3,5 Ɇɷȼ, ɧɚɛɥɸɞɚɟɬɫɹ ɛɨɥɟɟ ɪɟɡɤɨɟ ɜɨɡɪɚɫɬɚɧɢɟ ɫɟɱɟɧɢɹ ɱɟɦ ɩɨɞ ɭɝɥɨɦ 100º (ɪɢɫ. 4ɚ). Ⱦɨɫɬɚɬɨɱɧɨ ɩɥɚɜɧɨɟ ɜɨɡɪɚɫɬɚɧɢɟ ɬɚɤ ɠɟ ɧɚɛɥɸɞɚɟɬɫɹ ɞɥɹ ɝɪɭɩɩɵ ɪ1 ɩɪɢ 40º (ɪɢɫ. 4ɛ), ɚ ɞɥɹ ɩɢɤɚ, ɫɨɨɬɜɟɬɫɬɜɭɸɳɟɝɨ ɝɪɭɩɩɚɦ ɪ3 + ɪ4 + ɪ5, ɩɨɞ ɜɫɟɦɢ ɭɝɥɚɦɢ ɤɪɨɦɟ 10º (ɪɢɫ. 4ɝ). ɋɥɟɞɭɟɬ ɡɚɦɟɬɢɬɶ, ɱɬɨ ɞɥɹ ɷɬɢɯ ɝɪɭɩɩ ɦɚɤɫɢɦɚɥɶɧɨɟ ɫɟɱɟɧɢɟ ɧɚɯɨɞɢɬɫɹ ɩɨɞ ɭɝɥɨɦ 10º. ɑɢɫɥɨ ɞɨɫɬɚɬɨɱɧɨ ɫɢɥɶɧɵɯ ɮɥɭɤɬɭɚɰɢɨɧɧɵɯ ɦɚɤɫɢɦɭɦɨɜ ɜ ɢɡɦɟɪɟɧɧɨɦ ɢɧɬɟɪɜɚɥɟ ɷɧɟɪɝɢɣ ɫɨɫɬɚɜɥɹɟɬ 1 – 2 ɢ ɢɯ ɲɢɪɢɧɚ ɧɚ ɩɨɥɭɜɵɫɨɬɟ ɥɟɠɢɬ ɜ ɩɪɟɞɟɥɚɯ ɩɪɢɛɥɢɡɢɬɟɥɶɧɨ 200 – 400 ɤɷȼ. ɏɚɪɚɤɬɟɪ ɩɨɜɟɞɟɧɢɹ Ɏȼ ɭɤɚɡɵɜɚɟɬ ɧɚ ɡɧɚɱɢɬɟɥɶɧɵɣ ɜɤɥɚɞ ɦɟɯɚɧɢɡɦɚ ɨɛɪɚɡɨɜɚɧɢɹ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ, ɤɨɬɨɪɵɣ ɜ ɨɛɥɚɫɬɢ ɦɚɥɵɯ ɷɧɟɪɝɢɣ Ɏȼ ɛɨɥɶɲɟ ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɫɬɚɬɢɫɬɢɱɟɫɤɨɣ ɬɟɨɪɢɢ ɏɚɭɡɟɪɚ-Ɏɟɲɛɚɯɚ, ɯɨɬɹ ɟɫɬɶ ɩɪɢɡɧɚɤɢ ɩɪɢɫɭɬɫɬɜɢɹ ɩɪɢ ɛɨ˴ ɥɶɲɢɯ ɷɧɟɪɝɢɹɯ ɜɤɥɚɞɚ ɥɢɛɨ ɩɪɹɦɨɝɨ ɩɪɨɰɟɫɫɚ, ɥɢɛɨ ɢɧɬɟɪɮɟɪɟɧɰɢɨɧɧɵɯ ɹɜɥɟɧɢɣ ɦɟɠɞɭ ɜɯɨɞɧɵɦɢ ɤɚɧɚɥɚɦɢ ɪɟɚɤɰɢɢ, ɩɪɢɜɨɞɹɳɢɦɢ ɤ ɨɛɪɚɡɨɜɚɧɢɸ ɩɟɪɟɤɪɵɜɚɸɳɢɯɫɹ ɫɨɫɬɨɹɧɢɣ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ. 9 ñåð³ÿ ô³çè÷íà «ßäðà, ÷àñòèíêè, ïîëÿ», âèï. 4 /44/ ßäåðíûå ðåàêöèè, âûçâàííûå... dı/dȍ ɦɛɧ/ɫɪ dı/dȍ ɦɛɧ/ɫɪ dı/dȍ ɦɛɧ/ɫɪ Ⱦɢɮɮɟɪɟɧɰɢɚɥɶɧɵɟ ɫɟɱɟɧɢɹ ɞɥɹ ɪɟɚɤɰɢɢ 19F(3He,Į)18F ɞɥɹ Į0 Į5 Į6 Į7 Į8+9 Į10, ɢɡɦɟɪɟɧɧɵɟ ɜ ɢɧɬɟɪɜɚɥɟ ɷɧɟɪɝɢɣ 2,820 – 3,582 Ɇɷȼ ɩɨɞ ɭɝɥɚɦɢ 80º, 120º ɢ 160º ɫ ɲɚɝɨɦ 51 ɤɷȼ, ɩɪɟɞɫɬɚɜɥɟɧɵ ɧɚ ɪɢɫ. 5. ȼɟɥɢɱɢɧɚ ɫɟɱɟɧɢɹ ɩɪɢɛɥɢɡɢɬɟɥɶɧɨ ɧɚ ɩɨɪɹɞɨɤ ɜɟɥɢɱɢɧɵ ɦɟɧɶɲɟ ɱɟɦ ɞɥɹ 19F(3He,p)21Ne ɪɟɚɤɰɢɢ. ɂɡɦɟɪɟɧɧɵɟ ɮɭɧɤɰɢɢ ɜɨɡɛɭɠɞɟɧɢɹ ɞɥɹ ɷɬɨɣ ɪɟɚɤɰɢɢ ɢɦɟɸɬ ɛɨɥɟɟ ɹɪɤɨ ɜɵɪɚɠɟɧɧɵɣ ɮɥɭɤɬɭɚɰɢɨɧɧɵɣ ɯɚɪɚɤɬɟɪ ɢ ɧɟ ɢɦɟɸɬ ɱɟɬɤɨ ɜɵɪɚɠɟɧɧɨɣ ɬɟɧɞɟɧɰɢɢ ɤ ɭɜɟɥɢɱɟɧɢɸ ɜɟɥɢɱɢɧɵ ɫɟɱɟɧɢɹ ɫ ɭɜɟɥɢɱɟɧɢɟɦ ɷɧɟɪɝɢɢ ɛɨɦɛɚɪɞɢɪɭɸɳɢɯ ɱɚɫɬɢɰ. ȼɟɥɢɱɢɧɵ ɫɟɱɟɧɢɣ ɞɥɹ ɫɭɦɦɵ ɝɪɭɩɩ Į8+9 ɯɨɪɨɲɨ ɫɨɝɥɚɫɭɸɬɫɹ ɫ ɬɟɧɞɟɧɰɢɟɣ ɯɨɞɚ ɫɟɱɟɧɢɹ ɩɪɢ ɷɧɟɪɝɢɹɯ ɨɤɨɥɨ 4 Ɇɷȼ, ɧɚɣɞɟɧɧɨɝɨ ɜ ɪɚɛɨɬɟ [9]. ɑɢɫɥɨ ɢɧɬɟɧɫɢɜɧɵɯ ɮɥɭɤɬɭɚɰɢɨɧɧɵɯ ɦɚɤɫɢɦɭɦɨɜ ɜ ɮɭɧɤɰɢɹɯ ɜɨɡɛɭɠɞɟɧɢɹ ɫɨɫɬɚɜɥɹɟɬ 1 – 3. ɉɨɫɤɨɥɶɤɭ ɷɮɮɟɤɬɵ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ ɨɛɧɚɪɭɠɢɜɚɸɬ ɫɟɛɹ ɤɚɤ ɗɪɢɤɫɨɧɨɜɫɤɢɟ ɮɥɭɤɬɭɚɰɢɢ ɜ ɮɭɧɤɰɢɹɯ ɜɨɡɛɭɠɞɟɧɢɹ, ɬɨ, ɫɥɟɞɭɹ Ȼɪɢɧɤɭ ɢ ɋɬɟɮɚɧɭ [23] ɫɪɟɞɧɸɸ ɲɢɪɢɧɭ ɭɪɨɜɧɟɣ ɜ ɜɨɡɛɭɠɞɟɧɧɵɯ ɫɨɫɬɨɹɧɢɹɯ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ ɦɨɠɧɨ ɨɰɟɧɢɬɶ ɢɡ ɱɢɫɥɚ ɮɥɭɤɬɭɚɰɢɨɧɧɵɯ ɦɚɤɫɢɦɭɦɨɜ ɧɚ ɟɞɢɧɢɰɭ ɷɧɟɪɝɢɢ (1 Ɇɷȼ) ɜ ɮɭɧɤɰɢɹɯ ɜɨɡɛɭɠɞɟɧɢɹ ɫ ɩɨɦɨɳɶɸ ɜɵɪɚɠɟɧɢɹ (1) dı/dȍ ɦɛɧ/ɫɪ Ɋɢɫ. 4. Ɏɭɧɤɰɢɢ ɜɨɡɛɭɠɞɟɧɢɹ ɪɟɚɤɰɢɢ 19F(3He,p)21Ne, ɢɡɦɟɪɟɧɧɵɟ ɩɨɞ ɭɝɥɚɦɢ ż - 10º, ź- 40º, - 100º, - 130º, Ɣ- 160º ɞɥɹ ɝɪɭɩɩ ɩɪɨɬɨɧɨɜ, ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɯ ɫɨɫɬɨɹɧɢɹɦ 21Ne ɚ –(ɪ0)–ɨɫɧɨɜɧɨɟ ɫɨɫɬɨɹɧɢɟ, ɛ – (ɪ1) – 0,35 Ɇɷȼ, ɜ – (ɪ2) – 1,75 Ɇɷȼ, ɝ – (ɪ3 + ɪ4 + ɪ5) ɫɭɦɦɚ ɧɟɪɚɡɪɟɲɟɧɧɵɯ ɝɪɭɩɩ ɩɪɢ 2,791, 2,797 ɢ 2,869 Ɇɷȼ. Ƚ= bN ɷɮɮ 2n , (1) ɝɞɟ bN ɷɮɮ ɹɜɥɹɟɬɫɹ ɦɨɧɨɬɨɧɧɨɣ ɮɭɧɤɰɢɟɣ Nɷɮɮ ɷɮɮɟɤɬɢɜɧɨɝɨ ɱɢɫɥɚ ɦɚɝɧɢɬɧɵɯ ɩɨɞɫɨɫɬɨɹɧɢɣ, ɭɱɚɫɬɜɭɸɳɢɯ ɜ ɪɟɚɤɰɢɢ, ɫɨ ɡɧɚɱɟɧɢɹɦɢ 1 (ɞɥɹ Nɷɮɮ= 1) ɢ 0,71 (ɩɪɢ Nɷɮɮ ĺ ’). Nɷɮɮ(90º) = !/2[(2sa +1)(2sb + 1)(2i + 1)(2j + 1)] ɝɞɟ sa, sb, j ɢ i ɟɫɬɶ ɫɩɢɧɵ, ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ, ɩɚɞɚɸɳɟɣ ɢ ɜɵɥɟɬɚɸɳɟɣ ɱɚɫɬɢɰ, ɹɞɪɚ ɦɢɲɟɧɢ ɢ ɤɨɧɟɱɧɨɝɨ ɹɞɪɚ. Ⱦɚɧɧɵɟ ɩɨɞɫɱɟɬɚ ɱɢɫɥɚ ɩɢɤɨɜ ɜ Ɏȼ ɢ ɤɨɝɟɪɟɧɬɧɵɟ ɲɢɪɢɧɵ ɩɨɥɭɱɚɸɳɢɟɫɹ ɞɥɹ Nɷɮɮ= 1 ɢ Nɷɮɮmax = Nɷɮɮ ĺ ’ ɢ Nɷɮɮ(90º) ɞɥɹ ɪɚɡɧɵɯ ɝɪɭɩɩ ɩɪɨɬɨɧɨɜ ɩɪɟɞɫɬɚɜɥɟɧɵ ɜ ɬɚɛɥ. 1 ɞɥɹ ɞɜɭɯ ɩɨɞɯɨɞɨɜ ɤ ɭɱɟɬɭ ɱɢɫɥɚ ɦɚɤɫɢɦɭɦɨɜ ɜ Ɏȼ. 1-ɣ, ɤɨɝɞɚ ɭɱɢɬɵɜɚɥɢɫɶ ɬɨɥɶɤɨ ɩɢɤɢ ɫ ɛɨɥɶɲɢɦɢ ɚɦɩɥɢɬɭɞɚɦɢ ɢ 2-ɣ, ɤɨɝɞɚ ɭɱɢɬɵɜɚɥɢɫɶ ɮɥɭɤɬɭɚɰɢɢ ɫɟɱɟɧɢɹ ɫ ɚɦɩɥɢɬɭɞɨɣ ɩɨɪɹɞɤɚ ɭɞɜɨɟɧɧɨɣ ɜɟɥɢɱɢɧɵ ɫɬɚɬɢɫɬɢɱɟɫɤɨɣ ɨɲɢɛɤɢ ɢɡɦɟɪɟɧɢɹ ɫɟɱɟɧɢɹ (ɜ ɬɚɛɥɢɰɟ ɞɚɧɵ ɜ ɫɤɨɛɤɚɯ) ɍɫɪɟɞɧɟɧɧɵɟ ɩɨ ɞɚɧɧɵɦ ɞɥɹ 17 Ɏȼ ɞɥɹ Ƚmɚɯ(Nɷɮɮ= 1) = 348 ɤɷȼ ɢ Ƚmin(Nɷɮɮmax) = 246 ɤɷȼ, ɱɬɨ ɞɚɟɬ ɞɥɹ ɩɟɪɜɨɝɨ ɩɨɞɯɨɞɚ Ƚɷɤɫɩ(Ȼ-ɋ) = 297 ± 51 ɤɷȼ, ɚ ɞɥɹ ɜɬɨɪɨɝɨ ɩɨɞɯɨɞɚ Ƚmɚɯ(Nɷɮɮ= 1) = 158 ɤɷȼ ɢ Ƚmin(Nɷɮɮmax) = 112 ɤɷȼ ɢ Ƚɷɤɫɩ(Ȼ-ɋ) = 135 ± 23 ɤɷȼ Ⱥɧɚɥɨɝɢɱɧɵɣ ɚɧɚɥɢɡ Ɏȼ ɞɥɹ ɪɟɚɤɰɢɢ 20Ne(d,p)21Ne ɞɥɹ ɩɟɪɟɯɨɞɨɜ ɜ ɬɟ ɠɟ ɫɨɫɬɨɹɧɢɹ, ɱɬɨ ɢ ɭ ɧɚɫ ɢ ɩɪɢ ɬɟɯ ɠɟ ɷɧɟɪɝɢɹɯ ɜɨɡɛɭɠɞɟɧɢɹ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ 22Na (21 Ɇɷȼ) ɞɚɟɬ ɡɧɚɱɟɧɢɟ Ƚmɚɯ(Nɷɮɮ= 1) = 140 ɤɷȼ [24], ɱɬɨ ɨɱɟɧɶ ɯɨɪɨɲɨ ɫɨɝɥɚɫɭɟɬɫɹ ɫ ɧɚɲɢɦ ɪɟɡɭɥɶɬɚɬɨɦ, ɭɱɢɬɵɜɚɸɳɢɦ ɫɥɚɛɵɟ 10 «Â³ñíèê Õàðê³âñüêîãî óí³âåðñèòåòó», ¹ 880, 2009 Â.Ä. Ñàðàíà, Í.Ñ. Ëóöàé... ɮɥɭɤɬɭɚɰɢɢ. ɇɟɫɦɨɬɪɹ ɧɚ ɬɨ, ɱɬɨ (d,p) ɪɟɚɤɰɢɹ ɢɡɦɟɪɹɥɚɫɶ ɩɪɢ ɷɧɟɪɝɢɹɯ ɡɧɚɱɢɬɟɥɶɧɨ ɜɵɲɟ ɤɭɥɨɧɨɜɫɤɨɝɨ ɛɚɪɶɟɪɚ ɢ ɩɨ ɷɬɨɦɭ ɜɨ ɜɯɨɞɧɨɦ ɤɚɧɚɥɟ ɪɟɚɤɰɢɢ ɷɮɮɟɤɬɢɜɧɨ ɭɱɚɫɬɜɨɜɚɥɨ ɛɨɥɶɲɟɟ ɱɢɫɥɨ ɩɚɪɰɢɚɥɶɧɵɯ ɜɨɥɧ ɫ ɛɨɥɶɲɢɦ ɧɚɛɨɪɨɦ ɭɝɥɨɜɵɯ ɦɨɦɟɧɬɨɜ, ɱɟɦ ɜ ɧɚɲɟɦ ɩɨɞɤɭɥɨɧɨɜɫɤɨɦ ɫɥɭɱɚɟ. Ɂɚɦɟɱɚɬɟɥɶɧɨɟ ɫɨɨɬɜɟɬɫɬɜɢɟ ɦɟɠɞɭ ɧɚɲɢɦ ɪɟɡɭɥɶɬɚɬɨɦ ɞɥɹ ɜɬɨɪɨɝɨ ɩɨɞɯɨɞɚ ɢ ɪɟɡɭɥɶɬɚɬɨɦ, ɩɨɥɭɱɟɧɧɵɦ ɜ ɪɚɛɨɬɟ [24] ɩɪɢ ɥɭɱɲɢɯ ɫɬɚɬɢɫɬɢɱɟɫɤɢɯ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɯ ɭɫɥɨɜɢɹɯ ɭɤɚɡɵɜɚɟɬ ɧɚ ɧɟɨɛɯɨɞɢɦɨɫɬɶ ɭɱɟɬɚ ɢ ɦɚɥɵɯ ɮɥɭɤɬɭɚɰɢɣ ɫɟɱɟɧɢɹ ɜ Ɏȼ ɩɪɢ ɨɰɟɧɤɚɯ ɫɪɟɞɧɟɣ ɤɨɝɟɪɟɧɬɧɨɣ ɲɢɪɢɧɵ ɭɪɨɜɧɟɣ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ Ƚ ɜ ɦɟɬɨɞɟ Ȼɪɢɧɤɚ-ɋɬɟɮɚɧɚ [23]. Ɋɢɫ. 5.Ɏɭɧɤɰɢɢ ɜɨɡɛɭɠɞɟɧɢɹ ɪɟɚɤɰɢɢ 19F(3He,Į)18F, ɢɡɦɟɪɟɧɧɵɟ ɩɨɞ ɭɝɥɚɦɢ - 80º ɢ ż - 120º ɞɥɹ ɝɪɭɩɩ Į-ɱɚɫɬɢɰ: ɚ – (Į0) – ɨɫɧɨɜɧɨɟ ɫɨɫɬɨɹɧɢɟ ɛ – (Į6) – 2,101 Ɇɷȼ, ɜ – (Į7) – 2,524 Ɇɷȼ, ɢ ɩɨɞ ɭɝɥɨɦ 160ɨ ɞɥɹ ɝɪɭɩɩ – (Į0, ɨ.ɫ., Į5 – 1,701 Ɇɷȼ, Į6 – 2,101Ɇɷȼ, Į7 – 2,523 Ɇɷȼ, Į8 + Į9 3,060 + 3,136 Ɇɷȼ ɢ Į10 – 3,351 Ɇɷȼ) – ɩɪɚɜɚɹ ɤɨɥɨɧɤɚ ɝɪɚɮɢɤɨɜ. dı/dȍ ɦɛɧ/ɫɪ Ⱥɧɚɥɨɝɢɱɧɵɣ ɚɧɚɥɢɡ Ɏȼ ɞɥɹ ɪɟɚɤɰɢɢ 19F(3He,Į)18F ɞɥɹ Į0 Į5 Į6 Į7 Į8+9 Į10 ɝɪɭɩɩ ɬɚɤ ɠɟ ɛɵɥ ɩɪɨɜɟɞɟɧ ɢ ɪɟɡɭɥɶɬɚɬɵ ɩɪɟɞɫɬɚɜɥɟɧɵ ɜ ɬɚɛɥ. 2. Ɉɞɧɨɡɧɚɱɧɨɫɬɶ ɪɟɡɭɥɶɬɚɬɚ ɨɝɪɚɧɢɱɟɧɚ ɬɪɭɞɧɨɫɬɶɸ ɜɵɞɟɥɟɧɢɹ ɩɢɤɨɜ ɮɥɭɤɬɭɚɰɢɣ ɢɡ-ɡɚ ɛɨɥɶɲɨɝɨ ɪɚɡɛɪɨɫɚ ɬɨɱɟɤ ɫɜɹɡɚɧɧɨɝɨ ɫ ɨɬɧɨɫɢɬɟɥɶɧɨ ɧɟɛɨɥɶɲɨɣ ɫɬɚɬɢɫɬɢɱɟɫɤɨɣ ɬɨɱɧɨɫɬɶɸ ɢɡɦɟɪɟɧɢɣ, ɨɛɭɫɥɨɜɥɟɧɧɨɣ ɦɚɥɵɦɢ ɫɟɱɟɧɢɹɦɢ ɪɟɚɤɰɢɢ (ɨɬ ɟɞɢɧɢɰ ɞɨ ɧɟɫɤɨɥɶɤɢɯ ɞɟɫɹɬɤɨɜ ɦɤɛɪɧ/ɫɪ). ɇɨ, ɧɟ ɫɦɨɬɪɹ ɧɚ ɷɬɨ, ɩɪɢ ɚɧɚɥɢɡɟ ɞɚɧɧɵɯ ɢɫɩɨɥɶɡɨɜɚɥɫɹ ɜɬɨɪɨɣ ɩɨɞɯɨɞ, ɤɚɤ ɢ ɜ ɫɥɭɱɚɟ ɪɟɚɤɰɢɢ 19F(3He,p)21Ne. ɍɫɪɟɞɧɟɧɧɵɟ ɩɨ ɞɚɧɧɵɦ ɞɥɹ 11 Ɏȼ ɞɚɥɢ Ƚmɚɯ(Nɷɮɮ= 1) = 157 ɤɷȼ ɢ Ƚmin(Nɷɮɮmax) = 112 ɤɷȼ, ɱɬɨ ɞɚɟɬ Ƚɷɤɫɩ(Ȼ-ɋ) = 135 ± 23 ɤɷȼ. ɗɬɨɬ ɪɟɡɭɥɶɬɚɬ ɨɱɟɧɶ ɯɨɪɨɲɨ ɫɨɝɥɚɫɭɟɬɫɹ ɫ ɪɟɡɭɥɶɬɚɬɨɦ ɩɨɥɭɱɟɧɧɵɦ ɜ ɪɟɚɤɰɢɢ 19F(3He,p)21Ne. Ʉɪɨɦɟ ɬɨɝɨ, ɧɚɲɢ ɪɟɡɭɥɶɬɚɬɵ ɯɨɪɨɲɨ ɫɨɝɥɚɫɭɸɬɫɹ ɫ ɪɟɡɭɥɶɬɚɬɚɦɢ, ɩɨɥɭɱɟɧɧɵɦɢ ɩɪɢ ɢɫɫɥɟɞɨɜɚɧɢɢ ɪɟɚɤɰɢɢ 28 Si(3He,p)30P ɞɥɹ ɧɟ ɫɤɨɥɶɤɨ ɛɨɥɟɟ ɧɢɡɤɨɣ ɨɛɥɚɫɬɢ ɷɧɟɪɝɢɣ ɜɨɡɛɭɠɞɟɧɢɹ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ 31S [25] Ƚmɚɯ(Nɷɮɮ= 1) = 94 ɤɷȼ. ɉɪɢ ɷɧɟɪɝɢɹɯ ɜɨɡɛɭɠɞɟɧɢɹ 31S • 21 Ɇɷȼ ɜ ɪɚɛɨɬɟ [26], ɞɥɹ ɬɨɣ ɠɟ ɪɟɚɤɰɢɢ, ɧɚɣɞɟɧɚ Ƚ § 200 ÷ 300 ɤɷȼ. ɉɪɢ ɜɨɡɛɭɠɞɟɧɢɢ 22Na ɜ ɨɛɥɚɫɬɢ 19 Ɇɷȼ ɪɟɚɤɰɢɹɦɢ 16Ɉ(6Li,ɪ)21Ne ɢ 16Ɉ(6Li,n)21Na Ƚ = 100 ɤɷȼ [27]. Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɩɨɥɭɱɟɧɧɨɟ ɧɚɦɢ ɡɧɚɱɟɧɢɟ ɤɨɝɟɪɟɧɬɧɨɣ ɲɢɪɢɧɵ Ƚ, ɨɬɨɛɪɚɠɚɸɳɟɣ ɯɚɪɚɤɬɟɪ ɩɨɜɟɞɟɧɢɹ Ɏȼ ɪɟɚɤɰɢɣ 19F(3He,p)21Ne ɢ 19F(3He,Į)18F, ɭɤɥɚɞɵɜɚɟɬɫɹ ɜ ɨɛɳɭɸ ɬɟɧɞɟɧɰɢɸ, ɧɚɛɥɸɞɚɟɦɭɸ ɜ ɪɟɚɤɰɢɹɯ ɫ ɥɟɝɤɢɦɢ ɫɨɫɬɚɜɧɵɦɢ ɱɚɫɬɢɰɚɦɢ. dı/dȍ ɦɛɧ/ɫɪ 11 ñåð³ÿ ô³çè÷íà «ßäðà, ÷àñòèíêè, ïîëÿ», âèï. 4 /44/ ßäåðíûå ðåàêöèè, âûçâàííûå... 12 «Â³ñíèê Õàðê³âñüêîãî óí³âåðñèòåòó», ¹ 880, 2009 Â.Ä. Ñàðàíà, Í.Ñ. Ëóöàé... ɍɝɥɨɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɇɚ ɪɢɫ. 6, 7, ɢ 8 ɩɪɟɞɫɬɚɜɥɟɧɵ ɭɝɥɨɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɩɪɨɬɨɧɨɜ, ɢɡɦɟɪɟɧɧɵɟ ɞɥɹ ɝɪɭɩɩ ɪ0, ɪ1, ɪ2 ɩɪɢ 8 ɡɧɚɱɟɧɢɹɯ ɷɧɟɪɝɢɢ. ɂɡɦɟɪɟɧɢɹ ɩɪɨɜɨɞɢɥɢɫɶ ɱɟɪɟɡ ɤɚɠɞɵɟ 10º ɜ ɢɧɬɟɪɜɚɥɟ ɭɝɥɨɜ 10º – 160º ɜ ɥ.ɫ. ɋɪɟɞɧɟɤɜɚɞɪɚɬɢɱɧɚɹ ɨɲɢɛɤɚ ɧɟ ɩɪɟɜɵɲɚɟɬ 10%. Ɉɧɚ ɫɤɥɚɞɵɜɚɟɬɫɹ ɢɡ ɫɬɚɬɢɫɬɢɱɟɫɤɢɯ ɨɲɢɛɨɤ ɢɡɦɟɪɟɧɢɹ ɢɧɬɟɧɫɢɜɧɨɫɬɢ ɩɢɤɚ ɜ ɫɩɟɤɬɪɟ (3-5%), ɧɨɪɦɢɪɨɜɤɢ ɤ ɩɨɤɚɡɚɧɢɹɦ ɦɨɧɢɬɨɪɧɨɝɨ ɞɟɬɟɤɬɨɪɚ ɩɨɞ ɭɝɥɨɦ 90º (5%) ɢ ɧɨɪɦɢɪɨɜɤɢ ɤ Ɏȼ ɩɨɞ ɭɝɥɨɦ 160º ɞɥɹ ɝɪɭɩɩ ɪ0 ɢ ɪ1 ɚ ɞɥɹ ɪ2 ɩɨɞ ɭɝɥɨɦ 40º (7%). ɏɚɪɚɤɬɟɪɧɨɣ ɨɫɨɛɟɧɧɨɫɬɶɸ ɭɝɥɨɜɵɯ ɪɚɫɩɪɟɞɟɥɟɧɢɣ ɩɪɢ ɷɧɟɪɝɢɹɯ ɧɢɠɟ 3,0 Ɇɷȼ ɞɥɹ ɜɫɟɯ ɪɚɫɫɦɚɬɪɢɜɚɟɦɵɯ ɩɟɪɟɯɨɞɨɜ ɹɜɥɹɟɬɫɹ ɢɯ ɨɩɪɟɞɟɥɟɧɧɚɹ ɫɢɦɦɟɬɪɢɹ ɨɬɧɨɫɢɬɟɥɶɧɨ 90º ɫ ɧɟɤɨɬɨɪɵɦɢ ɧɟɛɨɥɶɲɢɦɢ ɜɚɪɢɚɰɢɹɦɢ ɮɨɪɦɵ ɭɝɥɨɜɨɣ ɡɚɜɢɫɢɦɨɫɬɢ ɫɟɱɟɧɢɹ ɥɢɛɨ ɩɨɞ ɩɟɪɟɞɧɢɦɢ, ɥɢɛɨ ɩɨɞ ɡɚɞɧɢɦɢ ɭɝɥɚɦɢ. ɍɫɪɟɞɧɟɧɢɟ ɜ ɢɧɬɟɪɜɚɥɟ ɷɧɟɪɝɢɣ ɨɬ 2,6 ɞɨ 3,0 Ɇɷȼ ɞɚɟɬ ɛɨɥɟɟ ɫɢɦɦɟɬɪɢɱɧɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ (ɫɦ. ɬɚɛɥ. 3 ɢ ɪɢɫ. 6, 7 ɢ 8), ɱɬɨ ɦɨɠɟɬ ɭɤɚɡɵɜɚɬɶ ɧɚ ɩɪɟɨɛɥɚɞɚɧɢɟ ɫɬɚɬɢɫɬɢɱɟɫɤɨɝɨ ɩɪɨɰɟɫɫɚ ɨɛɪɚɡɨɜɚɧɢɹ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ. Ɍɚɤ ɠɟ ɫɥɟɞɭɟɬ ɡɚɦɟɬɢɬɶ, ɱɬɨ ɧɚɢɛɨɥɟɟ ɫɢɦɦɟɬɪɢɱɧɵɟ ɨɬɧɨɫɢɬɟɥɶɧɨ 90º ɭɝɥɨɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɧɚɯɨɞɹɬɫɹ ɩɪɢ ɷɧɟɪɝɢɹɯ 3ɇɟ ɪɚɫɩɨɥɨɠɟɧɧɵɯ ɜ ɨɛɥɚɫɬɹɯ ɦɢɧɢɦɭɦɨɜ ɮɭɧɤɰɢɣ ɜɨɡɛɭɠɞɟɧɢɣ ɩɨɞ ɭɝɥɨɦ 10º (ɞɥɹ ɪ0 ȿ(3ɇɟ) = 2,8 ɢ 3,5 Ɇɷȼ, ɞɥɹ ɪ1 - 2,6 ɢ 3,0 Ɇɷȼ, ɞɥɹ ɪ2 - 4,2 Ɇɷȼ). Ɋɢɫ. 6. ɍɝɥɨɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɩɪɨɬɨɧɨɜ ɢɡ ɪɟɚɤɰɢɢ 19F(3He,p0)21Neɨ.ɫ.. ɋɩɥɨɲɧɚɹ ɤɪɢɜɚɹ ɩɪɢ ȿ(3ɇɟ)=2,8 Ɇɷȼ ɪɚɫɱɟɬ ɩɨ ɬɟɨɪɢɢ ɏ-Ɏ; ȿ(3ɇɟ)=4,19 Ɇɷȼɪɚɫɱɟɬ ɩɪɹɦɨɝɨ ɫɪɵɜɚ ɞɜɭɯɧɭɤɥɨɧɧɨɣ ɩɟɪɟɞɚɱɢ ɜ ɪɚɦɤɚɯ Ȼɉɂȼ ɫ ɩɨɬɟɧɰɢɚɥɨɦ 3 ɇɟ II ɜɨ ɜɯɨɞɧɨɦ ɤɚɧɚɥɟ ɫ ɩɟɪɟɞɚɱɟɣ ɨɪɛɢɬɚɥɶɧɨɝɨ ɦɨɦɟɧɬɚ L = 2. Ⱦɥɹ ɩɟɪɟɯɨɞɚ ɜ ɩɟɪɜɨɟ ɜɨɡɛɭɠɞɟɧɧɨɟ ɫɨɫɬɨɹɧɢɟ ɨɬɧɨɫɢɬɟɥɶɧɨ ɫɢɦɦɟɬɪɢɱɧɚɹ ɮɨɪɦɚ ɭɝɥɨɜɨɝɨ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɫ ɦɢɧɢɦɭɦɨɦ ɩɪɢ 100° ɫɨɯɪɚɧɹɟɬɫɹ ɞɨ ɷɧɟɪɝɢɢ 3 ɇɟ 3,9 Ɇɷȼ ɫ ɪɟɡɤɢɦ ɢɡɦɟɧɟɧɢɟɦ ɩɪɢ 4,2 Ɇɷȼ ɮɨɪɦɵ ɧɚ ɚɫɢɦɦɟɬɪɢɱɧɭɸ - ɯɚɪɚɤɬɟɪɧɭɸ ɞɥɹ ɨɞɧɨɫɬɚɞɢɣɧɨɝɨ ɩɪɹɦɨɝɨ ɩɪɨɰɟɫɫɚ ɫɪɵɜɚ. ȿɫɥɢ ɜɡɹɬɶ ɨɞɧɨ ɷɬɨ ɭɝɥɨɜɨɟ ɪɚɫɩɪɟɞɟɥɟɧɢɟ, ɬɨ ɦɨɠɧɨ ɩɪɟɞɩɨɥɨɠɢɬɶ, ɱɬɨ ɨɧɨ ɫɮɨɪɦɢɪɨɜɚɧɨ ɩɪɹɦɵɦ ɩɪɨɰɟɫɫɨɦ. Ɋɢɫ. 7. ɍɝɥɨɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɩɪɨɬɨɧɨɜ ɢɡ ɪɟɚɤɰɢɢ 19F(3He,p1)21Ne* 0,35 Ɇɷȼ. ɇɟɩɪɟɪɵɜɧɵɟ ɤɪɢɜɵɟ ɩɪɢ ȿ(3ɇɟ) = 2,8 ɢ 3,0 Ɇɷȼ ɪɚɫɱɟɬ ɩɨ ɬɟɨɪɢɢ ɏ-Ɏ; ɩɪɢ 3,9 ɢ 4,19 Ɇɷȼ ɪɚɫɱɟɬ ɩɪɹɦɨɝɨ ɫɪɵɜɚ ɞɜɭɯɧɭɤɥɨɧɧɨɣ ɩɟɪɟɞɚɱɢ ɜ ɪɚɦɤɚɯ Ȼɉɂȼ ɫ ɩɨɬɟɧɰɢɚɥɨɦ 3ɇɟ II ɜɨ ɜɯɨɞɧɨɦ ɤɚɧɚɥɟ ɫ ɩɟɪɟɞɚɱɟɣ ɨɪɛɢɬɚɥɶɧɨɝɨ ɦɨɦɟɧɬɚ L = 2. 13 ñåð³ÿ ô³çè÷íà «ßäðà, ÷àñòèíêè, ïîëÿ», âèï. 4 /44/ ßäåðíûå ðåàêöèè, âûçâàííûå... Ⱦɥɹ ɩɟɪɟɯɨɞɨɜ ɜ ɨɫɧɨɜɧɨɟ ɢ ɜɬɨɪɨɟ ɜɨɡɛɭɠɞɟɧɧɵɟ ɫɨɫɬɨɹɧɢɹ ɯɚɪɚɤɬɟɪ ɚɫɢɦɦɟɬɪɢɢ ɭɝɥɨɜɵɯ ɪɚɫɩɪɟɞɟɥɟɧɢɣ ɩɥɚɜɧɨ ɦɟɧɹɟɬɫɹ ɜ ɢɧɬɟɪɜɚɥɟ ɷɧɟɪɝɢɣ ɨɬ 3,0-3,5 Ɇɷȼ ɞɨ 3,9 Ɇɷȼ ɫ ɪɟɡɤɢɦ ɭɜɟɥɢɱɟɧɢɟɦ ɫɟɱɟɧɢɹ ɜ ɨɛɥɚɫɬɢ ɡɚɞɧɢɯ ɭɝɥɨɜ ɞɥɹ ɩɟɪɟɯɨɞɚ ɜ ɨɫɧɨɜɧɨɟ ɫɨɫɬɨɹɧɢɟ ɢ ɚɫɢɦɦɟɬɪɢɡɚɰɢɟɣ ɭɝɥɨɜɨɝɨ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɨɬɧɨɫɢɬɟɥɶɧɨ 100º ɞɥɹ ɩɟɪɟɯɨɞɚ ɜɨ ɜɬɨɪɨɟ ɜɨɡɛɭɠɞɟɧɧɨɟ ɫɨɫɬɨɹɧɢɟ ɩɪɢ ɷɧɟɪɝɢɢ 4,2 Ɇɷȼ. ɇɟ ɢɫɤɥɸɱɟɧɨ, ɱɬɨ ɜ ɩɨɫɥɟɞɧɟɦ ɫɥɭɱɚɟ ɬɚɤɨɟ ɭɝɥɨɜɨɟ ɪɚɫɩɪɟɞɟɥɟɧɢɟ ɦɨɠɟɬ ɫɨɨɬɜɟɬɫɬɜɨɜɚɬɶ ɩɪɹɦɨɦɭ ɩɪɨɰɟɫɫɭ ɩɟɪɟɞɚɱɢ ɞɜɭɯ ɧɭɤɥɨɧɨɜ ɫ ɞɨɫɬɚɬɨɱɧɨ ɛɨɥɶɲɢɦ ɨɪɛɢɬɚɥɶɧɵɦ ɦɨɦɟɧɬɨɦ. ȼ ɨɛɳɟɦ, ɧɚɣɞɟɧɧɵɣ ɯɚɪɚɤɬɟɪ ɩɨɜɟɞɟɧɢɹ ɭɝɥɨɜɵɯ ɪɚɫɩɪɟɞɟɥɟɧɢɣ ɭɤɚɡɵɜɚɟɬ ɧɚ ɫɥɨɠɧɨɫɬɶ ɦɟɯɚɧɢɡɦɚ ɪɟɚɤɰɢɢ. Ʉɪɨɦɟ ɦɟɯɚɧɢɡɦɚ ɨɛɪɚɡɨɜɚɧɢɹ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ ɢ ɩɪɹɦɨɝɨ ɦɟɯɚɧɢɡɦɚ, ɬɚɤ ɠɟ, ɜɨɡɦɨɠɧɨ ɫɭɳɟɫɬɜɨɜɚɧɢɟ, ɩɪɟɞɪɚɜɧɨɜɟɫɧɵɯ ɩɪɨɰɟɫɫɨɜ ɨɛɪɚɡɨɜɚɧɢɹ ɢ ɪɚɫɩɚɞɚ ɫɨɫɬɨɹɧɢɣ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ [29]. Ɋɢɫ. 8. ɍɝɥɨɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɩɪɨɬɨɧɨɜ ɢɡ ɪɟɚɤɰɢɢ 19 3 F( He,p2)21Ne* 1,75 Ɇɷȼ. ɇɟɩɪɟɪɵɜɧɵɟ ɤɪɢɜɵɟ ɩɪɢ ȿ(3ɇɟ) = 2,8Ɇɷȼ ɪɚɫɱɟɬ ɩɨ ɬɟɨɪɢɢ ɏ-Ɏ; ɩɪɢ ȿ(3ɇɟ) = 4,19 Ɇɷȼ ɪɚɫɱɟɬ ɩɪɹɦɨɝɨ ɫɪɵɜɚ ɜ ɪɚɦɤɚɯ Ȼɉɂȼ ɫ ɩɨɬɟɧɰɢɚɥɨɦ 3 ɇɟ II ɜɨ ɜɯɨɞɧɨɦ ɤɚɧɚɥɟ ɞɥɹ ɩɟɪɟɞɚɱɢ ɨɪɛɢɬɚɥɶɧɨɝɨ ɦɨɦɟɧɬɚ L = 4. ɇɚ ɪɢɫ. 9 ɩɪɟɞɫɬɚɜɥɟɧɵ ɭɝɥɨɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɞɥɹ ɪɟɚɤɰɢɢ 19F(3He,Į)18F, ɢɡɦɟɪɟɧɧɵɟ ɞɥɹ ɩɟɪɟɯɨɞɨɜ ɜ ɨɫɧɨɜɧɨɟ (Į0) ɪɢɫ. 9ɚ, ɩɹɬɨɟ (Į5) ɪɢɫ. 9ɛ, ɲɟɫɬɨɟ (Į6) ɪɢɫ. 9ɜ ɢ ɫɟɞɶɦɨɟ (Į7) ɪɢɫ. 9ɝ ɩɪɢ ɞɜɭɯ ɷɧɟɪɝɢɹɯ ɧɚɥɟɬɚɸɳɢɯ ɢɨɧɨɜ 3ɇɟ 3,00 Ɇɷȼ ɢ 3,4 Ɇɷȼ, ɚ ɞɥɹ Į5 ɟɳɟ ɢ ɩɪɢ 4,0 Ɇɷȼ. Ɉɫɧɨɜɧɨɣ ɨɫɨɛɟɧɧɨɫɬɶɸ ɹɜɥɹɟɬɫɹ ɫɯɨɠɟɫɬɶ ɯɚɪɚɤɬɟɪɚ ɩɨɜɟɞɟɧɢɹ ɭɝɥɨɜɵɯ ɪɚɫɩɪɟɞɟɥɟɧɢɣ ɫɟɱɟɧɢɣ ɞɥɹ ɩɟɪɟɯɨɞɨɜ ɜ ɨɫɧɨɜɧɨɟ 0,00 Ɇɷȼ 1+ ɢ ɜ ɜɨɡɛɭɠɞɟɧɧɵɟ ɫɨɫɬɨɹɧɢɹ 2,101 Ɇɷȼ 2Ǧ, 2,523 Ɇɷȼ 2+ ɫɨɫɬɨɹɧɢɹ 18F. ɋɥɟɞɭɟɬ ɨɬɦɟɬɢɬɶ ɡɧɚɱɢɬɟɥɶɧɨɟ ɪɚɡɥɢɱɢɟ ɦɟɠɞɭ ɯɚɪɚɤɬɟɪɨɦ ɩɨɜɟɞɟɧɢɹ ɭɝɥɨɜɵɯ ɪɚɫɩɪɟɞɟɥɟɧɢɣ ɞɥɹ ɩɟɪɟɯɨɞɚ ɜ ɨɫɧɨɜɧɨɟ ɫɨɫɬɨɹɧɢɟ 1+ ɢ ɜ ɫɨɫɬɨɹɧɢɟ 1,701 Ɇɷȼ 1+, ɤɨɬɨɪɵɟ ɯɨɬɹ ɢ ɢɦɟɸɬ ɪɚɡɧɭɸ ɩɪɢɪɨɞɭ, ɧɨ ɞɥɹ ɫɬɚɬɢɫɬɢɱɟɫɤɨɣ ɬɟɨɪɢɢ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ ɨɧɢ ɞɨɥɠɧɵ ɛɵɬɶ ɢɞɟɧɬɢɱɧɵɦɢ. Ʉ ɫɨɠɚɥɟɧɢɸ ɪɚɫɱɟɬɨɜ ɩɨ ɬɟɨɪɢɢ ɏɚɭɡɟɪɚ- Ɏɟɲɛɚɯɚ ɞɥɹ ɪɟɚɤɰɢɢ 19F(3He,Į)18F ɧɟ ɩɪɨɜɨɞɢɥɨɫɶ. dı/dȍɦɛɧ/ɫɪ dı/dȍɦɛɧ/ɫɪ Ɋɢɫ. 9. ɍɝɥɨɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ 19 3 ɪɟɚɤɰɢɢ F( He,Į)18F ɞɥɹ ɩɟɪɟɯɨɞɨɜ ɜ ɨɫɧɨɜɧɨɟ, 5-ɟ 1,701 Ɇɷȼ, 6-ɟ 2,101 Ɇɷȼ ɢ 7-ɟ 2,523 Ɇɷȼ ɫɨɫɬɨɹɧɢɹ 18F. dı/dȍɦɛɧ/ɫɪ dı/dȍɦɛɧ/ɫɪ 14 «Â³ñíèê Õàðê³âñüêîãî óí³âåðñèòåòó», ¹ 880, 2009 Â.Ä. Ñàðàíà, Í.Ñ. Ëóöàé... Ⱦɥɹ ɩɨɞɬɜɟɪɠɞɟɧɢɹ ɜɵɲɟ ɜɵɫɤɚɡɚɧɧɵɯ ɚɪɝɭɦɟɧɬɨɜ ɜ ɩɨɥɶɡɭ ɨɛɪɚɡɨɜɚɧɢɹ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ ɜ ɪɟɚɤɰɢɢ F(3He,p)21Ne ɛɵɥɢ ɩɪɨɜɟɞɟɧɵ ɪɚɫɱɟɬɵ ɭɝɥɨɜɵɯ ɪɚɫɩɪɟɞɟɥɟɧɢɣ ɩɨ ɫɬɚɬɢɫɬɢɱɟɫɤɨɣ ɬɟɨɪɢɢ ɏɚɭɡɟɪɚ-Ɏɟɲɛɚɯɚ ɞɥɹ ɫɪɚɜɧɟɧɢɹ ɫ ɭɫɪɟɞɧɟɧɧɵɦɢ ɩɨ ɢɧɬɟɪɜɚɥɭ ɷɧɟɪɝɢɣ ȿ(3ɇɟ) 2,6 – 3,0 Ɇɷȼ ɭɝɥɨɜɵɦɢ ɪɚɫɩɪɟɞɟɥɟɧɢɹɦɢ ɪɟɚɤɰɢɢ 19 3 F( He,p)21Ne ɞɥɹ ɩɟɪɟɯɨɞɨɜ ɜ ɨɫɧɨɜɧɨɟ ɢ ɩɟɪɜɵɟ ɞɜɚ ɜɨɡɛɭɠɞɟɧɧɵɯ ɫɨɫɬɨɹɧɢɹ [14]. Ɍɟɨɪɟɬɢɱɟɫɤɢ ɧɚɣɞɟɧɧɚɹ ɚɛɫɨɥɸɬɧɚɹ ɜɟɥɢɱɢɧɚ ɫɟɱɟɧɢɹ ɩɨɞ ɭɝɥɨɦ 90º ɧɚ 10-20% ɦɟɧɶɲɟ ɱɟɦ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɟ ɡɧɚɱɟɧɢɹ. ɇɚ ɪɢɫ. 6, 7, 8 ɞɥɹ ɫɪɚɜɧɟɧɢɹ ɫ ɷɤɫɩɟɪɢɦɟɧɬɨɦ, ɩɪɢ ɷɧɟɪɝɢɢ 2,8 Ɇɷȼ ɩɪɢɜɟɞɟɧɵ ɧɨɪɦɢɪɨɜɚɧɧɵɟ ɩɪɢ ɭɝɥɟ 90º, ɪɚɫɫɱɢɬɚɧɧɵɟ ɩɨ ɫɬɚɬɢɫɬɢɱɟɫɤɨɣ ɬɟɨɪɢɢ ɏɚɭɡɟɪɚ-Ɏɟɲɛɚɯɚ, ɭɝɥɨɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ (ɧɟɩɪɟɪɵɜɧɚɹ ɥɢɧɢɹ), ɤɨɬɨɪɵɟ ɞɨɫɬɚɬɨɱɧɨ ɯɨɪɨɲɨ ɨɩɢɫɵɜɚɸɬ ɫɟɱɟɧɢɟ ɜɨ ɜɫɟɦ ɞɢɚɩɚɡɨɧɟ ɭɝɥɨɜ ɞɥɹ ɩɟɪɟɯɨɞɚ ɜ ɨɫɧɨɜɧɨɟ ɫɨɫɬɨɹɧɢɟ ɢ ɯɨɞ ɫɟɱɟɧɢɹ ɜ ɩɟɪɟɞɧɟɣ ɢ ɡɚɞɧɟɣ ɩɨɥɭɫɮɟɪɚɯ ɞɥɹ ɩɟɪɟɯɨɞɨɜ ɩɟɪɜɨɟ ɢ ɜɬɨɪɨɟ ɜɨɡɛɭɠɞɟɧɧɵɟ ɫɨɫɬɨɹɧɢɹ, ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ. ɉɨɫɤɨɥɶɤɭ ɮɨɪɦɚ ɭɝɥɨɜɵɯ ɪɚɫɩɪɟɞɟɥɟɧɢɣ ɪɚɡɧɚɹ ɞɥɹ ɩɟɪɟɯɨɞɨɜ ɜ ɫɨɫɬɨɹɧɢɹ ɫ ɪɚɡɧɵɦ J ɢ ɨɧɚ ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɷɤɫɩɟɪɢɦɟɧɬɭ, ɬɨ ɦɨɠɧɨ ɭɬɜɟɪɠɞɚɬɶ, ɱɬɨ ɷɤɫɩɟɪɢɦɟɧɬ ɩɨɞɬɜɟɪɠɞɚɟɬ ɩɪɢɩɢɫɚɧɢɹ ɫɩɢɧɨɜ ɷɬɢɦ ɫɨɫɬɨɹɧɢɹɦ 0,0 Ɇɷȼ - 3/2, 0,35 Ɇɷȼ - 5/2 ɢ 1,75 Ɇɷȼ - 7/2. ɗɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ ɧɚɣɞɟɧɧɵɟ ɭɝɥɨɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɚɩɩɪɨɤɫɢɦɢɪɨɜɚɥɢɫɶ ɩɨɥɢɧɨɦɚɦɢ Ʌɟɠɚɧɞɪɚ ɦɟɬɨɞɨɦ ɧɚɢɦɟɧɶɲɢɯ ɤɜɚɞɪɚɬɨɜ, ɱɢɫɥɟɧɧɵɟ ɞɚɧɧɵɟ ɨ ɧɚɣɞɟɧɧɵɯ ɤɨɷɮɮɢɰɢɟɧɬɚɯ ɩɪɢ ɩɨɥɢɧɨɦɚɯ ɩɪɢɜɟɞɟɧɵ ɜ ɪɚɛɨɬɟ [14]. Ɍɚɤ ɠɟ ɛɵɥɢ ɩɨɥɭɱɟɧɵ ɷɧɟɪɝɟɬɢɱɟɫɤɢɟ ɡɚɜɢɫɢɦɨɫɬɢ ɩɨɥɧɵɯ ɫɟɱɟɧɢɣ ɩɟɪɟɯɨɞɨɜ ɜ ɨɫɧɨɜɧɨɟ ɢ ɩɟɪɜɵɟ ɞɜɚ ɜɨɡɛɭɠɞɟɧɧɵɯ ɫɨɫɬɨɹɧɢɹ 21Ne. ɇɚ ɪɢɫ. 10 ɫɪɚɜɧɢɜɚɟɬɫɹ ɧɚɣɞɟɧɧɵɟ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ ɷɧɟɪɝɟɬɢɱɟɫɤɢɟ ɡɚɜɢɫɢɦɨɫɬɢ ɩɨɥɧɨɝɨ ɫɟɱɟɧɢɹ ɫ ɪɚɫɱɟɬɨɦ ɩɨ ɫɬɚɬɢɫɬɢɱɟɫɤɨɣ ɬɟɨɪɢɢ ɏɚɭɡɟɪɚ-Ɏɟɲɛɚɯɚ. ȼɢɞɧɨ, ɱɬɨ ɜ ɩɪɟɞɟɥɚɯ ɬɨɱɧɨɫɬɢ ɩɚɪɚɦɟɬɪɢɡɚɰɢɢ ɪɚɫɱɟɬɨɜ ɜɤɥɚɞ ɩɪɨɰɟɫɫɚ ɨɛɪɚɡɨɜɚɧɢɹ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ ɜ ɢɧɬɟɪɜɚɥɟ ɷɧɟɪɝɢɣ ɨɬ 2,6 ɞɨ 3,9 Ɇɷȼ ɞɥɹ ɝɪɭɩɩɵ ɪ1 ɫɨɨɬɜɟɬɫɬɜɭɟɬ 100%, ɚ ɞɥɹ ɝɪɭɩɩ ɪ0 ɢ ɪ2 60-90%. ɉɪɢ ɷɧɟɪɝɢɹɯ ɜɵɲɟ 3,7 Ɇɷȼ ɞɥɹ ɝɪɭɩɩɵ ɪ0 ɧɚɛɥɸɞɚɟɬɫɹ ɪɟɡɤɨɟ ɭɜɟɥɢɱɟɧɢɟ ɫɟɱɟɧɢɹ ɧɟ ɭɱɢɬɵɜɚɟɦɨɟ ɬɟɨɪɢɟɣ ɏɚɭɡɟɪɚ-Ɏɟɲɛɚɯɚ, ɚ ɞɥɹ ɪ1 ɢ ɪ2 ɷɬɨ ɭɜɟɥɢɱɟɧɢɟ ɧɟ ɜɟɥɢɤɨ. ɗɬɢ ɨɬɤɥɨɧɟɧɢɹ ɦɨɝɭɬ ɛɵɬɶ ɫɜɹɡɚɧɵ ɫ ɜɤɥɚɞɚɦɢ ɥɢɛɨ ɨɬ ɨɬɞɟɥɶɧɵɯ ɪɟɡɨɧɚɧɫɨɜ ɢɥɢ ɮɥɭɤɬɭɚɰɢɣ ɜ ɨɛɪɚɡɨɜɚɧɢɢ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ, ɥɢɛɨ ɨɬ ɩɪɹɦɨɝɨ ɩɪɨɰɟɫɫɚ. ɋɪɚɜɧɟɧɢɟ ɪɚɫɱɟɬɚ ɭɝɥɨɜɨɝɨ ɪɚɫɩɪɟɞɟɥɟɧɢɹ (ɫɦ. ɪɢɫ. 7) ɩɨ ɫɬɚɬɢɫɬɢɱɟɫɤɨɣ ɬɟɨɪɢɢ ɏɚɭɡɟɪɚ-Ɏɟɲɛɚɯɚ ɩɪɢ ɷɧɟɪɝɢɢ 3,0 Ɇɷȼ ɞɥɹ ɪ1 ɝɪɭɩɩɵ ɫ ɷɤɫɩɟɪɢɦɟɧɬɨɦ ɩɨɤɚɡɵɜɚɟɬ, ɱɬɨ ɫɬɟɩɟɧɶ ɨɫɰɢɥɥɹɰɢɣ ɜ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨɦ ɭɝɥɨɜɨɦ ɪɚɫɩɪɟɞɟɥɟ 19 Ɋɢɫ. 10. ɋɪɚɜɧɟɧɢɟ ɷɧɟɪɝɟɬɢɱɟɫɤɨɣ ɡɚɜɢɫɢɦɨɫɬɢ ɩɨɥɧɨɝɨ ɫɟɱɟɧɢɹ ɞɥɹ ɨɬɞɟɥɶɧɵɯ ɩɟɪɟɯɨɞɨɜ ɫ ɪɚɫɱɟɬɚɦɢ ɩɨ ɫɬɚɬɢɫɬɢɱɟɫɤɨɣ ɬɟɨɪɢɢ ɏɚɭɡɟɪɚ-Ɏɟɲɛɚɯɚ: ɚ – ɩɟɪɟɯɨɞ ɜ ɨɫɧɨɜɧɨɟ ɫɨɫɬɨɹɧɢɟ Jʌ = 3/2+; ɛ – ɩɟɪɟɯɨɞ ɜ ɜɨɡɛɭɠɞɟɧɧɨɟ ɫɨɫɬɨɹɧɢɟ 0,35 Ɇɷȼ Jʌ = 5/2+; ɜ – ɩɟɪɟɯɨɞ ɜ 1,75 Ɇɷȼ ɫɨɫɬɨɹɧɢɟ ɫ Jʌ = 7/2+. ɇɟɩɪɟɪɵɜɧɚɹ ɤɪɢɜɚɹ c – ɪɚɫɱɟɬ ɩɪɨɧɢɰɚɟɦɨɫɬɟɣ ɫ ɩɚɪɚɦɟɬɪɚɦɢ ɨɩɬɢɱɟɫɤɨɝɨ ɩɨɬɟɧɰɢɚɥɚ II-3He ɜɨ ɜɯɨɞɧɨɦ ɤɚɧɚɥɟ (ɫɦ. ɬɚɛɥ. 4) ɢ ɩɭɧɤɬɢɪɧɚɹ ɫ1 – ɫ ɩɚɪɚɦɟɬɪɚɦɢ I- 3He. ɧɢɢ ɧɚɦɧɨɝɨ ɛɨɥɶɲɟ, ɱɟɦ ɜ ɬɟɨɪɟɬɢɱɟɫɤɨɦ, ɩɪɢ ɫɯɨɠɟɫɬɢ ɮɨɪɦ ɭɝɥɨɜɵɯ ɪɚɫɩɪɟɞɟɥɟɧɢɣ. Ɍɚɤɚɹ ɫɢɬɭɚɰɢɹ ɫɨɯɪɚɧɹɟɬɫɹ ɞɨ ɷɧɟɪɝɢɢ 3,9 Ɇɷȼ, ɱɬɨ ɦɨɠɟɬ ɛɵɬɶ ɫɜɹɡɚɧɨ ɫ ɜɤɥɚɞɨɦ ɩɪɹɦɨɝɨ ɩɪɨɰɟɫɫɚ. ɏɚɪɚɤɬɟɪ ɩɨɜɟɞɟɧɢɹ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ ɧɚɣɞɟɧɧɨɝɨ ɭɝɥɨɜɨɝɨ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɪɚɫɱɟɬɚɦ ɮɨɪɦɵ ɭɝɥɨɜɨɝɨ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɞɥɹ ɩɪɹɦɨɝɨ ɩɪɨɰɟɫɫɚ ɜ Ȼɉɂȼ, ɤɚɤ ɷɬɨ ɩɨɤɚɡɚɧɨ ɧɚ ɪɢɫ. 7 ɧɟɩɪɟɪɵɜɧɨɣ ɤɪɢɜɨɣ ɩɪɢ ɷɧɟɪɝɢɢ 3ɇɟ 3,9 Ɇɷȼ. ɋɯɨɠɚɹ ɫɢɬɭɚɰɢɹ ɫɤɥɚɞɵɜɚɟɬɫɹ ɢ ɞɥɹ ɝɪɭɩɩɵ ɪ2 (ɪɢɫ. 8). ɉȺɊȺɆȿɌɊɂɁȺɐɂə ɌȿɈɊȿɌɂɑȿɋɄɂɏ ɊȺɋɑȿɌɈȼ ɋɬɚɬɢɫɬɢɱɟɫɤɚɹ ɬɟɨɪɢɹ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ ɏɚɭɡɟɪɚ-Ɏɟɲɛɚɯɚ Ⱦɥɹ ɪɚɫɱɟɬɚ ɭɫɪɟɞɧɟɧɧɵɯ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɵɯ ɫɟɱɟɧɢɣ ɪɟɚɤɰɢɣ (3ɇɟ,ɪ), ɩɪɨɬɟɤɚɸɳɢɯ ɱɟɪɟɡ ɨɛɪɚɡɨɜɚɧɢɟ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ Jʌ ɜ ɩɪɨɰɟɫɫɟ Ⱥ + ɚ ĺ ɋ*ĺ ȼ + ɜ ɢɡ ɧɚɱɚɥɶɧɨɝɨ ɫɨɫɬɨɹɧɢɹ ɫ = (Į,l,s) ɜ ɤɨɧɟɱɧɨɟ ɫɨɫɬɨɹɧɢɟ ɫ' = (Į’,l’,s’) ɢɫɩɨɥɶɡɨɜɚɥɨɫɶ ɫɨɨɬɧɨɲɟɧɢɟ [32] Tlj ( a )Tlj (b) dσ 1 1 (θ ) = 2 ⋅ Z1Z 2 PL (cos θ ) , ¦ 4k (2 I + 1)(2i + 1) clc ' l ' ¦ Tlj ( ci ) dΩ LJ ci lj (2) 15 ñåð³ÿ ô³çè÷íà «ßäðà, ÷àñòèíêè, ïîëÿ», âèï. 4 /44/ ßäåðíûå ðåàêöèè, âûçâàííûå... ɝɞɟ J u ʌ - ɫɩɢɧ ɢ ɱɟɬɧɨɫɬɶ ɫɨɫɬɨɹɧɢɣ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ, l u l’ ɨɪɛɢɬɚɥɶɧɵɟ ɦɨɦɟɧɬɵ ɱɚɫɬɢɰ ɚ ɢ ɜ , s u s' ɤɚɧɚɥɨɜɵɟ ɫɩɢɧɵ, k - ɜɨɥɧɨɜɨɟ ɱɢɫɥɨ ɧɚɥɟɬɚɸɳɟɣ ɱɚɫɬɢɰɵ, Tlj - ɤɨɷɮɮɢɰɢɟɧɬɵ ɩɪɨɧɢɰɚɟɦɨɫɬɢ, ɫi- ɜɫɟ ɜɵɯɨɞɧɵɟ ɤɚɧɚɥɵ ɤɪɨɦɟ ɢɫɫɥɟɞɭɟɦɨɝɨ ɜɵɯɨɞɧɨɝɨ ɢ ɜɯɨɞɧɨɝɨ, Z1 Z2 - Z-ɤɨɷɮɮɢɰɢɟɧɬɵ ɜɟɤɬɨɪɧɨɝɨ ɫɥɨɠɟɧɢɹ, ɊL(cosș) – ɩɨɥɢɧɨɦɵ Ʌɟɠɚɧɞɪɚ, I – ɫɩɢɧ ɹɞɪɚ-ɦɢɲɟɧɢ. Ʉɚɤ ɜɢɞɢɦ ɢɡ ɜɵɪɚɠɟɧɢɹ (2) ɜɟɥɢɱɢɧɚ ɫɟɱɟɧɢɹ ɨɩɪɟɞɟɥɹɟɬɫɹ ɤɨɷɮɮɢɰɢɟɧɬɚɦɢ ɩɪɨɧɢɰɚɟɦɨɫɬɢ ɜɯɨɞɧɨɝɨ, ɢɫɫɥɟɞɭɟɦɨɝɨ ɜɵɯɨɞɧɨɝɨ ɢ ɫɭɦɦɨɣ ɩɪɨɧɢɰɚɟɦɨɫɬɟɣ ɜɫɟɯ ɨɫɬɚɥɶɧɵɯ ɨɬɤɪɵɬɵɯ ɤɚɧɚɥɨɜ. Ʉɨɷɮɮɢɰɢɟɧɬɵ ɩɪɨɧɢɰɚɟɦɨɫɬɢ ɨɩɪɟɞɟɥɹɸɬɫɹ ɱɟɪɟɡ ɩɚɪɚɦɟɬɪɵ ɩɨɬɟɧɰɢɚɥɨɜ ɨɩɬɢɱɟɫɤɨɣ ɦɨɞɟɥɢ ɭɩɪɭɝɨɝɨ ɪɚɫɫɟɹɧɢɹ. ɂɫɩɨɥɶɡɨɜɚɧɧɵɟ ɧɚɦɢ ɩɚɪɚɦɟɬɪɵ ȼɭɞɫ-ɋɚɤɫɨɧɨɜɫɤɢɯ ɨɩɬɢɤɨ-ɦɨɞɟɥɶɧɵɯ ɩɨɬɟɧɰɢɚɥɨɜ ɞɥɹ ɪɚɫɱɟɬɨɜ ɩɪɨɧɢɰɚɟɦɨɫɬɟɣ ɩɪɢɜɟɞɟɧɵ ɜ ɬɚɛɥ.4. Ɍɚɛɥɢɰɚ 4. ɉɚɪɚɦɟɬɪɵ ɨɩɬɢɱɟɫɤɢɯ ɩɨɬɟɧɰɢɚɥɨɜ ɢɫɩɨɥɶɡɨɜɚɧɧɵɯ ɜ ɪɚɫɱɟɬɚɯ ɫɟɱɟɧɢɹ ɩɪɹɦɨɝɨ ɫɪɵɜɚ ɜ ɪɚɦɤɚɯ Ȼɉɂȼ ɢ ɜ ɫɬɚɬɢɫɬɢɱɟɫɤɨɣ ɬɟɨɪɢɢ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ ɏɚɭɡɟɪɚ-Ɏɟɲɛɚɯɚ. V0 t Ʌɢɬɟɪɚaw a0 rw r0 W rC Ɏɦ ɬɭɪɚ Ɏɦ Ɏɦ Ɏɦ Ɏɦ Ɇɷȼ Ɇɷȼ [9] 0 1,4 1,05 1,81 0,829 0,592 25,9 201,6 I – 3He 6 Ɇɷȼ [9] 0 1,4 1,05 1,81 0,829 0,592 15,9 153,2 II – 3He 6 Ɇɷȼ [42] t 5,5 Ɇɷȼ [29] 1 0,47 0,65 1,25 1,25 1,25 8,28 53,9 – 0,55E p [30] 1 0,48 0,66 1,30 1,26 9,52 – 0,053E 47,0 – 0,27E n [31] 0 0,52 0,82 1,83 1,5 1,3 7,98 – 0,5E 109,0 – 0,5E d ¦ T (c ) ɨɩɪɟɞɟɥɹɟɬɫɹ ɩɪɨɧɢɰɚɟɦɨɫɬɹɦɢ ɜɨ ɜɫɟɯ ɜɨɡɦɨɠɧɵɯ ɤɚɧɚɥɚɯ-ɪɟɚɤɰɢɹɯ ɪɚɫɩɚɞɚ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ. Ⱦɥɹ ɤɚɠɞɨɝɨ ɤɚɧɚɥɚ-ɪɟɚɤɰɢɢ ɜɟɥɢɱɢɧɭ ¦ T ( c ) ɩɪɢ ɪɚɫɩɚɞɟ ɜɵɫɨɤɨ ɜɨɡɛɭɠɞɟɧɧɨɝɨ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ ɋɭɦɦɚ lj i lj i ɦɨɠɧɨ ɩɪɟɞɫɬɚɜɢɬɶ ɜ ɜɢɞɟ EC E ­ ½ ° H ° d ( ) ( ) T c = T c + ρ ( j, E ) ⋅ Tlj ⋅ dE ¾ . ® ¦ lj i ¦ ¦ lj i ³ ci lj lj ¯ EH ° Ei=0 ° ¿ (3) ɉɟɪɜɵɣ ɱɥɟɧ ɫɭɦɦɵ ɨɬɧɨɫɢɬɫɹ ɤ ɞɢɫɤɪɟɬɧɨɣ ɱɚɫɬɢ ɫɩɟɤɬɪɚ ɨɫɬɚɬɨɱɧɨɝɨ ɹɞɪɚ ɞɥɹ ɞɚɧɧɨɝɨ ɤɚɧɚɥɚ ɪɟɚɤɰɢɢ (ɡɞɟɫɶ ɫid –ɨɛɨɡɧɚɱɚɟɬ ɧɨɦɟɪ ɭɪɨɜɧɹ ɫ ɟɝɨ ɩɚɪɚɦɟɬɪɚɦɢ ɤɨɬɨɪɵɟ ɨɩɪɟɞɟɥɹɸɬ Ɍlj). ɋɭɦɦɢɪɨɜɚɧɢɟ ɩɪɨɜɨɞɢɬɫɹ ɨɬ ɭɪɨɜɧɹ ɫ ɷɧɟɪɝɢɟɣ ȿi=0, ɫɨɨɬɜɟɬɫɬɜɭɸɳɟɣ ɨɫɧɨɜɧɨɦɭ ɫɨɫɬɨɹɧɢɸ, ɞɨ ɭɪɨɜɧɹ ɫ ɷɧɟɪɝɢɟɣ ȿɇ, ɧɚɯɨɞɹɳɟɦɭɫɹ ɧɚ ɝɪɚɧɢɰɟ ɦɟɠɞɭ ɞɢɫɤɪɟɬɧɨɣ ɢ ɧɟɩɪɟɪɵɜɧɨɣ ɱɚɫɬɹɦɢ ɫɩɟɤɬɪɚ. ȼɬɨɪɨɣ ɱɥɟɧ ɜɵɪɚɠɟɧɢɹ (3) ɨɬɧɨɫɢɬɫɹ ɤ ɧɟɩɪɟɪɵɜɧɨɣ ɱɚɫɬɢ ɫɩɟɤɬɪɚ ɫɨɫɬɨɹɧɢɣ ɨɫɬɚɬɨɱɧɨɝɨ ɹɞɪɚ ɞɚɧɧɨɝɨ ɤɚɧɚɥɚ ɪɟɚɤɰɢɢ. Ɋɚɫɩɪɟɞɟɥɟɧɢɟ ɩɥɨɬɧɨɫɬɢ ɫɨɫɬɨɹɧɢɣ ɧɟɩɪɟɪɵɜɧɨɣ ɱɚɫɬɢ ɫɩɟɤɬɪɚ ɨɩɢɫɵɜɚɟɬɫɹ ɮɭɧɤɰɢɟɣ ȡ(j,E). Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɜɨɡɧɢɤɚɟɬ ɧɟɫɤɨɥɶɤɨ ɜɨɡɦɨɠɧɨɫɬɟɣ ɩɚɪɚɦɟɬɪɢɡɚɰɢɢ ɪɚɫɱɟɬɚ ɫɭɦɦɵ ɩɪɨɧɢɰɚɟɦɨɫɬɟɣ ɞɥɹ ɜɫɟɯ ɨɬɤɪɵɬɵɯ ɤɚɧɚɥɨɜ. 1) Ɉɩɢɫɵɜɚɬɶ ɫ ɩɨɦɨɳɶɸ ɮɭɧɤɰɢɢ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɩɥɨɬɧɨɫɬɢ ɫɨɫɬɨɹɧɢɣ ȡ(j,E) ɜɟɫɶ ɫɩɟɤɬɪ ɜɨɡɛɭɠɞɟɧɢɣ ɨɫɬɚɬɨɱɧɵɯ ɹɞɟɪ, ɬ.ɟ. ɫ ɢɫɩɨɥɶɡɨɜɚɧɢɟɦ ɬɨɥɶɤɨ 2-ɝɨ ɱɥɟɧɚ ɩɪɢ ɢɧɬɟɝɪɢɪɨɜɚɧɢɢ ɨɬ ȿ= 0 ɞɨ ȿ =ȿɋ – ɷɧɟɪɝɢɢ ɜɨɡɛɭɠɞɟɧɢɹ ɨɫɬɚɬɨɱɧɨɝɨ ɹɞɪɚ ɫɨɨɬɜɟɬɫɬɜɭɸɳɟɣ ɷɧɟɪɝɢɢ ɜɨɡɛɭɠɞɟɧɢɹ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ. ɂɥɢ, ɫɥɟɞɭɹ ɪɚɛɨɬɟ [33], ɫɭɦɦɚ ɩɨ ɜɫɟɦ ɨɬɤɪɵɬɵɦ ɜɵɯɨɞɧɵɦ ɤɚɧɚɥɚɦ ɡɚɦɟɧɹɟɬɫɹ ɜɵɪɚɠɟɧɢɟɦ Jπ 2 2π Tlj ( ci ) = N µ Ƚµ , ¦ µ DJ ci lj ɝɞɟ ȝ – ɢɧɞɟɤɫ ɪɟɡɨɧɚɧɫɚ, ɚ 2 Nµ - ɱɢɫɥɨ, ɤɨɬɨɪɨɟ ɡɚɜɢɫɢɬ ɬɨɥɶɤɨ ɨɬ ɝɪɚɧɢɱɧɵɯ ɭɫɥɨɜɢɣ R-ɦɚɬɪɢɰɵ [34]. ȼ 2 Nµ ; Jπ Ƚµ ɧɚɲɟɦ ɫɥɭɱɚɟ ɩɨɥɚɝɚɥɨɫɶ, ɱɬɨ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ ɫɨ ɫɩɢɧɨɦ ɢ ɱɟɬɧɨɫɬɶɸ Jʌ, DJ – ɫɪɟɞɧɟɟ ɪɚɫɫɬɨɹɧɢɟ ɦɟɠɞɭ ɭɪɨɜɧɹɦɢ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ ɫɨ ɫɩɢɧɨɦ J. ɂɫɩɨɥɶɡɭɟɦ ɢɡɜɟɫɬɧɨɟ ɫɨɨɬɧɨɲɟɧɢɟ ɞɥɹ ɷɬɨɣ ɜɟɥɢɱɢɧɵ ª J ( J + 1) º DJ = D0 /(2 J + 1) exp « − , 2σ 2 » ¬ ¼ ɝɞɟ Do – ɪɚɫɫɬɨɹɧɢɟ ɦɟɠɞɭ ɭɪɨɜɧɹɦɢ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ ɫɨ ɫɩɢɧɨɦ 0; ı2 – ɩɚɪɚɦɟɬɪ ɫɩɢɧɨɜɨɝɨ ɨɛɪɟɡɚɧɢɹ ɞɥɹ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ. ɉɨɫɤɨɥɶɤɭ ɜ ɧɚɲɟɦ ɫɥɭɱɚɟ ɷɧɟɪɝɢɣ ɧɚɥɟɬɚɸɳɢɯ ɱɚɫɬɢɰ ɧɢɠɟ ɤɭɥɨɧɨɜɫɤɨɝɨ ɛɚɪɶɟɪɚ Jπ ɛɭɞɟɬ ɫɥɚɛɨ ɡɚɜɢɫɟɬɶ ɨɬ J. ɷɮɮɟɤɬɢɜɧɨ ɪɚɛɨɬɚɸɬ ɜɨ ɜɯɨɞɧɨɦ ɤɚɧɚɥɟ ɬɨɥɶɤɨ ɦɚɥɵɟ ɭɝɥɨɜɵɟ ɦɨɦɟɧɬɵ, ɬɨ Ƚ µ µ µ - ɭɫɪɟɞɧɟɧɧɚɹ ɜɟɥɢɱɢɧɚ ɩɚɪɰɢɚɥɶɧɵɯ ɲɢɪɢɧ ȽJʌ ɞɥɹ ɭɪɨɜɧɟɣ Ɍɨɝɞɚ ɜɵɪɚɠɟɧɢɟ ɞɥɹ ɭɫɪɟɞɧɟɧɧɨɝɨ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɝɨ ɫɟɱɟɧɢɹ ɡɚɩɢɲɟɬɫɹ ɜ ɜɢɞɟ: T lj ( a )Tlj (b) D dσ 1 (θ ) = 0 2 Z1Z 2 PL (cos θ ) . ¦ 2 dΩ Ƚ 8k (2 I + 1)(2i + 1) sls ' l ' (2 J + 1) exp ª º − + σ ( 1) / 2 J J ¬ ¼ LJ (4) 2) ɉɪɨɜɟɞɟɧɢɟ ɦɨɞɟɥɢɪɨɜɚɧɢɹ ɧɟɩɪɟɪɵɜɧɨɝɨ ɫɩɟɤɬɪɚ ɫ ɩɨɦɨɳɶɸ ɞɢɫɤɪɟɬɧɨɝɨ ɫɩɟɤɬɪɚ, ɨɬɨɛɪɚɠɚɸɳɟɝɨ 16 «Â³ñíèê Õàðê³âñüêîãî óí³âåðñèòåòó», ¹ 880, 2009 Â.Ä. Ñàðàíà, Í.Ñ. Ëóöàé... ɮɭɧɤɰɢɸ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɩɥɨɬɧɨɫɬɢ ɜɵɫɨɤɨɜɨɡɛɭɠɞɟɧɧɵɯ ɫɨɫɬɨɹɧɢɣ ɨɫɬɚɬɨɱɧɨɝɨ ɹɞɪɚ. 3) ɉɪɨɜɨɞɢɬɶ ɢɧɬɟɝɪɢɪɨɜɚɧɢɟ, ɢɫɩɨɥɶɡɭɹ ɤɚɤɨɟ-ɥɢɛɨ ɢɡɜɟɫɬɧɨɟ ɩɪɟɞɫɬɚɜɥɟɧɢɟ ɮɭɧɤɰɢɢ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɩɥɨɬɧɨɫɬɢ ɫɨɫɬɨɹɧɢɣ, ɨɩɪɟɞɟɥɢɜ ɟɟ ɩɚɪɚɦɟɬɪɢɡɚɰɢɸ ɞɥɹ ɞɚɧɧɨɝɨ ɨɫɬɚɬɨɱɧɨɝɨ ɹɞɪɚ. ȼ ɧɚɲɟɣ ɪɚɛɨɬɟ ɦɵ ɢɫɩɨɥɶɡɨɜɚɥɢ 1-ɣ ɢ 2-ɣ ɩɨɞɯɨɞɵ ɞɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɫɟɱɟɧɢɹ ɪɟɚɤɰɢɢ ɫ ɨɛɪɚɡɨɜɚɧɢɟɦ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ ɜ ɪɟɚɤɰɢɢ 19F(3He,p)21Ne. Ⱦɥɹ ɪɚɫɱɟɬɨɜ ɢɫɩɨɥɶɡɨɜɚɥɚɫɶ ɩɪɨɝɪɚɦɦɚ LIANA [35], ɤɨɬɨɪɚɹ ɧɚɩɪɹɦɭɸ ɪɚɫɫɱɢɬɵɜɚɟɬ ɫɭɦɦɭ ɩɪɨɧɢɰɚɟɦɨɫɬɟɣ ɜ ɩɟɪɟɯɨɞɚɯ ɧɚ ɫɨɫɬɨɹɧɢɹ ɜɫɟɯ ɭɤɚɡɚɧɧɵɯ ɨɫɬɚɬɨɱɧɵɯ ɹɞɟɪ. ɉɨɷɬɨɦɭ ɞɥɹ ɷɧɟɪɝɢɣ, ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɯ ɭɱɚɫɬɤɭ ɧɟɩɪɟɪɵɜɧɨɝɨ ɫɩɟɤɬɪɚ, ɩɪɢɲɥɨɫɶ ɦɨɞɟɥɢɪɨɜɚɬɶ ɫ ɩɨɦɨɳɶɸ ɧɚɛɨɪɚ ɞɢɫɤɪɟɬɧɵɯ ɭɪɨɜɧɟɣ ɫ ɩɚɪɚɦɟɬɪɚɦɢ, ɭɞɨɜɥɟɬɜɨɪɹɸɳɢɦɢ ɨɩɪɟɞɟɥɟɧɧɵɦ ɪɚɫɩɪɟɞɟɥɟɧɢɹɦ ɩɥɨɬɧɨɫɬɢ ɭɪɨɜɧɟɣ ª I ( I + 1) º ρ ( I , E x ) = ρ ( E x )(2 I + 1) exp « − , (5) 2 ¬ 2σ » ¼ ɝɞɟ ɡɚɜɢɫɢɦɨɫɬɶ ɩɥɨɬɧɨɫɬɢ ɭɪɨɜɧɟɣ ɨɬ ɷɧɟɪɝɢɢ ɜɨɡɛɭɠɞɟɧɢɹ ɨɫɬɚɬɨɱɧɨɝɨ ɹɞɪɚ ȿɯ ɜɵɛɢɪɚɥɚɫɶ ɜ ɫɥɟɞɭɸɳɟɦ ɜɢɞɟ [36] 1,156 º (6) ρ ( Ex ) = exp ª ¬ 2, 30( a + b E x ) ¼ . Ex ȼɟɥɢɱɢɧɵ ɚ ɢ b ɹɜɥɹɸɬɫɹ ɩɚɪɚɦɟɬɪɚɦɢ, ɤɨɬɨɪɵɟ ɨɩɪɟɞɟɥɹɸɬɫɹ ɞɥɹ ɤɚɠɞɨɝɨ ɨɫɬɚɬɨɱɧɨɝɨ ɹɞɪɚ ɩɭɬɟɦ ɩɨɞɝɨɧɤɢ ɩɪɹɦɨɣ ɥɢɧɢɟɣ ɡɚɜɢɫɢɦɨɫɬɢ lgN(Ex) = f(¥Ex), ɩɨɥɭɱɟɧɧɨɣ ɜ ɨɛɥɚɫɬɢ ɞɢɫɤɪɟɬɧɵɯ ɭɪɨɜɧɟɣ. Ƚɞɟ N(Ex) – ɩɨɥɧɨɟ ɱɢɫɥɨ ɭɪɨɜɧɟɣ ɫ ɷɧɟɪɝɢɟɣ ɜɨɡɛɭɠɞɟɧɢɹ ɦɟɧɶɲɟ, ɱɟɦ Ex . Ɇɵ ɫɱɢɬɚɟɦ, ɱɬɨ ɩɪɢ ɛɨɥɶɲɢɯ ɷɧɟɪɝɢɹɯ (ɞɨ 12-14 Ɇɷȼ) ɯɨɪɨɲɢɦ ɩɪɢɛɥɢɠɟɧɢɟɦ ɛɭɞɟɬ lgN(Ex) =a +b¥Ex. ɗɬɚ ɮɨɪɦɭɥɚ ɞɚɟɬ ɚɩɩɪɨɤɫɢɦɚɰɢɸ ɛɥɢɡɤɭɸ ɤ ɮɨɪɦɭɥɚɦ ɇɶɸɬɨɧɚ [37]. ɉɚɪɚɦɟɬɪ ɫɩɢɧɨɜɨɝɨ ɨɛɪɟɡɚɧɢɹ ɞɥɹ ɨɫɬɚɬɨɱɧɵɯ ɹɞɟɪ ı2 ɜ ɩɪɨɬɨɧɧɨɦ ɢ ɧɟɣɬɪɨɧɧɨɦ ɤɚɧɚɥɚɯ ɛɵɥ ɜɵɛɪɚɧ ɪɚɜɧɵɦ 5 ɞɥɹ ɢɧɬɟɪɜɚɥɚ ɷɧɟɪɝɢɣ ȿɯ ɨɬ 7 ɞɨ 12,5 Ɇɷȼ. ȼ ɬɚɛɥ. 5 ɩɪɢɜɟɞɟɧɵ ɜɟɥɢɱɢɧɵ ɚ ɢ b, ɧɚɣɞɟɧɧɵɟ ɞɥɹ ɨɫɬɚɬɨɱɧɵɯ ɹɞɟɪ ɩɨ ɢɡɜɟɫɬɧɵɦ ɭɪɨɜɧɹɦ [38], ɜɟɥɢɱɢɧɵ Q-ɪɟɚɤɰɢɣ ɢ ɷɧɟɪɝɢɢ ɜɨɡɛɭɠɞɟɧɢɹ ȿɇ, ɜɵɲɟ ɤɨɬɨɪɵɯ ɩɪɨɜɨɞɢɥɚɫɶ ɚɩɩɪɨɤɫɢɦɚɰɢɹ ɩɥɨɬɧɨɫɬɢ ɭɪɨɜɧɟɣ. Ⱦɚɧɧɵɯ ɨɛ ɭɪɨɜɧɹɯ ɨɫɬɚɬɨɱɧɵɯ ɹɞɟɪ 18F ɢ 20Ne ɛɵɥɨ ɞɨɫɬɚɬɨɱɧɨ, ɱɬɨɛɵ ɧɟ ɩɪɨɜɨɞɢɬɶ ɷɤɫɬɪɚɩɨɥɹɰɢɸ. ȼɤɥɚɞɨɦ ɞɪɭɝɢɯ ɤɚɧɚɥɨɜ ɫ ɜɵɯɨɞɨɦ ɬɹɠɟɥɵɯ ɹɞɟɪ ɩɪɟɧɟɛɪɟɝɚɥɨɫɶ ɢɡ-ɡɚ ɢɯ ɨɱɟɧɶ ɦɚɥɨɝɨ ɜɤɥɚɞɚ ” 1%. Ⱥɛɫɨɥɸɬɧɵɟ ɡɧɚɱɟɧɢɹ ɫɟɱɟɧɢɣ, ɪɚɫɫɱɢɬɚɧɧɵɯ ɩɨ ɩɪɨɝɪɚɦɦɟ LIANA, ɡɚɜɢɫɹɬ ɜ ɡɧɚɱɢɬɟɥɶɧɨɣ ɫɬɟɩɟɧɢ ɨɬ ɤɨɪɪɟɤɬɧɨɫɬɢ ɜɵɱɢɫɥɟɧɢɹ ɫɭɦɦɵ ɤɨɷɮɮɢɰɢɟɧɬɨɜ ɩɪɨɧɢɰɚɟɦɨɫɬɢ ɜ ɨɬɤɪɵɬɵɯ ɜɵɯɨɞɧɵɯ ɤɚɧɚɥɚɯ, ɱɬɨ ɨɩɪɟɞɟɥɹɟɬɫɹ ɜ ɨɫɧɨɜɧɨɦ ɱɢɫɥɨɦ ɭɱɬɟɧɧɵɯ ɜ ɪɚɫɱɟɬɟ ɭɪɨɜɧɟɣ, ɢ, ɜ ɫɥɭɱɚɟ ɪɟɚɤɰɢɣ ɩɪɢ ɧɢɡɤɢɯ ɷɧɟɪɝɢɹɯ, ɨɬ ɤɨɷɮɮɢɰɢɟɧɬɨɜ ɩɪɨɧɢɰɚɟɦɨɫɬɢ ɜɨ ɜɯɨɞɧɨɦ ɤɚɧɚɥɟ (ɬ.ɟ. ɨɬ ɩɚɪɚɦɟɬɪɨɜ ɨɩɬɢɱɟɫɤɨɝɨ ɩɨɬɟɧɰɢɚɥɚ). ɉɨɞɝɨɧɤɚ ɤ ɜɟɥɢɱɢɧɟ ɭɫɪɟɞɧɟɧɧɨɝɨ ɩɨ ɢɧɬɟɪɜɚɥɭ ɷɧɟɪɝɢɣ ɧɚɥɟɬɚɸɳɢɯ ɢɨɧɨɜ 3ɇɟ 2,6-3,0 Ɇɷȼ ɫɟɱɟɧɢɹ ɩɨɞ ɭɝɥɨɦ 90º, ɞɥɹ ɩɟɪɟɯɨɞɚ ɜ ɩɟɪɜɨɟ ɜɨɡɛɭɠɞɟɧɧɨɟ ɫɨɫɬɨɹɧɢɟ, 0,35 Ɇɷȼ 5/2+, ɩɨɤɚɡɵɜɚɟɬ, ɱɬɨ ɬɪɟɛɭɟɬɫɹ ɭɱɢɬɵɜɚɬɶ ɩɨɪɹɞɤɚ 550 ɭɪɨɜɧɟɣ. ɉɚɪɚɦɟɬɪɵ ɩɨɬɟɧɰɢɚɥɚ II-3He ɫ ɦɟɧɶɲɟɣ ɝɥɭɛɢɧɨɣ ɪɟɚɥɶɧɨɣ ɱɚɫɬɢ ɞɥɹ ɜɯɨɞɧɨɝɨ ɤɚɧɚɥɚ ɞɚɸɬ ɦɟɧɶɲɟɟ ɡɧɚɱɟɧɢɟ ɫɟɱɟɧɢɹ (ɤɪɢɜɚɹ ɫ' ɧɚ ɪɢɫ. 10). Ʉɚɤ ɜɢɞɧɨ ɢɡ ɭɪɚɜɧɟɧɢɹ (4), ɫɪɚɜɧɟɧɢɟɦ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ ɧɚɣɞɟɧɧɵɯ ɫɟɱɟɧɢɣ ɫ ɪɚɫɫɱɢɬɚɧɧɵɦɢ ɩɨ ɬɟɨɪɢɢ ɏɚɭɡɟɪɚ-Ɏɟɲɛɚɯɚ ɜ ɩɟɪɜɨɦ ɩɨɞɯɨɞɟ ɦɨɠɧɨ ɢɡɜɥɟɱɶ ɡɧɚɱɟɧɢɟ ɫɪɟɞɧɟɣ ɲɢɪɢɧɵ ɭɪɨɜɧɟɣ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ Ƚ. Ⱦɥɹ ɷɬɨɝɨ ɧɟɨɛɯɨɞɢɦɨ ɨɩɪɟɞɟɥɢɬɶ ɡɧɚɱɟɧɢɹ ɩɚɪɚɦɟɬɪɚ ɫɩɢɧɨɜɨɝɨ ɨɛɪɟɡɚɧɢɹ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ ı2 ɢ ɫɪɟɞɧɟɟ ɪɚɫɫɬɨɹɧɢɟ ɦɟɠɞɭ ɭɪɨɜɧɹɦɢ ɫ ɧɭɥɟɜɵɦ ɫɩɢɧɨɦ D0. ȼɟɥɢɱɢɧɭ ɩɚɪɚɦɟɬɪɚ ɫɩɢɧɨɜɨɝɨ ɨɛɪɟɡɚɧɢɹ ı2 ɨɩɪɟɞɟɥɹɥɢ ɢɡ ɩɨɞɝɨɧɤɢ ɮɨɪɦɵ ɭɝɥɨɜɨɣ ɡɚɜɢɫɢɦɨɫɬɢ ɭɫɪɟɞɧɟɧɧɨɝɨ ɫɟɱɟɧɢɹ ɞɥɹ ɩɟɪɟɯɨɞɚ ɜ ɨɫɧɨɜɧɨɟ ɫɨɫɬɨɹɧɢɟ. ɏɨɬɹ ɷɬɨɬ ɦɟɬɨɞ ɧɟ ɩɨɡɜɨɥɹɟɬ ɨɞɧɨɡɧɚɱɧɨ ɭɫɬɚɧɨɜɢɬɶ ɜɟɥɢɱɢɧɭ ı2, ɨɞɧɚɤɨ, ɩɭɬɟɦ ɧɚɢɥɭɱɲɟɣ ɩɨɞɝɨɧɤɢ ɦɨɠɧɨ ɧɚɣɬɢ ɜɟɪɯɧɸɸ ɢ ɧɢɠɧɸɸ ɝɪɚɧɢɰɵ ɡɧɚɱɟɧɢɣ ı2, ɫɨɜɦɟɫɬɢɦɵɯ ɫ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɦɢ ɞɚɧɧɵɦɢ. Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɩɨɥɭɱɟɧɚ ɫɥɟɞɭɸɳɚɹ ɨɰɟɧɤɚ: σ 2 = 4,5 ± 3,0 2,5 . Ɍɚɛɥɢɣɚ 5. ɉɚɪɚɦɟɬɪɵ ɚɩɩɪɨɤɫɢɦɚɰɢɢ ɩɥɨɬɧɨɫɬɢ ɭɪɨɜɧɟɣ ɨɫɬɚɬɨɱɧɵɯ ɹɞɟɪ ȼɵɯɨɞɧɨɣ Q Ɇɷȼ ɚ b Ɇɷȼ -1/2 ȿɇ ɤɚɧɚɥ Ɇɷȼ 19 3 11,9 - 0,79 0,87 6,75 F( He,p)21Ne 19 3 F( He,n)21Nɚ 7,61 - 0,57 0,75 6,58 ɍɝɥɨɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɪɚɫɫɱɢɬɚɧɧɵɟ ɫ ɞɚɧɧɵɦ ɡɧɚɱɟɧɢɟɦ ı2 ɩɪɟɞɫɬɚɜɥɟɧɵ ɧɚ ɪɢɫ. 6, 7, 8 ɩɪɢ ɷɧɟɪɝɢɢ ȿ( ɇɟ) = 2,8 Ɇɷȼ. ɉɨɞɝɨɧɤɚ ɭɫɪɟɞɧɟɧɧɨɝɨ ɫɟɱɟɧɢɹ ɞɥɹ ɝɪɭɩɩɵ ɪ1 ɞɚɟɬ ɞɥɹ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ 22Na ɩɪɢ ɷɧɟɪɝɢɢ ɜɨɡɛɭɠɞɟɧɢɹ ɨɤɨɥɨ 21 Ɇɷȼ ɨɬɧɨɲɟɧɢɟ Ƚ/D0 = 23,5 ± 2. Ⱦɥɹ ɨɰɟɧɤɢ ɜɟɥɢɱɢɧɵ Ƚ ɦɵ ɢɫɩɨɥɶɡɨɜɚɥɢ ɮɨɪɦɭɥɭ Ʉɚɦɟɪɨɧɚ [39] ɞɥɹ ɪɚɫɫɬɨɹɧɢɹ ɦɟɠɞɭ ɭɪɨɜɧɹɦɢ ɜɨɡɛɭɠɞɟɧɧɨɝɨ ɹɞɪɚ ɫ ɧɭɥɟɜɵɦ ɫɩɢɧɨɦ D0 3 D0 = 2σ 2 ⋅ 12 2σ 2 a1/ 4U 5/ 4 exp( −2 aU ) . (7) ɋɨɝɥɚɫɧɨ Ʉɚɦɟɪɨɧɭ [39] ɩɚɪɚɦɟɬɪɢɡɚɰɢɹ ɷɬɨɝɨ ɜɵɪɚɠɟɧɢɹ ɞɚɟɬ ɡɧɚɱɟɧɢɹ ɚ = 3,89 Ɇɷȼ – 1, t = 2,32 Ɇɷȼ, ı2 = 5,5 Ɉɰɟɧɤɚ ɫɞɟɥɚɧɧɚɹ ɫɨɝɥɚɫɧɨ Ⱥ.ȼ. Ɇɚɥɵɲɟɜɚ [40, 14] ɞɚɟɬ ɫɥɟɞɭɸɳɢɟ ɡɧɚɱɟɧɢɹ ɚ = 3,12 Ɇɷȼ – 1, t = 2,6 Ɇɷȼ, ı2 = 6,2. ɋɥɟɞɭɟɬ ɡɚɦɟɬɢɬɶ, ɱɬɨ ɷɬɢ ɨɰɟɧɤɢ ɞɚɸɬ ɡɧɚɱɟɧɢɟ ɩɚɪɚɦɟɬɪɚ ɫɩɢɧɨɜɨɝɨ ɨɛɪɟɡɚɧɢɹ ɛɥɢɡɤɢɟ ɤ ɧɚɲɟɦɭ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ ɧɚɣɞɟɧɧɨɦɭ ɡɧɚɱɟɧɢɸ σ 2 = 4,5 ± 3,0 2,5 ȼɵɱɢɫɥɟɧɧɨɟ ɩɨ ɮɨɪɦɭɥɟ (7) ɡɧɚɱɟɧɢɟ D0 §3 ɤɷȼ ɞɚɟɬ Ƚ = 70 ɤɷȼ, ɱɬɨ ɹɜɥɹɟɬɫɹ ɧɢɠɧɟɣ ɨɰɟɧɤɨɣ ɞɥɹ ɞɚɧɧɨɣ ɜɟɥɢɱɢɧɵ ɩɪɢ ɷɧɟɪɝɢɢ ɜɨɡɛɭɠɞɟɧɢɹ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ 22Na ɪɚɜɧɨɣ 21 Ɇɷȼ. ɗɬɨ ɫɨɝɥɚɫɭɟɬɫɹ ɫ ɜɟɥɢɱɢɧɨɣ 17 ñåð³ÿ ô³çè÷íà «ßäðà, ÷àñòèíêè, ïîëÿ», âèï. 4 /44/ ßäåðíûå ðåàêöèè, âûçâàííûå... 20 Ƚɬɟɨɪ = 92 ± 24 ɤɷȼ ɧɚɣɞɟɧɧɨɣ ɜ ɪɚɛɨɬɟ [24] ɩɪɢ ɢɫɫɥɟɞɨɜɚɧɢɢ ɪɟɚɤɰɢɢ ɡɧɚɱɟɧɢɟ D0 ɹɜɥɹɟɬɫɹ ɡɚɜɵɲɟɧɧɵɦ ɞɥɹ ɷɧɟɪɝɢɢ ɜɨɡɛɭɠɞɟɧɢɹ 21 Ɇɷȼ. Ne(d,p)21Ne. ȼɨɡɦɨɠɧɨ, ɧɚɣɞɟɧɧɨɟ Ɉɰɟɧɤɚ ɩɪɹɦɨɝɨ ɩɪɨɰɟɫɫɚ ɜ ɪɚɦɤɚɯ Ȼɉɂȼ ɞɥɹ ɪɟɚɤɰɢɢ 19F(3He,p)21Ne ɉɨɫɤɨɥɶɤɭ ɫɭɳɟɫɬɜɭɸɬ ɧɟɤɨɬɨɪɵɟ ɭɤɚɡɚɧɧɵɟ ɪɚɧɟɟ ɷɦɩɢɪɢɱɟɫɤɢɟ ɩɪɢɡɧɚɤɢ ɯɚɪɚɤɬɟɪɧɵɟ ɞɥɹ ɩɪɹɦɨɝɨ ɩɪɨɰɟɫɫɚ, ɬɨ ɛɵɥɢ ɩɪɟɞɩɪɢɧɹɬɚ ɩɨɩɵɬɤɚ ɬɟɨɪɟɬɢɱɟɫɤɨɝɨ ɪɚɫɱɟɬɚ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɝɨ ɫɟɱɟɧɢɹ ɪɟɚɤɰɢɢ ɜ ɪɚɦɤɚɯ Ȼɉɂȼ. Ɍɟɨɪɢɹ ɪɟɚɤɰɢɣ ɞɜɭɯɧɭɤɥɨɧɧɨɣ ɩɟɪɟɞɚɱɢ ɜ Ȼɨɪɧɨɜɫɤɨɦ ɩɪɢɛɥɢɠɟɧɢɢ ɢɫɤɚɠɟɧɧɵɯ ɜɨɥɧ (Ȼɉɂȼ) ɛɵɥɚ ɩɪɟɞɫɬɚɜɥɟɧɚ Ƚɥɟɧɞɢɧɢɧɝɨɦ [41], Ɍɨɭɧɟɪɨɦ ɢ ɏɚɪɞɢ [42] ɢ ɧɟɤɨɬɨɪɵɦɢ ɞɪɭɝɢɦɢ ɚɜɬɨɪɚɦɢ. ɉɪɟɞɩɨɥɚɝɚɹ ɧɭɥɟɜɨɣ ɪɚɞɢɭɫ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɢ ɨɬɫɭɬɫɬɜɢɟ ɱɥɟɧɚ ɫɩɢɧ-ɨɪɛɢɬɚɥɶɧɨɝɨ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɜ ɨɩɬɢɱɟɫɤɢɯ ɩɨɬɟɧɰɢɚɥɚɯ, ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɟ ɫɟɱɟɧɢɟ ɞɥɹ ɪɟɚɤɰɢɢ Ⱥ(ɚ,b)B ɦɨɠɟɬ ɛɵɬɶ ɡɚɩɢɫɚɧɨ 2I + 1 dσ 2 =N B (TA N ATN | TB N B ) 2 | D ( S , T ) |2 bST ¦ 2 I A + 1 LSJT dΩ l2 L º , (8) ª l1 2 «1/ 2 1/ 2 S »B M (θ , E , Q ) |2 צ |¦ (2 − δ ρ1ρ2 )1/ 2 S 1/ ρ ρ ( ; JT ) 1 2 AB « » L M ρ1ρ 2 « » j j J 2 ¬ 1 ¼ ɝɞɟ ɧɨɪɦɢɪɨɜɨɱɧɚɹ ɤɨɧɫɬɚɧɬɚ N ɡɚɜɢɫɢɬ ɨɬ ɫɢɥɵ ɫɪɵɜɧɨɝɨ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɢ ɜɧɭɬɪɟɧɧɟɣ ɜɨɥɧɨɜɨɣ ɮɭɧɤɰɢɢ 3 ɇɟ. Ʉɜɚɧɬɨɜɵɟ ɱɢɫɥɚ ɩɟɪɟɞɚɜɚɟɦɨɣ ɩɚɪɵ L, S, J, T ɨɩɪɟɞɟɥɹɸɬ ɧɟ ɧɚɛɥɸɞɚɟɦɵɟ ɤɜɚɧɬɨɜɵɟ ɱɢɫɥɚ ȡ1 = [n1l1j1] ɢ ȡ2 = [n2l2j2] ɨɩɪɟɞɟɥɹɸɳɢɟ ɨɞɧɨɱɚɫɬɢɱɧɵɟ ɫɨɫɬɨɹɧɢɹ ɩɟɪɟɞɚɜɚɟɦɵɯ ɧɭɤɥɨɧɨɜ. ȼɟɥɢɱɢɧɚ D(S,T) ɟɫɬɶ ɫɩɢɧɢɡɨɫɩɢɧɨɜɵɣ ɨɛɦɟɧɧɵɣ ɱɥɟɧ ɜɜɟɞɟɧɧɵɣ ɏɚɪɞɢ ɢ Ɍɨɭɧɟɪɨɦ [43], (TANATN |TBNB) ɟɫɬɶ ɢɡɨɫɩɢɧɨɜɵɣ ɤɨɷɮɮɢɰɢɟɧɬ Ʉɥɟɛɲɚ-Ƚɨɪɞɚɧɚ ɢ b2ST ɟɫɬɶ, ɩɨ ɫɭɳɟɫɬɜɭ, ɫɩɟɤɬɪɨɫɤɨɩɢɱɟɫɤɢɣ ɮɚɤɬɨɪ ɞɥɹ ɥɟɝɤɢɯ ɱɚɫɬɢɰ. ȼɫɹ ɫɬɪɭɤɬɭɪɧɚɹ ɢɧɮɨɪɦɚɰɢɹ ɫɨɞɟɪɠɢɬɫɹ ɜ ɮɚɤɬɨɪɟ S1/2AB ɧɚɡɵɜɚɟɦɨɦ ɫɩɟɤɬɪɨɫɤɨɩɢɱɟɫɤɢɦɢ ɚɦɩɥɢɬɭɞɚɦɢ. ɗɬɢ ɫɩɟɤɬɪɨɫɤɨɩɢɱɟɫɤɢɟ ɚɦɩɥɢɬɭɞɵ ɹɜɥɹɸɬɫɹ ɦɟɪɨɣ ɩɟɪɟɤɪɵɬɢɹ ɜɨɥɧɨɜɵɯ ɮɭɧɤɰɢɣ ɤɨɧɟɱɧɨɝɨ ɹɞɪɚ ɢ ɹɞɪɚ ɦɢɲɟɧɢ ɩɥɸɫ ɞɜɚ ɧɭɤɥɨɧɚ ɨɩɪɟɞɟɥɹɟɦɵɯ ɤɜɚɧɬɨɜɵɦɢ ɱɢɫɥɚɦɢ ȡ1 ȡ2. ɋɢɦɜɨɥ [ ] ɹɜɥɹɟɬɫɹ ɧɨɪɦɢɪɨɜɚɧɧɵɦ 9j-ɤɨɷɮɮɢɰɢɟɧɬɨɦ, ɤɨɬɨɪɵɣ ɬɪɟɛɭɟɬɫɹ ɞɥɹ ɬɨɝɨ, ɱɬɨɛɵ ɩɟɪɟɣɬɢ ɨɬ jj ɤ LS ɫɜɹɡɢ. ȼɟɥɢɱɢɧɚ ȼLM ɨɩɢɫɵɜɚɟɬ ɤɢɧɟɦɚɬɢɱɟɫɤɢɟ ɚɫɩɟɤɬɵ ɪɟɚɤɰɢɢ, ɢ ɞɨɥɠɧɚ ɪɚɫɫɱɢɬɵɜɚɬɶɫɹ ɱɢɫɥɟɧɧɨ Ȼɉɂȼ ɩɪɨɝɪɚɦɦɨɣ. Ɍɚɤ ɤɚɤ ɧɟ ɛɵɥɨ ɜɨɡɦɨɠɧɨɫɬɢ ɧɚɣɬɢ ɫɩɟɤɬɪɨɫɤɨɩɢɱɟɫɤɢɟ ɚɦɩɥɢɬɭɞɵ ɩɟɪɟɯɨɞɨɜ S1/2AB, ɢɫɯɨɞɹ ɢɡ ɜɨɥɧɨɜɵɯ ɮɭɧɤɰɢɣ ɹɞɪɚ ɦɢɲɟɧɢ ɢ ɫɨɫɬɨɹɧɢɣ ɨɫɬɚɬɨɱɧɨɝɨ ɹɞɪɚ, ɬɨ ɩɪɟɞɩɪɢɧɢɦɚɥɢɫɶ ɪɚɫɱɟɬɵ ɫɜɹɡɚɧɧɵɟ ɬɨɥɶɤɨ ɫ ɞɢɧɚɦɢɱɟɫɤɨɣ ɱɚɫɬɶɸ ɪɟɚɤɰɢɢ. Ɍɟɨɪɟɬɢɱɟɫɤɢɟ ɪɚɫɱɟɬɵ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɵɯ ɫɟɱɟɧɢɣ ɩɪɹɦɨɣ ɪɟɚɤɰɢɢ ɞɜɭɯɧɭɤɥɨɧɧɨɝɨ ɫɪɵɜɚ ɩɪɨɜɨɞɢɥɢɫɶ ɫ ɩɨɦɨɳɶɸ ɩɪɨɝɪɚɦɦɵ DWUCK [44], ɜ ɤɨɬɨɪɨɣ ɢɫɩɨɥɶɡɭɟɬɫɹ ɞɜɭɯɧɭɤɥɨɧɧɵɣ ɮɨɪɦɮɚɤɬɨɪ, ɪɚɫɫɱɢɬɚɧɧɵɣ ɜ ɦɢɤɪɨɫɤɨɩɢɱɟɫɤɨɦ ɩɪɢɛɥɢɠɟɧɢɢ ɦɟɬɨɞɨɦ Ȼɚɣɦɚɧɚ-Ʉɚɥɢɨ [45]. ɉɪɟɞɩɨɥɚɝɚɥɨɫɶ, ɱɬɨ ɧɚɥɟɬɚɸɳɢɟ ɹɞɪɚ 3ɇɟ ɩɟɪɟɞɚɸɬ np-ɩɚɪɭ ɧɭɤɥɨɧɨɜ ɹɞɪɭ-ɦɢɲɟɧɢ 19F, ɤɨɬɨɪɵɟ ɡɚɯɜɚɬɵɜɚɸɬɫɹ ɜ (1d5/2)2 ɫɨɫɬɨɹɧɢɟ ɨɫɬɚɬɨɱɧɨɝɨ ɹɞɪɚ 21Ne. ɉɪɚɜɢɥɚ ɨɬɛɨɪɚ ɞɥɹ (3ɇɟ,ɪ) ɪɟɚɤɰɢɢ ɪɚɡɪɟɲɚɸɬ ɩɟɪɟɞɚɱɭ np-ɩɚɪɵ ɫɨ ɫɩɢɧɨɦ S = 1 ɢɥɢ 0 ɢ ɢɡɨɫɩɢɧɨɦ Ɍ = 0 ɢɥɢ 1, ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ. ɉɟɪɟɞɚɜɚɟɦɵɣ np-ɩɚɪɨɣ ɨɪɛɢɬɚɥɶɧɵɣ ɭɝɥɨɜɨɣ ɦɨɦɟɧɬ L = J − S , ɝɞɟ ɩɨɥɧɵɣ ɩɟɪɟɞɚɜɚɟɦɵɣ ɭɝɥɨɜɨɣ ɦɨɦɟɧɬ J = J f − J i ɫɜɹɡɚɧ ɫɨ ɫɩɢɧɚɦɢ ɨɫɬɚɬɨɱɧɨɝɨ ɹɞɪɚ ɢ ɹɞɪɚ ɦɢɲɟɧɢ, ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ. Ⱦɥɹ ɦɢɲɟɧɟɣ ɫ ɧɟɱɟɬɧɵɦɢ ɹɞɪɚɦɢ, ɧɚɩɨɞɨɛɢɟ 17Ɉ, 19F, 21Ne, 23Na, 25Mg, 27Al, 29Si, 31P ɢ ɬ.ɞ., ɧɚɱɚɥɶɧɨɟ ɢ ɤɨɧɟɱɧɨɟ ɫɨɫɬɨɹɧɢɹ ɪɟɚɤɰɢɢ (3ɇɟ,ɪ) ɨɛɵɱɧɨ ɢɦɟɸɬ ɧɟ ɪɚɜɧɵɟ ɧɭɥɸ ɫɩɢɧɵ ɢ ɢɡɨɫɩɢɧɵ. Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɞɥɹ ɤɚɠɞɵɯ ɤɜɚɧɬɨɜɵɯ ɱɢɫɟɥ L, J ɢ (S, T) ɩɟɪɟɞɚɜɚɟɦɨɣ ɩɚɪɵ ɩɪɚɜɢɥɚɦɢ ɨɬɛɨɪɚ ɞɨɩɭɫɤɚɟɬɫɹ ɛɨɥɟɟ ɱɟɦ ɨɞɧɚ ɜɟɥɢɱɢɧɚ ɢ ɩɨɷɬɨɦɭ ɡɧɚɱɢɬɟɥɶɧɨɟ ɱɢɫɥɨ ɱɥɟɧɨɜ ɛɭɞɟɬ, ɜ ɨɛɳɟɦ, ɞɚɜɚɬɶ ɜɤɥɚɞ ɜ ɫɭɦɦɭ ɩɨ ɷɬɢɦ ɤɜɚɧɬɨɜɵɦ ɱɢɫɥɚɦ ɜ ɭɪɚɜɧ. (8). ɇɟ ɫɦɨɬɪɹ ɧɚ ɷɬɨ ɭɫɥɨɠɧɟɧɢɟ, ɨɞɧɚɤɨ, ɛɨɥɶɲɢɧɫɬɜɨ ɪɚɫɫɱɢɬɚɧɧɵɯ ɭɝɥɨɜɵɯ ɪɚɫɩɪɟɞɟɥɟɧɢɣ ɩɨɤɚɡɵɜɚɸɬ ɱɟɬɤɨ ɜɵɪɚɠɟɧɧɭɸ ɫɬɪɭɤɬɭɪɭ, ɫɜɹɡɚɧɧɭɸ ɫ ɞɨɦɢɧɢɪɨɜɚɧɢɟɦ ɨɞɧɨɝɨ ɩɟɪɟɞɚɜɚɟɦɨɝɨ ɨɪɛɢɬɚɥɶɧɨɝɨ ɭɝɥɨɜɨɝɨ ɦɨɦɟɧɬɚ ɢɥɢ ɫɦɟɫɢ ɞɜɭɯ ɡɧɚɱɟɧɢɣ L [46]. ȼ ɫɥɭɱɚɟ ɢɡɭɱɚɟɦɨɣ ɧɚɦɢ ɪɟɚɤɰɢɢ 19F(3He,p)21Ne ɞɥɹ ɩɟɪɟɯɨɞɨɜ 1/2+ ĺ 3/2+ , 1/2+ ĺ 5/2+, 1/2+ ĺ 7/2+ ɜ ɨɛɳɟɦ ɪɚɡɪɟɲɟɧɵ ɩɟɪɟɞɚɱɢ np-ɩɚɪɵ ɫ L = 0, 2; 2, 4 ɢ 2, 4, ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ. Ɋɟɡɭɥɶɬɚɬɵ ɧɚɲɢɯ ɪɚɫɱɟɬɨɜ ɩɪɟɞɫɬɚɜɥɟɧɵ ɧɚ ɪɢɫ. 6, 7, 8 ɢ 11. ɂɡɜɟɫɬɧɨ, ɱɬɨ ɩɪɹɦɵɟ ɪɟɚɤɰɢɢ ɞɜɭɯɧɭɤɥɨɧɧɨɣ ɩɟɪɟɞɚɱɢ ɬɢɩɚ (t,p), ɩɪɨɬɟɤɚɸɳɢɟ ɧɢɠɟ ɤɭɥɨɧɨɜɫɤɨɝɨ ɛɚɪɶɟɪɚ, ɦɨɝɭɬ ɩɨɤɚɡɵɜɚɬɶ ɤɚɪɬɢɧɭ ɩɪɹɦɨɝɨ ɩɪɨɰɟɫɫɚ ɯɚɪɚɤɬɟɪɧɭɸ ɞɥɹ ɩɪɹɦɨɝɨ ɩɪɨɰɟɫɫɚ, ɩɪɨɬɟɤɚɸɳɟɝɨ ɜɵɲɟ ɤɭɥɨɧɨɜɫɤɨɝɨ ɛɚɪɶɟɪɚ, ɜ ɨɬɥɢɱɢɟ ɨɬ ɩɨɞɤɭɥɨɧɨɜɫɤɢɯ (d,p) ɪɟɚɤɰɢɣ [47]. ɉɨ ɷɬɨɦɭ ɦɵ ɩɪɟɞɩɨɥɨɠɢɥɢ, ɱɬɨ ɧɚɛɥɸɞɚɟɦɵɟ ɧɚɦɢ ɭɝɥɨɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɩɪɢ ɷɧɟɪɝɢɹɯ ɜɵɲɟ 3,9 Ɇɷȼ ɦɨɝɭɬ ɛɵɬɶ ɫɜɹɡɚɧɵ ɫ ɩɪɹɦɵɦ ɩɪɨɰɟɫɫɨɦ. Ɋɟɡɭɥɶɬɚɬɵ ɪɚɫɱɟɬɨɜ ɫɪɚɜɧɢɜɚɸɬɫɹ ɫ ɪɟɡɭɥɶɬɚɬɚɦɢ ɷɤɫɩɟɪɢɦɟɧɬɚ, ɩɪɨɜɟɞɟɧɧɨɝɨ ɫ ɧɚɛɨɪɚɦɢ ɩɚɪɚɦɟɬɪɨɜ ɨɩɬɢɱɟɫɤɢɯ ɩɨɬɟɧɰɢɚɥɨɜ ȼɭɞɫɚ-ɋɚɤɫɨɧɚ I–3He ɢ ɪ (ɫɦ. ɬɚɛɥ. 4, ɝɞɟ ɩɚɪɚɦɟɬɪ t ɨɡɧɚɱɚɟɬ ɞɨɥɸ ɩɨɜɟɪɯɧɨɫɬɧɨɣ ɱɚɫɬɢ ɦɧɢɦɨɝɨ ɩɨɬɟɧɰɢɚɥɚ W) ɢ ɫ ɜɜɟɞɟɧɢɟɦ ɪɚɞɢɭɫɚ ɨɛɪɟɡɚɧɢɹ Rɨɛɪ = 3 Ɏɦ ɜ ɢɧɬɟɝɪɚɥ ɩɟɪɟɤɪɵɬɢɹ ɧɚ ɪɢɫ. 7 ȿ(3ɇɟ) = 3,9 ɢ 4,19 Ɇɷȼ ɢ ɧɚ ɪɢɫ. 6 ɢ 8 ɩɪɢ ȿ(3ɇɟ) = 4,19 Ɇɷȼ. ɇɨɪɦɢɪɨɜɤɚ ɫɟɱɟɧɢɹ ɩɪɨɜɨɞɢɥɚɫɶ ɜ ɨɛɥɚɫɬɢ ɩɟɪɜɨɝɨ ɦɚɤɫɢɦɭɦɚ. Ɋɚɫɱɟɬ ɞɥɹ L = 2 ɜ ɩɟɪɟɯɨɞɟ ɧɚ 1-ɣ ɜɨɡɛɭɠɞɟɧɧɵɣ ɭɪɨɜɟɧɶ ȿɯ = 0,35 Ɇɷȼ (ɪɢɫ. 7) ɯɨɪɨɲɨ ɜɨɫɩɪɨɢɡɜɨɞɢɬ ɩɨɥɨɠɟɧɢɟ 1-ɝɨ ɢ 2-ɝɨ ɦɚɤɫɢɦɭɦɨɜ ɢ 1-ɝɨ ɦɢɧɢɦɭɦɚ, ɧɚɛɥɸɞɚɟɦɵɯ ɩɪɢ ɷɧɟɪɝɢɹɯ ɧɢɠɟ ȿ(3ɇɟ) = 4,19 Ɇɷȼ. ɉɪɢ ɷɧɟɪɝɢɢ 4,19 Ɇɷȼ ɪɚɫɫɱɢɬɚɧɧɨɟ ɭɝɥɨɜɨɟ ɪɚɫɩɪɟɞɟɥɟɧɢɟ ɜ ɨɛɥɚɫɬɢ ɩɟɪɟɞɧɢɯ ɭɝɥɨɜ, ɩɟɪɟɞɚɜɚɹ G G G G G G 18 «Â³ñíèê Õàðê³âñüêîãî óí³âåðñèòåòó», ¹ 880, 2009 Â.Ä. Ñàðàíà, Í.Ñ. Ëóöàé... ɩɪɚɜɢɥɶɧɨ ɨɛɳɢɣ ɯɚɪɚɤɬɟɪ ɩɨɜɟɞɟɧɢɹ ɫɟɱɟɧɢɹ, ɧɟ ɜ ɫɨɫɬɨɹɧɢɢ ɬɨɱɧɨ ɜɨɫɩɪɨɢɡɜɟɫɬɢ ɧɢ ɩɨɥɨɠɟɧɢɟ ɫɪɵɜɧɨɝɨ ɦɚɤɫɢɦɭɦɚ ɧɢ ɟɝɨ ɲɢɪɢɧɭ, ɚ ɜ ɨɛɥɚɫɬɢ ɡɚɞɧɢɯ ɭɝɥɨɜ ɩɨɤɚɡɵɜɚɟɬ ɡɧɚɱɢɬɟɥɶɧɵɣ ɩɨɞɴɟɦ ɜɟɥɢɱɢɧɵ ɫɟɱɟɧɢɹ. ɉɨ ɯɚɪɚɤɬɟɪɭ ɩɨɜɟɞɟɧɢɹ ɪɚɫɫɱɢɬɚɧɧɨɟ ɜ Ȼɉɂȼ ɫ ɭɤɚɡɚɧɧɵɦɢ ɩɚɪɚɦɟɬɪɚɦɢ ɭɝɥɨɜɨɟ ɪɚɫɩɪɟɞɟɥɟɧɢɟ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɝɨ ɫɟɱɟɧɢɹ ɧɚɩɨɦɢɧɚɟɬ ɯɚɪɚɤɬɟɪ ɩɨɜɟɞɟɧɢɹ ɭɝɥɨɜɨɝɨ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɪɚɫɫɱɢɬɚɧɧɨɝɨ ɩɨ ɫɬɚɬɢɫɬɢɱɟɫɤɨɣ ɬɟɨɪɢɢ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ ɏɚɭɡɟɪɚ-Ɏɟɲɛɚɯɚ (ɫɦ. ɪɢɫ. 7 ȿ(3ɇɟ) = 2,8 Ɇɷȼ) ɞɥɹ ɩɟɪɟɯɨɞɚ ɜ Jʌ = 5/2+ ɫɨɫɬɨɹɧɢɟ, ɫ ɬɨɣ ɪɚɡɧɢɰɟɣ, ɱɬɨ ɚɦɩɥɢɬɭɞɚ ɨɫɰɢɥɥɹɰɢɣ ɜ ɩɟɪɜɨɦ ɫɥɭɱɚɟ ɛɨɥɶɲɟ ɢ ɩɨɥɨɠɟɧɢɟ ɦɢɧɢɦɭɦɚ ɫɨɨɬɜɟɬɫɬɜɭɟɬ 100º, ɚ ɧɟ 90º, ɤɚɤ ɩɪɢ ɨɛɪɚɡɨɜɚɧɢɢ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ. Ɋɟɡɭɥɶɬɚɬ ɚɧɚɥɨɝɢɱɧɨɝɨ ɪɚɫɱɟɬɚ ɞɥɹ ɩɟɪɟɯɨɞɚ ɜ ɫɨɫɬɨɹɧɢɟ 7/2+ ɩɪɢ ɷɧɟɪɝɢɢ 3ɇɟ ɪɚɜɧɨɣ 4,19 Ɇɷȼ ɫ L = 4, ɩɨɤɚɡɚɧɧɵɣ ɧɚ ɪɢɫ. 8, ɬɚɤ ɠɟ ɤɚɤ ɢ ɜ ɫɥɭɱɚɟ ɩɟɪɟɯɨɞɚ ɧɚ ɭɪɨɜɟɧɶ 5/2+ ɯɨɪɨɲɨ ɨɩɢɫɵɜɚɟɬ ɷɤɫɩɟɪɢɦɟɧɬ ɢ ɜɦɟɫɬɟ ɫ ɬɟɦ ɧɚɩɨɦɢɧɚɟɬ ɩɨ ɯɚɪɚɤɬɟɪɭ ɩɨɜɟɞɟɧɢɹ ɭɝɥɨɜɨɝɨ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɪɟɡɭɥɶɬɚɬ ɪɚɫɱɟɬɚ ɩɨ ɬɟɨɪɢɢ ɏɚɭɡɟɪɚɎɟɲɛɚɯɚ. ɉɪɢ ɩɟɪɟɯɨɞɟ ɜ ɨɫɧɨɜɧɨɟ ɫɨɫɬɨɹɧɢɟ 21Ne 3/2+ ɭɝɥɨɜɨɟ ɪɚɫɩɪɟɞɟɥɟɧɢɟ ɩɪɢ ɷɧɟɪɝɢɢ ȿ(3ɇɟ) = 4,19 Ɇɷȼ (ɪɢɫ. 6) ɢɦɟɟɬ ɧɟɛɨɥɶɲɨɣ ɩɢɤ ɜ ɨɛɥɚɫɬɢ ɭɝɥɨɜ 55º, ɤɨɬɨɪɵɣ ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɩɟɪɟɞɚɱɟ np-ɩɚɪɵ ɫ ɨɪɛɢɬɚɥɶɧɵɦ ɦɨɦɟɧɬɨɦ L = 2, ɉɨɜɟɞɟɧɢɟ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨɝɨ ɫɟɱɟɧɢɹ ɜ ɨɛɥɚɫɬɢ ɩɟɪɟɞɧɢɯ ɭɝɥɨɜ ɭɤɚɡɵɜɚɟɬ ɧɚ ɩɨɥɧɨɟ ɨɬɫɭɬɫɬɜɢɟ ɜɤɥɚɞɚ L = 0. ȼ ɷɬɨɦ ɫɥɭɱɚɟ ɯɚɪɚɤɬɟɪ ɩɨɜɟɞɟɧɢɹ ɪɚɫɫɱɢɬɚɧɧɨɝɨ ɜ Ȼɉɂȼ ɭɝɥɨɜɨɝɨ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɫɟɱɟɧɢɹ ɧɟ ɫɨɜɩɚɞɚɟɬ ɩɨ ɮɨɪɦɟ ɫ ɪɚɫɱɟɬɚɦɢ ɫɟɱɟɧɢɹ ɩɨ ɏɚɭɡɟɪɭ- Ɏɟɲɛɚɯɭ (ɫɦ. ɪɢɫ. 6 ȿ(3ɇɟ) = 2,8 Ɇɷȼ). Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɢɧɬɟɪɩɪɟɬɚɰɢɹ ɧɚɛɥɸɞɚɟɦɨɣ ɧɚ ɷɤɫɩɟɪɢɦɟɧɬɟ ɮɨɪɦɵ ɭɝɥɨɜɵɯ ɪɚɫɩɪɟɞɟɥɟɧɢɣ ɜ ɪɚɦɤɚɯ ɩɪɹɦɨɝɨ ɩɪɨɰɟɫɫɚ ɜ ɨɛɳɟɦ ɧɟ ɩɪɨɬɢɜɨɪɟɱɢɬ ɢɡɜɟɫɬɧɵɦ ɩɪɢɩɢɫɚɧɢɹɦ ɫɩɢɧɨɜ, ɱɟɬɧɨɫɬɟɣ ɢ ɢɡɨɫɩɢɧɨɜ ɢɫɫɥɟɞɭɟɦɵɯ ɫɨɫɬɨɹɧɢɣ ɨɫɬɚɬɨɱɧɨɝɨ ɹɞɪɚ 21Ne ( Jʌ,T 0.00 Ɇɷȼ 3/2+, 1/2; 0,35 Ɇɷȼ 5/2+, 1/2; 1,75 Ɇɷȼ 7/2+, 1/2), ɨɞɧɚɤɨ ɜ ɧɟɤɨɬɨɪɵɯ ɫɥɭɱɚɹɯ ɬɪɟɛɭɟɬ ɭɥɭɱɲɟɧɢɹ ɫɨɨɬɜɟɬɫɬɜɢɹ ɪɚɫɱɟɬɚ ɜ ɪɚɦɤɚɯ Ȼɉɂȼ ɫ ɷɤɫɩɟɪɢɦɟɧɬɨɦ. ɉɨ ɷɬɨɦɭ ɞɥɹ ɩɪɨɜɟɪɤɢ ɧɚɲɢɯ ɪɚɫɱɟɬɨɜ ɦɵ ɜɵɛɪɚɥɢ ɩɟɪɟɯɨɞ 1/2+ ĺ 5/2+ ɜ ɪɟɚɤɰɢɢ 19F(t,p0)21F ɩɪɢ ɷɧɟɪɝɢɢ ɧɟɫɤɨɥɶɤɨ ɜɵɲɟ ɤɭɥɨɧɨɜɫɤɨɝɨ ɛɚɪɶɟɪɚ. ɇɚ ɪɢɫ. 11ɚ ɫɪɚɜɧɢɜɚɟɬɫɹ ɪɟɡɭɥɶɬɚɬ ɧɚɲɟɝɨ ɪɚɫɱɟɬɚ ɜ ɪɚɦɤɚɯ Ȼɉɂȼ ɫ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɦ ɭɝɥɨɜɵɦ ɪɚɫɩɪɟɞɟɥɟɧɢɟɦ ɢ ɪɚɫɱɟɬɨɦ ɜ ɩɥɨɫɤɨɜɨɥɧɨɜɨɦ ɩɪɢɛɥɢɠɟɧɢɢ (jL2(qR) – ɤɜɚɞɪɚɬ ɮɭɧɤɰɢɢ Ȼɟɫɫɟɥɹ ɩɨɪɹɞɤɚ L = 2 ɢ ɪɚɞɢɭɫ ɹɞɪɚ R = 6,5 Ɏɦ.) [48]. Ⱦɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɢɫɤɚɠɟɧɧɵɯ ɜɨɥɧ ɜɨ ɜɯɨɞɧɨɦ ɢ ɜɵɯɨɞɧɨɦ ɤɚɧɚɥɚɯ ɢɫɩɨɥɶɡɨɜɚɥɢɫɶ ɩɪɢɜɟɞɟɧɧɵɟ ɜ ɥɢɬɟɪɚɬɭɪɟ ɩɚɪɚɦɟɬɪɵ ȼɭɞɫ-ɋɚɤɫɨɧɨɜɫɤɢɯ ɨɩɬɢɱɟɫɤɢɯ ɩɨɬɟɧɰɢɚɥɨɜ t + p ɢɡ ɬɚɛɥ. 4. ɇɭɤɥɨɧɵ ɡɚɯɜɚɬɵɜɚɥɢɫɶ ɜ (1d5/2)2 ɫɨɫɬɨɹɧɢɹ ɩɨɬɟɧɰɢɚɥɶɧɨɣ ɹɦɵ ɫ ɝɟɨɦɟɬɪɢɱɟɫɤɢɦɢ ɩɚɪɚɦɟɬɪɚɦɢ r0 = 1,25 Ɏɦ ɢ ɚ0 = 0,65 Ɏɦ, ɫɩɢɧ-ɨɪɛɢɬɚɥɶɧɵɦ ɩɚɪɚɦɟɬɪɨɦ Ȝ = 25 ɢ ɝɥɭɛɢɧɨɣ ɹɦɵ ɨɛɭɫɥɨɜɥɟɧɧɨɣ ɷɧɟɪɝɢɟɣ ɨɬɞɟɥɟɧɢɹ ɧɟɣɬɪɨɧɚ ɜ 21F Bn = 8,47 Ɇɷȼ, ɩɟɪɟɞɚɜɚɟɦɵɣ ɨɪɛɢɬɚɥɶɧɵɣ ɭɝɥɨɜɨɣ ɦɨɦɟɧɬ L = 2. ȼɢɞɢɦ, ɱɬɨ ɫɨɝɥɚɫɢɟ ɫ ɷɤɫɩɟɪɢɦɟɧɬɨɦ ɜɩɨɥɧɟ ɭɞɨɜɥɟɬɜɨɪɢɬɟɥɶɧɨɟ, ɷɬɨ ɭɤɚɡɵɜɚɟɬ ɧɚ ɬɨ, ɱɬɨ ɩɟɪɟɞɚɱɚ np-ɩɚɪɵ ɩɪɨɢɫɯɨɞɢɬ ɬɨɥɶɤɨ ɫ ɨɞɧɢɦ ɡɧɚɱɟɧɢɟɦ L = 2. ɗɬɨ ɟɫɬɟɫɬɜɟɧɧɨ, ɩɨɫɤɨɥɶɤɭ ɜ (t,p) ɪɟɚɤɰɢɢ ɧɚ ɨɫɧɨɜɟ ɩɪɢɧɰɢɩɚ ɉɚɭɥɢ ɪɚɡɪɟɲɟɧɚ ɩɟɪɟɞɚɱɚ ɞɜɭɯ ɧɟɣɬɪɨɧɨɜ ɬɨɥɶɤɨ ɫ S = 0 ɢ Ɍ = 1, ɚ ɢɡɨɫɩɢɧ ɨɫɧɨɜɧɨɝɨ ɫɨɫɬɨɹɧɢɹ 21F ɪɚɜɟɧ 3/2. ȼ ɫɥɭɱɚɟ 21Ne T =1/2, ɱɬɨ ɩɪɟɞɩɨɥɚɝɚɟɬ ɩɟɪɟɞɚɱɭ np-ɩɚɪɵ ɫɨ ɫɩɢɧɨɦ S = 1 ɜ ɪɟɚɤɰɢɢ 19 3 F( He,p1)21Ne, ɚ ɫɥɟɞɨɜɚɬɟɥɶɧɨ ɜɨɡɦɨɠɧɨɫɬɶ ɩɟɪɟɞɚɱɢ ɫ ɨɪɛɢɬɚɥɶɧɵɦɢ ɦɨɦɟɧɬɚɦɢ L = 2 ɢ 4, ɭɱɢɬɵɜɚɹ ɨɬɛɨɪ ɩɨ ɱɟɬɧɨɫɬɢ. ɗɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨɟ ɭɝɥɨɜɨɟ ɪɚɫɩɪɟɞɟɥɟɧɢɟ ɪɟɚɤɰɢɢ 19F(3He,p1)21Ne* (0,35 Ɇɷȼ) ɩɪɢ ȿ(3ɇɟ) =4,2 Ɇɷȼ ɢɦɟɟɬ ɬɚɤɨɣ ɠɟ ɯɚɪɚɤɬɟɪ ɤɚɤ ɢ ɭ ɪɟɚɤɰɢɢ 19F(t,p0)21Fɨ.ɫ. ɡɚ ɢɫɤɥɸɱɟɧɢɟɦ ɬɨɝɨ, ɱɬɨ ɦɚɤɫɢɦɭɦ ɪɚɫɩɨɥɚɝɚɟɬɫɹ ɩɨɞ ɛɨ˴ ɥɶɲɢɦɢ ɭɝɥɚɦɢ ɢ ɢɦɟɟɬ ɛɨ˴ ɥɶɲɭɸ ɲɢɪɢɧɭ. ȿɫɥɢ ɩɪɟɞɩɨɥɚɝɚɬɶ ɩɪɹɦɨɣ ɩɪɨɰɟɫɫ, ɬɨ ɷɬɨ Ɋɢɫ. 11. Ɋɚɫɱɟɬ ɭɝɥɨɜɵɯ ɪɚɫɩɪɟɞɟɥɟɧɢɣ ɞɥɹ ɩɟɪɟɯɨɞɨɜ ½+ ĺ 5/2+ ɜ ɪɟɚɤɰɢɹɯ a - 19F(t,p0)21F [48] (---- ɩɥɨɫɤɨɜɨɥɧɨɜɨɟ ɩɪɢɛɥɢɠɟɧɢɟ [48] L = 2, ɢ ņ ɧɚɲ ɪɚɫɱɟɬ Ȼɉɂȼ L = 2), ɛ - 19F(3He,p1)21Ne* ( Ȼɉɂȼ ---- L = 2, ííí L = 4, -··-··-··- 0,7ı (ɏ-Ɏ) ɫɨɫɬɚɜɧɨɟ ɹɞɪɨ ɏɚɭɡɟɪ-Ɏɟɲɛɚɯ, ŷŷ - ɫɭɦɦɚ ɬɪɟɯ ɜɤɥɚɞɨɜ). ɪɚɡɥɢɱɢɟ ɦɨɠɟɬ ɛɵɬɶ ɨɛɭɫɥɨɜɥɟɧɨ ɧɟɫɤɨɥɶɤɢɦɢ ɩɪɢɱɢɧɚɦɢ: 1) ɩɟɪɟɞɚɜɚɟɦɵɣ ɭɝɥɨɜɨɣ ɦɨɦɟɧɬ ɛɨɥɶɲɟ ɱɟɦ ɜ ɩɪɟɞɵɞɭɳɟɦ ɫɥɭɱɚɟ, ɬ.ɟ. L >2, 2) ȼɨɡɦɨɠɧɨɫɬɶɸ ɜɤɥɚɞɨɜ ɫɩɟɤɬɪɨɫɤɨɩɢɱɟɫɤɢɯ ɚɦɩɥɢɬɭɞ ɫ ɧɟɫɤɨɥɶɤɢɦɢ L, 3) ɜɥɢɹɧɢɟɦ ɢɫɤɚɠɟɧɢɣ, ɜ ɨɫɧɨɜɧɨɦ ɜɨ ɜɯɨɞɧɨɦ ɤɚɧɚɥɟ ɩɪɢ ɭɦɟɧɶɲɟɧɢɢ ɷɧɟɪɝɢɢ ɧɚɥɟɬɚɸɳɟɣ ɱɚɫɬɢɰɵ, 4) ɧɚɛɥɸɞɚɟɦɚɹ ɮɨɪɦɚ ɭɝɥɨɜɨɝɨ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɨɛɭɫɥɨɜɥɟɧɚ ɜɥɢɹɧɢɟɦ ɜɤɥɚɞɚ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ. ɇɚ ɪɢɫ. 11ɛ ɩɨɤɚɡɚɧɵ ɪɟɡɭɥɶɬɚɬɵ ɪɚɫɱɟɬɨɜ ɫ ɩɚɪɚɦɟɬɪɚɦɢ ɨɩɬɢɱɟɫɤɢɯ ɩɨɬɟɧɰɢɚɥɨɜ I-3He (ɬɚɛɥ. 4) ȼɭɞɫ-ɋɚɤɫɨɧɨɜɫɤɨɝɨ ɬɢɩɚ, ɢɫɩɨɥɶɡɨɜɚɧɧɵɟ ɧɚɦɢ ɜɨ ɜɯɨɞɧɨɦ ɤɚɧɚɥɟ, ɤɨɬɨɪɵɟ ɛɵɥɢ ɧɚɣɞɟɧɵ ɢɡ ɚɧɚɥɢɡɚ ɭɩɪɭɝɨɝɨ ɪɚɫɫɟɹɧɢɹ ɩɪɢ 19 ñåð³ÿ ô³çè÷íà «ßäðà, ÷àñòèíêè, ïîëÿ», âèï. 4 /44/ ßäåðíûå ðåàêöèè, âûçâàííûå... ɷɧɟɪɝɢɢ 3ɇɟ 6 Ɇɷȼ ɢ ɢɫɩɨɥɶɡɨɜɚɥɢɫɶ ɞɥɹ ɨɩɢɫɚɧɢɹ ɩɪɨɰɟɫɫɚ ɨɞɧɨɧɭɤɥɨɧɧɨɝɨ ɫɪɵɜɚ ɜ ɪɟɚɤɰɢɢ 19F(3He,Į)18F [9] ɢ ɫɨɨɬɜɟɬɫɬɜɭɸɬ ɫɨɜɪɟɦɟɧɧɵɦ ɩɪɟɞɫɬɚɜɥɟɧɢɹɦ ɨ ɩɚɪɚɦɟɬɪɢɡɚɰɢɢ ɨɩɬɢɱɟɫɤɢɯ ɩɨɬɟɧɰɢɚɥɨɜ ɞɥɹ ɫɥɨɠɧɵɯ ɱɚɫɬɢɰ. Ⱦɥɹ ɜɵɯɨɞɧɨɝɨ ɩɪɨɬɨɧɧɨɝɨ ɤɚɧɚɥɚ ɢɫɩɨɥɶɡɨɜɚɥɢɫɶ ɩɚɪɚɦɟɬɪɵ Ɋɨɡɟɧɚ [29]. ɋɜɹɡɚɧɧɨɟ ɫɨɫɬɨɹɧɢɟ ɬɚɤɨɟ ɠɟ ɤɚɤ ɢ ɜ ɪɚɫɱɟɬɚɯ ɪɟɚɤɰɢɢ 19F(t,p0)21Fɨ.ɫ ɤɪɨɦɟ ɷɧɟɪɝɢɢ ɨɬɞɟɥɟɧɢɹ ɧɭɤɥɨɧɨɜ, ɤɨɬɨɪɚɹ ɛɪɚɥɚɫɶ ɪɚɜɧɨɣ 9,81 Ɇɷȼ. ɗɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ ɧɚɣɞɟɧɧɨɣ ɮɨɪɦɟ ɭɝɥɨɜɨɝɨ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɧɚɢɥɭɱɲɢɦ ɨɛɪɚɡɨɦ ɩɨɞɯɨɞɢɬ ɪɚɫɫɱɢɬɚɧɧɨɟ ɭɝɥɨɜɨɟ ɪɚɫɩɪɟɞɟɥɟɧɢɟ ɞɥɹ L =3, ɨɞɧɚɤɨ ɦɵ ɟɝɨ ɧɟ ɩɨɤɚɡɚɥɢ ɧɚ ɪɢɫɭɧɤɟ, ɬ. ɤ. ɱɟɬɧɨɫɬɢ ɨɫɧɨɜɧɨɝɨ ɫɨɫɬɨɹɧɢɹ ɹɞɪɚ-ɦɢɲɟɧɢ ɢ ɢɫɫɥɟɞɭɟɦɨɝɨ ɫɨɫɬɨɹɧɢɹ ɨɫɬɚɬɨɱɧɨɝɨ ɹɞɪɚ ɯɨɪɨɲɨ ɢɡɜɟɫɬɧɵ ɢ ɧɟ ɞɨɥɠɧɵ ɦɟɧɹɬɶɫɹ ɜ ɩɪɨɰɟɫɫɟ ɩɟɪɟɞɚɱɢ ɧɭɤɥɨɧɨɜ, ɬ.ɟ. ɞɨɩɭɫɤɚɸɬɫɹ ɬɨɥɶɤɨ ɱɟɬɧɵɟ ɡɧɚɱɟɧɢɹ L. ɍɝɥɨɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɞɥɹ L = 2 ɢ 4, ɩɪɢɜɟɞɟɧɧɵɟ ɧɚ ɪɢɫ. 11ɛ, ɤɚɠɞɚɹ ɜ ɨɬɞɟɥɶɧɨɫɬɢ ɧɟ ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɩɚɪɚɦɟɬɪɚɦ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨɣ ɤɪɢɜɨɣ ɩɨ ɩɨɥɨɠɟɧɢɸ ɢ ɲɢɪɢɧɟ ɫɪɵɜɧɵɯ ɦɚɤɫɢɦɭɦɨɜ. ɉɨ ɷɬɨɦɭ ɛɵɥɚ ɫɞɟɥɚɧɚ ɩɨɩɵɬɤɚ ɩɨɫɦɨɬɪɟɬɶ - ɧɚɫɤɨɥɶɤɨ ɛɭɞɟɬ ɫɨɨɬɜɟɬɫɬɜɨɜɚɬɶ ɷɤɫɩɟɪɢɦɟɧɬɭ ɪɚɫɫɱɢɬɚɧɧɚɹ ɮɨɪɦɚ ɭɝɥɨɜɨɝɨ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɞɥɹ ɫɭɦɦɵ ɩɟɪɟɞɚɱ ɫ L = 2 + 4 ɢ ɩɪɨɰɟɫɫɚ ɨɛɪɚɡɨɜɚɧɢɹ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ, ɪɚɫɫɱɢɬɚɧɧɨɝɨ ɩɨ ɫɬɚɬɢɫɬɢɱɟɫɤɨɣ ɬɟɨɪɢɢ ɏɚɭɡɟɪɚ-Ɏɟɲɛɚɯɚ, ɤɨɬɨɪɵɣ, ɤɚɤ ɩɨɤɚɡɚɧɨ ɜɵɲɟ (ɪɢɫ. 10), ɞɚɟɬ ɫɭɳɟɫɬɜɟɧɧɵɣ ɜɤɥɚɞ ɜ ɫɟɱɟɧɢɟ ɪɟɚɤɰɢɢ. Ʉɚɤ ɜɢɞɧɨ ɢɡ ɪɢɫ.11ɛ, ɬɨɥɫɬɚɹ ɧɟɩɪɟɪɵɜɧɚɹ ɤɪɢɜɚɹ, ɞɨɫɬɚɬɨɱɧɨ ɯɨɪɨɲɨ ɜɨɫɩɪɨɢɡɜɨɞɢɬ ɩɨɥɨɠɟɧɢɟ ɦɚɤɫɢɦɭɦɚ ɩɢɤɚ, ɧɨ ɢɦɟɟɬ ɛɨɥɶɲɭɸ ɲɢɪɢɧɭ ɩɢɤɚ ɢ ɡɚɜɵɲɟɧɧɵɟ ɫɟɱɟɧɢɹ ɜ ɨɛɥɚɫɬɢ ɩɟɪɟɞɧɢɯ ɭɝɥɨɜ ɩɪɢ ɞɚɧɧɨɦ ɫɨɨɬɧɨɲɟɧɢɢ ɜɤɥɚɞɨɜ ɩɟɪɟɯɨɞɨɜ ɫ ɪɚɡɧɵɦɢ L. ȼ ɞɚɧɧɨɦ ɫɥɭɱɚɟ ɨɫɧɨɜɧɨɣ ɜɤɥɚɞ ɞɚɟɬ L = 4. ɂɡɜɟɫɬɧɨ, ɱɬɨ ɜ ɧɟɤɨɬɨɪɵɯ (3ɇɟ,ɪ) ɪɟɚɤɰɢɹɯ ɧɚ ɧɟɱɟɬɧɵɯ ɹɞɪɚɯ sd-ɨɛɨɥɨɱɤɢ ɜ ɩɟɪɟɯɨɞɚɯ 1./2+ ļ 5/2+, ɢɡɦɟɪɟɧɧɵɯ ɩɪɢ ɷɧɟɪɝɢɹɯ ɜɵɲɟ 12 Ɇɷȼ, ɧɚɛɥɸɞɚɟɬɫɹ ɜ ɛɨɥɶɲɟɣ ɢɥɢ ɦɟɧɶɲɟɣ ɜɟɥɢɱɢɧɟ ɩɪɢɦɟɫɢ L = 4 ɤ ɨɫɧɨɜɧɨɦɭ ɜɤɥɚɞɭ L = 2 [49-51], ɤɨɬɨɪɵɟ ɧɟ ɢɦɟɸɬ ɨɛɴɹɫɧɟɧɢɹ ɜ ɪɚɦɤɚɯ ɨɛɨɥɨɱɟɱɧɨɣ ɦɨɞɟɥɢ. Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɢɧɬɟɪɩɪɟɬɚɰɢɹ ɧɚɛɥɸɞɚɟɦɨɣ ɧɚ ɷɤɫɩɟɪɢɦɟɧɬɟ ɮɨɪɦɵ ɭɝɥɨɜɵɯ ɪɚɫɩɪɟɞɟɥɟɧɢɣ ɜ ɪɚɦɤɚɯ ɩɪɹɦɨɝɨ ɩɪɨɰɟɫɫɚ ɧɟ ɩɪɨɬɢɜɨɪɟɱɢɬ ɢɡɜɟɫɬɧɵɦ ɩɪɢɩɢɫɚɧɢɹɦ ɫɩɢɧɨɜ, ɱɟɬɧɨɫɬɟɣ ɢ ɢɡɨɫɩɢɧɨɜ ɢɫɫɥɟɞɭɟɦɵɯ ɫɨɫɬɨɹɧɢɣ ɨɫɬɚɬɨɱɧɨɝɨ ɹɞɪɚ 21Ne ( Jʌ,T 0.00 Ɇɷȼ 3/2+, 1/2; 0,35 Ɇɷȼ 5/2+, 1/2; 1,75 Ɇɷȼ 7/2+, 1/2). ɁȺɄɅɘɑȿɇɂȿ ɉɪɨɜɟɞɟɧɨ ɩɨɢɫɤɨɜɨɟ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨɟ ɢɫɫɥɟɞɨɜɚɧɢɟ ɮɭɧɤɰɢɣ ɜɨɡɛɭɠɞɟɧɢɹ ɜ ɪɟɚɤɰɢɹɯ 19 3 F( He,p0,1,2)21Ne ɢ 19F(3He,Į0,5,6,7,8+9,10)18F, ɚ ɬɚɤ ɠɟ ɭɝɥɨɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɞɥɹ ɪɟɚɤɰɢɣ 19F(3He,p0,1,2)21Ne ɢ 19 3 F( He,Į0,5,6,7,)18F. Ɏɥɭɤɬɭɚɰɢɨɧɧɵɣ ɚɧɚɥɢɡ ɩɨ Ȼɪɢɧɤɭ ɢ ɋɬɟɮɚɧɭ [23] ɮɭɧɤɰɢɣ ɜɨɡɛɭɠɞɟɧɢɹ ɞɥɹ ɨɛɟɢɯ ɪɟɚɤɰɢɣ ɞɚɥ ɜɟɪɯɧɢɣ ɩɪɟɞɟɥ ɡɧɚɱɟɧɢɹ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨɣ ɤɨɝɟɪɟɧɬɧɨɣ ɲɢɪɢɧɵ ɭɪɨɜɧɟɣ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ 22Na ɜ ɨɛɥɚɫɬɢ ɷɧɟɪɝɢɣ ɜɨɡɛɭɠɞɟɧɢɹ 21 Ɇɷȼ Ƚɷɤɫɩ =135 ± 23 ɤɷȼ. Ⱥɧɚɥɢɡ ɭɫɪɟɞɧɟɧɧɵɯ ɩɨ ɢɧɬɟɪɜɚɥɭ ɷɧɟɪɝɢɣ 2,6 – 3,0 Ɇɷȼ ɭɝɥɨɜɵɯ ɪɚɫɩɪɟɞɟɥɟɧɢɣ ɜ ɪɚɦɤɚɯ ɫɬɚɬɢɫɬɢɱɟɫɤɨɣ ɬɟɨɪɢɢ ɏɚɭɡɟɪɚ-Ɏɟɲɛɚɯɚ ɩɨɤɚɡɵɜɚɟɬ, ɱɬɨ ɮɨɪɦɚ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ ɧɚɣɞɟɧɧɵɯ ɭɝɥɨɜɵɯ ɪɚɫɩɪɟɞɟɥɟɧɢɣ ɞɥɹ ɩɟɪɟɯɨɞɨɜ ɜ ɪɚɡɧɵɟ ɫɨɫɬɨɹɧɢɹ ɨɫɬɚɬɨɱɧɨɝɨ ɹɞɪɚ 21Ne ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɢɯ ɫɩɢɧɚɦ, ɬ. ɟ. ɩɨɞɬɜɟɪɠɞɚɟɬ ɩɪɢɩɢɫɚɧɢɟ ɫɩɢɧɨɜ ɭɪɨɜɧɹɦ 0,00 Ɇɷȼ 3/2; 0,35 Ɇɷȼ 5/2 ɢ 1,75 Ɇɷȼ 7/2. ɇɚɣɞɟɧ ɧɢɠɧɢɣ ɩɪɟɞɟɥ ɫɪɟɞɧɟɣ ɲɢɪɢɧɵ ɭɪɨɜɧɟɣ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ Ƚ = 70 ɤɷȼ. ɉɨɥɭɱɟɧɧɵɟ ɡɧɚɱɟɧɢɹ ɲɢɪɢɧ ɭɪɨɜɧɟɣ ɯɨɪɨɲɨ ɫɨɝɥɚɫɭɸɬɫɹ ɫ ɥɢɬɟɪɚɬɭɪɧɵɦɢ ɞɚɧɧɵɦɢ ɞɥɹ ɧɟɱɟɬɧɨ-ɧɟɱɟɬɧɵɯ ɹɞɟɪ ɜ ɞɚɧɧɨɣ ɨɛɥɚɫɬɢ ɦɚɫɫ ɢ ɷɧɟɪɝɢɣ ɜɨɡɛɭɠɞɟɧɢɹ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ 21 Ɇɷȼ [24, 52]. ɇɚɣɞɟɧɨ, ɱɬɨ ɮɨɪɦɚ ɭɝɥɨɜɵɯ ɪɚɫɩɪɟɞɟɥɟɧɢɣ ɜ ɨɛɥɚɫɬɢ ɩɟɪɟɞɧɢɯ ɭɝɥɨɜ ɩɪɢ ɷɧɟɪɝɢɢ ɧɚɥɟɬɚɸɳɢɯ ɢɨɧɨɜ 3ɇɟ 3, 9 -4,2 Ɇɷȼ ɦɨɠɟɬ ɛɵɬɶ ɭɞɨɜɥɟɬɜɨɪɢɬɟɥɶɧɨ ɜɨɫɩɪɨɢɡɜɟɞɟɧɚ ɭɩɪɨɳɟɧɧɵɦɢ ɪɚɫɱɟɬɚɦɢ ɩɪɹɦɨɣ ɪɟɚɤɰɢɢ ɫɪɵɜɚ np-ɩɚɪɵ ɜ ɪɚɦɤɚɯ Ȼɉɂȼ. ɂɡ ɫɪɚɜɧɟɧɢɹ ɷɤɫɩɟɪɢɦɟɧɬɚ ɫ ɪɚɫɱɟɬɨɦ ɨɩɪɟɞɟɥɟɧɵ ɞɨɦɢɧɢɪɭɸɳɢɟ ɨɪɛɢɬɚɥɶɧɵɟ ɭɝɥɨɜɵɟ ɦɨɦɟɧɬɵ ɞɥɹ ɩɟɪɟɞɚɱ ɜ ɨɫɧɨɜɧɨɟ ɫɨɫɬɨɹɧɢɟ 21Ne Jʌ = 3/2+ L = 2, ɩɟɪɜɨɟ ɜɨɡɛɭɠɞɟɧɧɨɟ 0,35 Ɇɷȼ Jʌ = 5/2+ L = 2 ɢ 2-ɟ ɜɨɡɛɭɠɞɟɧɧɨɟ ɫɨɫɬɨɹɧɢɟ 1,75 Ɇɷȼ Jʌ = 7/2+ L = 4. Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɦɨɠɧɨ ɭɬɜɟɪɠɞɚɬɶ, ɱɬɨ ɧɚɣɞɟɧɧɵɟ ɜɟɥɢɱɢɧɵ ɩɟɪɟɞɚɧɧɵɯ ɨɪɛɢɬɚɥɶɧɵɯ ɭɝɥɨɜɵɯ ɦɨɦɟɧɬɨɜ ɧɟ ɩɪɨɬɢɜɨɪɟɱɚɬ ɩɪɢɩɢɫɚɧɢɹɦ ɫɩɢɧɚ, ɱɟɬɧɨɫɬɢ ɢ ɢɡɨɫɩɢɧɚ ɩɪɢɩɢɫɚɧɧɵɯ ɭɤɚɡɚɧɧɵɦ ɭɪɨɜɧɹɦ, ɱɬɨ ɦɨɠɟɬ ɛɵɬɶ ɚɪɝɭɦɟɧɬɨɦ ɜ ɩɨɥɶɡɭ ɫɭɳɟɫɬɜɨɜɚɧɢɹ ɨɞɧɨɫɬɚɞɢɣɧɨɝɨ ɩɪɹɦɨɝɨ ɩɪɨɰɟɫɫɚ ɫɪɵɜɚ ɜ ɞɚɧɧɨɣ ɪɟɚɤɰɢɢ. Ɉɞɧɚɤɨ, ɞɥɹ ɩɟɪɟɯɨɞɨɜ ɜ ɨɫɧɨɜɧɨɟ ɢ 1-ɟ ɜɨɡɛɭɠɞɟɧɧɵɟ ɫɨɫɬɨɹɧɢɹ ɮɨɪɦɚ ɭɝɥɨɜɵɯ ɪɚɫɩɪɟɞɟɥɟɧɢɣ ɜ ɨɛɥɚɫɬɢ ɡɚɞɧɢɯ ɭɝɥɨɜ ɩɪɢ ɢɡɦɟɧɟɧɢɢ ɷɧɟɪɝɢɢ ɢɨɧɨɜ 3 ɇɟ ɪɚɜɧɨɣ ɨɬ 3,9 ɞɨ 4,19 Ɇɷȼ ɫɢɥɶɧɨ ɢɫɤɚɠɚɟɬɫɹ ɨɬɧɨɫɢɬɟɥɶɧɨ ɪɚɫɱɟɬɨɜ ɫ ɱɢɫɬɵɦ Ȼɉɂȼ, ɱɬɨ ɦɨɠɟɬ ɛɵɬɶ ɫɜɹɡɚɧɨ ɫ ɫɢɥɶɧɵɦ ɢɧɬɟɪɮɟɪɟɧɰɢɨɧɧɵɦ ɷɮɮɟɤɬɨɦ ɨɬ ɜɤɥɚɞɚ ɫɨɫɬɨɹɧɢɣ ɝɢɝɚɧɬɫɤɨɝɨ ɪɟɡɨɧɚɧɫɚ ɩɪɢ ɨɛɪɚɡɨɜɚɧɢɢ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ [53]. ɂɥɢ ɟɳɺ ɠɟɫɬɱɟ – ɫɨɜɩɚɞɟɧɢɟ ɮɨɪɦɵ ɭɝɥɨɜɨɝɨ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɫ ɮɨɪɦɨɣ ɯɚɪɚɤɬɟɪɧɨɣ ɞɥɹ ɩɪɹɦɨɝɨ ɩɪɨɰɟɫɫɚ ɹɜɥɹɟɬɫɹ ɱɢɫɬɨ ɫɥɭɱɚɣɧɵɦ, ɚ ɢɡɦɟɧɟɧɢɟ ɮɨɪɦɵ ɭɝɥɨɜɵɯ ɪɚɫɩɪɟɞɟɥɟɧɢɣ ɨɩɪɟɞɟɥɹɟɬɫɹ ɮɥɭɤɬɭɚɰɢɹɦɢ ɜ ɩɪɨɰɟɫɫɟ ɨɛɪɚɡɨɜɚɧɢɹ ɫɨɫɬɚɜɧɨɝɨ ɹɞɪɚ[26, 54]. Ɍɟɦ ɛɨɥɟɟ, ɱɬɨ ɧɚɥɢɱɢɟ ɩɪɹɦɨɝɨ ɩɪɨɰɟɫɫɚ ɧɚ ɧɟɱɟɬɧɵɯ ɹɞɪɚɯ ɫɚɦɨ ɩɨ ɫɟɛɟ ɩɪɟɞɩɨɥɚɝɚɟɬ ɡɧɚɱɢɬɟɥɶɧɨɝɨ ɜɤɥɚɞɚ ɜ ɜɨɥɧɨɜɵɟ ɮɭɧɤɰɢɢ ɫɨɫɬɨɹɧɢɣ ɨɫɬɚɬɨɱɧɨɝɨ ɹɞɪɚ ɤɨɦɩɨɧɟɧɬ ɫɜɹɡɚɧɧɵɯ ɫ ɱɚɫɬɢɱɧɨ-ɞɵɪɨɱɧɨɣ ɤɨɧɮɢɝɭɪɚɰɢɟɣ ɬɢɩɚ (1h-2p), ɚ ɬɚɤ ɠɟ ɡɧɚɱɢɬɟɥɶɧɨɝɨ ɜɤɥɚɞɚ ɞɵɪɨɱɧɨɣ ɤɨɦɩɨɧɟɧɬɵ ɜ ɜɨɥɧɨɜɭɸ ɮɭɧɤɰɢɸ ɨɫɧɨɜɧɨɝɨ ɫɨɫɬɨɹɧɢɹ ɹɞɪɚ-ɦɢɲɟɧɢ, ɧɨ ɧɢ ɨɞɧɚ ɢɡ ɢɡɜɟɫɬɧɵɯ ɚɜɬɨɪɚɦ ɦɨɞɟɥɟɣ ɹɞɟɪ 19F ɢ 21Ne ɧɟ ɞɚɟɬ ɭɤɚɡɚɧɢɣ ɧɚ ɧɚɥɢɱɢɟ ɬɚɤɢɯ ɤɨɧɮɢɝɭɪɚɰɢɣ. ɉɨɷɬɨɦɭ ɩɪɟɞɫɬɚɜɥɹɟɬ ɨɫɨɛɵɣ ɢɧɬɟɪɟɫ ɭɫɬɚɧɨɜɥɟɧɢɹ ɮɚɤɬɚ ɧɚɥɢɱɢɹ ɩɪɹɦɨɝɨ ɩɪɨɰɟɫɫɚ ɞɜɭɯɧɭɤɥɨɧɧɨɣ ɩɟɪɟɞɚɱɢ ɜ ɩɟɪɟɯɨɞɚɯ ɧɚ ɫɨɫɬɨɹɧɢɹ ɨɛɪɚɡɭɸɳɢɟ ɜɪɚɳɚɬɟɥɶɧɭɸ ɩɨɥɨɫɭ ɨɫɧɨɜɧɨɝɨ ɫɨɫɬɨɹɧɢɹ ɹɞɟɪ ɫ ɧɟɱɟɬɧɵɦ ɱɢɫɥɨɦ ɧɭɤɥɨɧɨɜ ȗ = 11, ɬɚɤɢɯ ɤɚɤ 21Ne, 21Na, 23Na, 23Mg ɩɪɢ ɷɧɟɪɝɢɹɯ 3ɇɟ ɜɵɲɟ 12 Ɇɷȼ. ȼ ɡɚɤɥɸɱɟɧɢɟ ɯɨɬɢɦ ɜɵɪɚɡɢɬɶ ɛɥɚɝɨɞɚɪɧɨɫɬɶ Ɂɚɥɸɛɨɜɫɤɨɦɭ ɂ.ɂ. ɡɚ ɩɨɫɬɨɹɧɧɭɸ ɩɨɞɞɟɪɠɤɭ, ɪɭɤɨɜɨɞɫɬɜɭ ɅɇɎ Ɉɂəɂ ɡɚ ɩɪɟɞɨɫɬɚɜɥɟɧɧɭɸ ɜɨɡɦɨɠɧɨɫɬɶ ɩɪɨɜɟɞɟɧɢɹ ɷɤɫɩɟɪɢɦɟɧɬɚ ɧɚ ɗȽ – 5, Ƚɨɩɵɱɭ ɉ.Ɇ. ɡɚ ɩɨɦɨɳɶ ɜ ɩɪɨɜɟɞɟɧɢɢ ɢɡɦɟɪɟɧɢɣ, ɫɨɬɪɭɞɧɢɤɚɦ ɝɪɭɩɩɵ ɢ ɷɤɢɩɚɠɭ ɭɫɤɨɪɢɬɟɥɹ, ɨɛɟɫɩɟɱɢɜɲɢɯ ɢɡɦɟɪɟɧɢɹ. 20 «Â³ñíèê Õàðê³âñüêîãî óí³âåðñèòåòó», ¹ 880, 2009 Â.Ä. Ñàðàíà, Í.Ñ. Ëóöàé... 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. ɋɉɂɋɈɄ ɅɂɌȿɊȺɌɍɊɕ Elliott J.P., Flowers B.H. The structure of the nuclei of mass 18 and 19 // Proc. Roy. Soc. – 1955. – Vol.A229, ʋ1179. – P.536-563. Benson H.G., Flowers B.H. A study of deformation in light nuclei. (II). Application to the even-parity states of the mass-18 nuclei // Nucl. Phys. – 1969. – Vol.A126. – P.332-354. Arima A., Cohen S., Lawson R.D., MacFarlane M.H. A shell-model study of the isotopes of O, F and Ne //Nucl. Phys. – 1968. – Vol. A108. – P.94-112. Vargas C.E. Hirsch J.G., Draayer J.P. Quasi-SU(3) truncation scheme for odd-even and odd-odd sd-nuclei // Nucl. Phys. – 2002. – Vol.A697. – P.655-688. Nunes F.M., Thompson I.J. What are the advantages of a three body model with core excitation for 21Ne and 21Na? // Nucl. Phys. – 2004. – Vol.A746. – P.61-65. Hinds S., Middleton R. (He3,p) reaction on F19 // Proc. Phys. Soc. – 1959. – Vol.74. – P.779-781. Pelte D., Povh B., Sholz W. Angular Correlation measurements in 21Ne // Nucl. Phys. – 1964. – Vol.55. – P.322-330. Lawson J.C., Chagnon P.R. Gamma-ray transitions in 21Ne // Phys. Rev. – 1975. – Vol.C11. – P.643-647. Adelberger E.G., McDonald A.B., Barnes C.A. A stady of low-lying T = 3/2 and T = 2 states in some light nuclei (I) // Nucl. Phys. – 1969. – Vol.A124. – P.49-84. Matous G.M., Herling G.H., Wolicki E.A. F19(He3,He3)F19 and F19(He3,Į)F18reactions and states in F18 at 3.06 and 3.13 MeV // Phys. Rev. – 1966 –Vol.152, ʋ3. – P.908-913. Bainum D, Lindgren R.A., Park Y.S. Study of levels in 18F from 19F(h,Į)18F reaction // Bull. Am. Phys. Soc. – 1971. – Vol.16. – P.1155. Mead R.O., Young F.C. The 19F(3He,6Li)16O reaction // Nucl. Phys. – 1968. – Vol.A115. – P.161-171. Siemssen R.H., Lee L.L. Investigation of the 19F(3He,d)20Ne reaction // Phys. Rev. – 1965. – Vol.B140. – P.B1258-B1264. Obat A.W., Kemper K.W. 19F(3He,d)20Ne reaction at 20 – 23 MeV // Phys. Rev. – 1973. – Vol.C8. – P.1682-1696; Vertse T., Dudek – Ellis A., Ellis P.J., Belote R.A., Roaf D. Inelastic processes in the 19F(3He,d)20Ne reaction // Nucl. Phys. – 1974. – Vol.A223. – P.207-220. Ɂɚɥɸɛɨɜɫɤɢɣ ɂ.ɂ., ɋɚɪɚɧɚ ȼ.Ⱦ., ɉɢɫɶɦɟɧɟɰɤɢɣ ɋ.Ⱥ. Ɇɟɯɚɧɢɡɦ ɩɪɨɬɟɤɚɧɢɹ ɪɟɚɤɰɢɢ 19F(He3,p)Ne21 ɜ ɩɨɞɤɭɥɨɧɨɜɫɤɨɣ ɨɛɥɚɫɬɢ // «ɉɪɨɛɥɟɦɵ ɹɞɟɪɧɨɣ ɮɢɡɢɤɢ ɢ ɤɨɫɦɢɱɟɫɤɢɯ ɥɭɱɟɣ». Ɋɟɫɩɭɛɥɢɤɚɧɫɤɢɣ ɦɟɠɜɟɞɨɦɫɬɜɟɧɧɵɣ ɬɟɦɚɬɢɱɟɫɤɢɣ ɧɚɭɱɧɨ-ɬɟɯɧɢɱɟɫɤɢɣ ɫɛɨɪɧɢɤ. – ɏɚɪɶɤɨɜ: «ȼɢɳɚ ɲɤɨɥɚ», ɂɡɞ-ɜɨ ɩɪɢ ɏȽɍ. – 1975. – ȼɵɩ.2. – ɋ.79-92. Ⱦɟɣɧɟɤɨ Ⱥ.ɋ., Ɇɚɥɚɯɨɜ ɂ.ə., ɋɚɪɚɧɚ ȼ.Ⱦ., ɒɥɹɯɨɜ ɇ.Ⱥ. Ɉɩɬɢɱɟɫɤɚɹ ɦɨɞɟɥɶ ɞɥɹ ɨɩɢɫɚɧɢɹ ɭɩɪɭɝɨɝɨ ɪɚɫɫɟɹɧɢɹ ɞɟɣɬɪɨɧɨɜ ɢ ɧɭɤɥɨɧɨɜ ɹɞɪɚɦɢ // ȼȺɇɌ ɋɟɪ. Ɉɛɳɚɹ ɢ ɹɞɟɪɧɚɹ ɮɢɡɢɤɚ. – 1981. – ȼɵɩ.2(16). – ɋ.27-30. Ⱦɠɚɧɨɛɢɥɨɜ Ʉ., Ɂɚɥɸɛɨɜɫɤɢɣ ɂ.ɂ., ɋɚɪɚɧɚ ȼ.Ⱦ., ɋɢɡɨɜ ɂ.ȼ., ɋɚɚɞ ɏɚɫɚɧ Ɋ. ɂɡɭɱɟɧɢɟ ɪɟɚɤɰɢɢ 19F(3He,p)21Ne // ɋɨɨɛɳɟɧɢɟ Ɉɂəɂ. – Ⱦɭɛɧɚ. – 1974. – ɋ. 15. ɋɚɪɚɧɚ ȼ.Ⱦ., Ɂɚɥɸɛɨɜɫɤɢɣ ɂ.ɂ. ɉɪɹɦɨɣ ɦɟɯɚɧɢɡɦ ɜ ɪɟɚɤɰɢɢ 19F(He3,p)Ne21 ɩɪɢ ɦɚɥɵɯ ɷɧɟɪɝɢɹɯ // Ɍɟɡɢɫɵ ɞɨɤɥɚɞɨɜ ɏɏɏVI ɫɨɜɟɳɚɧɢɹ ɩɨ ɹɞɟɪɧɨɣ ɫɩɟɤɬɪɨɫɤɨɩɢɢ ɢ ɫɬɪɭɤɬɭɪɟ ɚɬɨɦɧɨɝɨ ɹɞɪɚ. ɏɚɪɶɤɨɜ 15 – 18 ɚɩɪɟɥɹ 1985. – ɝ. ɏɚɪɶɤɨɜ; Ʌɟɧɢɧɝɪɚɞ; ɇɚɭɤɚ, 1986. – ɋ.327. Pronko S.G., Lindgren R.A., Bromley D.A. Structure of 21Na from the 24Mg(p,Į)21Na reaction // Nucl.Phys. – 1970. – Vol.A140. – P.465-480. Ajzenberg-Selove F. Energy levels of light nuclei A = 18 – 20 // Nucl. Phys. – 1972. – Vol.A190, ʋ1. – P.1- 370. Hinds S., Middleton R. The energy levels of 18F // Proc. Phys. Soc. – 1959. – Vol.73, ʋ473. – P.721-726. Polsky L.V., Holbrow C.H., Middleton R. Nuclear structure of 18F // Phys. Rev. – 1969. – Vol.186. – P. 966-977. Bainum D., Lindgren R.A., ParkY.S. Study of levels in 18F from the 19F(3He,Į)18F reaction // Bull. Am. Phys. Soc. – 1971. – Vol.16. – P.1155. Brink D.M., Stephen R.O. Widths of fluctuations in nuclear cross sections // Phys. Lett. – 1963. – Vol.5, ʋ1. – P.77-79. Datta S.K., Berg G.P.A., Quin P.A. Coupled-channels and fluctuations analysis if deuteron stripping and deuteron scattering on 20 Ne // Nucl. Phys. – 1979. – Vol.A332. – P.125-143. ɇɢɤɢɬɟɧɤɨ ɘ.ȼ., Ɉɫɟɬɢɧɫɤɢɣ Ƚ.Ɇ., ɋɨɧ ȼɨɧ ɇɚɦ ɢ Ɏɚɪɭɤ Ɇ.Ⱥ. ɂɫɫɥɟɞɨɜɚɧɢɟ ɪɟɚɤɰɢɢ 28Si(3He,p)30P // əɞɟɪɧɚɹ ɮɢɡɢɤɚ. – 1973. – Ɍ.18, ɜɵɩ.5. – ɋ. 954-961. Groeneveld K.O., Hubert B., Bass R., Nann H. Study of the 28Si(3He,p)30P reaction // Nucl. Phys. – 1970. – Vol.A151. – P.198210 Glasner K., Bohle D., Domogala G., Ricken L.M., Weismüller, Kuhlman E. Test of isospin purity by measuring cross correlations in mirror channel reactions // Phys. Rev. – 1983. – Vol.C27, ʋ4. – P.2977-2980. Bonetti R., Colli Milazzo L., De Rosa A., Inglima G., Perillo E.,Sandoli M., Shahin F. Statistical multistep compound emission in the 27Al(3He,p)29Si reaction // Phys. Rev. – 1980. – Vol.C21. – P.816-829. Perrey F.G., Buck B.A. The non-local hjtential model for scattering of neutrons by nuclei // Nucl. Phys. – 1962. – Vol.32. – P.353-357. Willmor D., Hodgson P.E. The calculation of neutron cross-sections from optical potentials // Nucl. Phys. – 1964. – Vol.55. – P.675-577. Swandt P., Haeberli W. Optical model analysis of d-Ca polarization and cross sections measurements from 5 to 34 MeV // Nucl. Phys. – 1969. – Vol.A123. – P.401-407. Hauser W., Feshbach H. The inelastic scattering of neutrons // Phys. Rev. – 1952. – Vol.87. – P.366-377. Feshbach H. Nuclear spectroscop. – New York: Academic Press, 1960. – 665 p. Von Witsch W., Brentano P., Mayer-Kuckuk T. The statistical character of reactions 37Cl(p,Į)34S at 21-22 MeV excitation energy of the compound nucleus // Nucl. Phys. – 1966. – Vol.80. – P.394-399. Moldayer P.A. Statistical theory of nuclear collision cross sectijns. II. Distributions of the poles and residies of the collision matrix // Phys. Rev. – 1964. – Vol.136. – P.947-950. Smith W.R. Houser-Feshbach nuclear scattering subroutine LIANA // Comp. Phys. Comm. – 1968. –Vol.1. – P.181-185. Burbank M. Frank G.G., Davison N.E. The 20Ne(d,n)21Na reaction // Nucl. Phys. – 1968. – Vol.A119. – P.184-196. Newton T.D. Statistical model of nuclear // Can. J. Phys. – 1956. – Vol.34. – P.804-816. 21 ñåð³ÿ ô³çè÷íà «ßäðà, ÷àñòèíêè, ïîëÿ», âèï. 4 /44/ ßäåðíûå ðåàêöèè, âûçâàííûå... 38. Endt P.M., Van der Leun C. Energy levels of Z = 11 – 21 nuclei // Nucl. Phys. – 1978. – Vol.A310. – P.1-752.; Hoffman A., Betz P., Ropke H., Widenthal B.H. Structure of the mirror nuclei 21Ne and 21Na // Z. Phys. – 1989. – Vol.A332. - P.289310. 39. Cameron A.G.W. Nuclear level spacing // Can. J. Phys. – 1958. – Vol.36. – P.1040- 1057. Silbert A., Cameron A.G.W. A composite nuclear-level dencity formula with shell corrections // Can. J. Phys. – 1965. – Vol.43. – P.1446-1496. 40. Ɇɚɥɵɲɟɜ Ⱥ.ȼ. ɉɥɨɬɧɨɫɬɶ ɭɪɨɜɧɟɣ ɢ ɫɬɪɭɤɬɭɪɚ ɚɬɨɦɧɵɯ ɹɞɟɪ. – Ɇ.: Ⱥɬɨɦɢɡɞɚɬ, 1960. – 142 ɫ. 41. Glendenning N.K. Nuclear Spectroscopy with Two-Nucleon Transfer Reactions // Phys. Rev. – 1965. – Vol.137B. – P.102113. 42. Towner I.S., Hardy J.C. Direct Two-nucleon transfer reactions and their interpretation in terms of the nuclear shell model // Advan. Phys. – 1969. – Vol.18. – P.401-488. 43. Hardy J.C., Towner I.S. Determination of the sings of shell model matrix elements from two nucleons stripping data // Phys. Lett. – 1967. – Vol.25B. – P.577-579. 44. Ⱦɟɣɧɟɤɨ Ⱥ.ɋ., ɋɚɪɚɧɚ ȼ.Ⱦ., ɏɚɰɟɝɚɧ Ʉ. ɢ ɒɥɹɯɨɜ ɇ.Ⱥ. Ɍɟɨɪɟɬɢɱɟɫɤɚɹ ɨɛɪɚɛɨɬɤɚ ɷɤɫɩɟɪɢɦɟɧɬɨɜ ɫ ɩɨɥɹɪɢɡɨɜɚɧɧɵɦɢ ɞɟɣɬɪɨɧɚɦɢ // Ɍɟɡ. ɞɨɤɥ. XXXIII ɫɨɜɟɳɚɧɢɹ ɩɨ ɹɞɟɪɧɨɣ ɫɩɟɤɬɪɨɫɤɨɩɢɢ ɢ ɫɬɪɭɤɬɭɪɟ ɚɬɨɦɧɨɝɨ ɹɞɪɚ. Ɇɨɫɤɜɚ 19-21 ɚɩɪɟɥɹ 1983 ɝ. – Ʌ.: ɇɚɭɤɚ, 1983. – ɋ.381. 45. Bayman B.F., Kallio A. Relative-Angular-Momentum-Zero Part of Two-Nucleon Wave Functions // Phys. Rev. – 1967. – Vol.156, ʋ4. – P.1121-1128. 46. Nann H., Hubert B., Bass R. Study of the 31P(3He,p)33S reaction // Nucl. Phys. – 1971. – Vol.A176. – P.553-566. 47. Ivasaki Y., Murata T., Tamura T., Nogami Y. Features of the (t,p) reaction below the Coulomb barrier of the entrance channel // Phys. Rev. – 1976. – Vol.C13, ʋ2. – P.556-567. 48. Horvat P. Investigation of the energy levels of 21F using the 19F(t,p)21F reaction // Nucl. Phys. – 1964 – Vol.52. – P.410-416; Ɇɢɞɞɥɬɨɧ Ɋ. Ɋɟɚɤɰɢɢ ɞɜɨɣɧɨɝɨ ɫɪɵɜɚ // ɉɪɹɦɵɟ ɩɪɨɰɟɫɫɵ ɜ ɹɞɟɪɧɵɯ ɪɟɚɤɰɢɹɯ. ɂɡɛɪɚɧɧɵɟ ɬɪɭɞɵ ɤɨɧɮɟɪɟɧɰɢɢ. ɉɚɞɭɹ, 3 – 8 ɫɟɧɬɹɛɪɹ 1962 ɝ. – Ɇ., 1965. – ɋ.153-171. 49. Sen Gupta H.M., Zaman M.A., Watt F., Hurst M.J. A stady of the 17O(3He,p)19F reaction // Nuovo cimento. – 1986. – Vol.93A, ʋ3. – Ɋ.217-235. 50. Nann H., Wildenthal B.H., Duhm H.H., Hafner H. The 29Si(3He,p)31P reaction // Nucl. Phys. – 1975. – Vol.A246. – P.323-332. 51. Nann H., Mozgovoy T., Bass R., Wildenthal B.H. Study of the 27A1(3He,p)29Si reaction // Nucl. Phys. – 1972. – Vol.A192. – P.417-425. 52. Berg , Rina Das, S.K. Datta, P.A. Quin Study of 24Mg(d,p)25Mg with polarized deuterons // Nucl. Phys. – 1977. – Vol.A289. – P.15-35. 53. Benenson R.E., Taylor I.J., Bernard D.L. WolterH.H., Tamura T. The reaction 20Ne(3He,n)22Mg at 3He energies below 6 MeV // Nucl. Phys. – 1970. – Vol.A197. – P.305-314. 54. Haas F., Heusch B., Galmann A., Bromley D.A. Experimental Investigations of the 12C(h,p)14N reaction mechanism // Phys. Rev. – 1969. – Vol.188. – P.1628-1639. © ȼ.Ⱦ. ɋɚɪɚɧɚ, ɇ.ɋ. Ʌɭɰɚɣ, Ɇ.Ⱥ. ɒɥɹɯɨɜ, 2009.