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The generalized structure of the interaction term of multigravity is analyzed in detail. The coincidence limit of any multigravity theory
is defined and the compatibility equation for the interaction potential is derived which is studied in the weak perturbation limit of metric.
The most general properties of the invariant volume and the scalar potential of multigravity are investigated. The general formula for
multigravity invariant volume using three means (arithmetic, geometric and harmonic) is derived. The Pauli-Fierz mass term for bigravity
in the weak field limit is obtained.
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The multigravity extension of General Relativity (in first papers it was callggtheory” or “strong gravity” [1-3]) is
important both from theoretical constructions (quantum gravity and branes [4-6], discrete dimensions [7,8], renormalization
[9], massive gravity [10] etc.) and experimental facts (dark matter and dark energy [11-13], cosmic acceleration [14, 15]
etc.). In this respect it is worthwhile to consider non-linear formulation of multigravity [16]. The shape of interaction term
plays the most crucial role in constructing models.

The goal of this paper is to consider the generalized structure of the interaction term in detail (see also [17]). Thatis, we
introduce the coincidence limit of a multigravity theory and obtain the compatibility equation for the interaction potential
and analyze it in the weak perturbation limit. Note that a particular case of our general construction, a “perturbative limit”
which corresponds to critical points of interacting potential and depends from their special form of interaction potential,
was considered in [16] for bigravity only. Here we propose the multigravity generalizations and do not consider any
restrictions on the metric, as in [16] (where only spaces with constant curvature were considered).

Also we study the most general properties of invariant volume in the interaction term and the scalar potential of
multigravity. We generalize the invariant volume for multigravity for three means and obtain the Pauli-Fierz mass term [18]
for bigravity in the weak field limit [16], as an example.

MULTIGRAVITY AND THE COINCIDENCE LIMIT

We consider several Universes (labellediby: 1,... N) each described by the metrg';&l), (we use the signature
+ — ——), the set of matter field®(?) (scalar, spinorial, vector ones) and the action

Sew = / a2 [FO(g9) L (g9, 89)] )
wheredQ® = d*z\/g®, g = —det (g,(f,Z) > 0 (distinguishingg(® as a positive number angd”) as a tensor) is the
invariant volume and(*) (g(¥) is pure gravity Lagrangian @fUniverse L (g, ®(*)) describes coupling of matter fields

and gravity. In the concept of Weakly Coupled Worlds [16] due to the no-go theorem of [19] the only consistent nonlinear
theory of N massless gravitons is the sum of decoupled gravity actions (1)

N
So = Z Sa) 2)

which has the huge symmetﬂ{f.v diff ;) (eachdiff ;) acts on its metri(gffl), and matter field®(")). The full action of
multigravity, as Weakly Coupled Worlds mixing by their gravitational fields only, is

N
Sma = Z/dﬁ(i) [F(i) ) +L (g(“@(”))} +/d4rW(g(1),g(2), g™, 3)

whereW (gM), g, ... g™)) isthe interaction term which is a scalar density made up from metrics taken at the same point,
i.e. in ultralocal limit [16]. The symmetry of (3) reduces to only one diffeomorphism, because of the no-go theorem [19].
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Therefore, it is interesting to consider the case when also the Universities are described by the same metric. So let us

introduce the coincidence limit, wh@ﬁ}y) = g,(fl,) =...= gff,\,]) = g, In case of the absence of interactidi (= 0)
and matter, we have

N
Sy = /dQZF(“(g). 4)

If FO(g) = FA(g) = ... = FWN)(g) = F(g), thenSy = N [dQF(g,.), and therefore noninteracting full theory
coincides with the initial one. But in the case of interacting theory and moreover nonvanishing interacting term in the
coincidence limit the multigravity can be equivalent to some effective gravity theory described by the effectivgpetric
and effective functior” (g). Thus we arrive to the compatibility equation

V9 (F(g) +U (8) = ViF(g), (5)
where,/gU (g) = W(g,g,...g) # 0, and all functions are taken in the same ‘point’. The equation (5) is defined up to
covariant divergence of any function, because it will not contribute to the equations of motion. In [1, 2, 16] the only case

W(g,g,...8) = 0 (U (g) = 0) was considered, and the compatibility equation has the trivial soléti@rg only. Here
we extend the consideration to nonvanishifgg), which allows us to obtain possible nontrivial solutions. The physical
sense of the compatibility equation (5) is treatment of two equal interacting Universes (having the same firictibe

limit of coinciding metric tensors, as some “effective” Universe described by this fungtjdmit another metric tensgr
In general case the formal solution of the compatibility equation (5) can be presented as

g;w = (b;u/ (ga U (g)) )

where the functior®,,,, is a symmetric covariant tensor determining the transformagion— g,....
Let us solve the compatibility equation in the simplest case: small fields expansion

g,uv = Buv + Puv- (6)

We note that here we considgy, as an arbitrary metric, but not necessarily flat space mgtricZ n,,. . In the first
order ofp,,, for determinants we derive

det (§) = det(g) + pasK™’ (g), )
K (g) = "7 (650081820830 + 050, 80,820830 + 0505 80,810,830 + 0505 80.81,82p) -

If we consider expansion around Minkowski metgjg, = 7,,,., thenK*? (g) = —p*% andg = — det (§) = 1+ Trp,
whereTr p = p,sn®P. In general case, after substitution of (7) into the main compatibility equation (5), we obtain

OF(g) 1 OF (g) OF (g)
Ug:( - FgKW/g pu+ 1/,+ pu,a+‘-'7 (8)
© = (g, ~ 57 ©K® ) P+ 5 " s+ 5= P
where “...” denote similar derivatives by higher than two derivativeg ofterms.

So any multigravity model (1) induces the interaction term which in the coincidence limit has the form (8). On the
other hand, the relation (8) can be considered as an equatipp.foand therefore we can determine an effective metric
g, of gravity theory, which is equivalent to a given multigravity in the coincidence limit, for any interaction term.

In most cased” (g) is a function of Riemann curvatut®,,, . (g) which contains only up to 2 derivatives of the
metric, and so the higher terms in (8) denoted hywill not appear. The most general polynomial shape of ) is

F(g) = F (Ruups (8)) = A~ R"(g) + B R}, (g) +C - Ry, (8), )
whereA, B, C are constants and
R, (&) = T, , (& -T,,@+1, (!, (g T (&)1, (), (10)
I, = %g‘“’ (8ovp + Eop — Bupio) s (11)
R.(g) = R, (g, R(g=g"Rug). (12)

The standard Einstein gravity correspond$t(g) = Aginsten - R (g) [20]. In this case and using (6) we have (note
the absence of the first derivativesgyf,)

, A OR(g 1 ;w
UEznsten (g) - AEznsten |:< 8g}“’ 2\/§R (g) K (g) Puv +

OR OR
©,,  + o ©, 1. @3

wv,po

O8uv,p
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It is convenient to use covariant derivativesgd)y , then

~ 1
Flutp = Fﬁp + igﬂa(pau;p + pop;u - pyp;o)7 (14)
~ 1
Rllfpa = Rllfpa + Egp‘a(pav;ﬂp + pOéCf;l/p - pl/o';ap - pal/;pcr - pap;va + pl/p;aa')a (15)
= —e S 1
R = §7Rj,, =R—p""Ras - Opa.s °+ Egaﬁgw(pﬂ#;ua — PBusav T Puipa + Puaspy), (16)

wherel] is covariant D’Alambertian defined as= VvV, V# andV , is covariant derivative by, , i.e.[p = paa;ﬁﬂ.
After substitution to (5) we obtain

/ R\/gd*z = / Vod*zR

1 , o
+ / \/§d4$ |:_pa/BRa,6 - |:’p + igaﬁgu (pﬁ,u;uoc — PBu;ar + Pav;ua + pua;,Bu) - pa,@F A . (17)

R
2V
GENERALIZED INVARIANT VOLUME IN MULTIGRAVITY

In consideration of the interaction term of multigravity it is important to choose consistently the invariant volume
which in coincidence limit transforms to the standard invariant volm‘he\/g. For simplicity, first we consider the
bigravity case [16].

Note thatd*zW (g1, g(?)) is a scalar, whilel*z andW (g(V), g(?)) are the scalar densities of opposite weights. By
analogy with usual invariant volumé&? = d*z,/g, we can present'zW (g1, g(?) as a producti*z - f (\/g1,/92) -
V(gW,g®), whereV (g1, g(?) is a scalar interaction potential.

Now we demand that the ‘interaction’ invariant volumel®@;,; = d*z f (\/ﬁ, @) should be a scalar which in the
coincidence Iimitg,(},,) = g,(f,,) = g, gives the standard invariant volurd€;,, — df2. To satisfy these conditions we
require the following general properties of the functjpfu, v):

1) Idempotenc¢ (u,u) = u; 2) Monotony; 3) Homogeneity (tu, tv) = tf (u,v); 4) Symmetryf (u,v) = f (v, u).

From homogeneity and symmetry it follows thfatu, v) can be expressed through the function of one variable, the

ratio%,as
f(u,v):u-f(z,l):v-f(:,1>:\/ﬁ-f<\/f,\/z>. (18)

Thus, the interaction invariant volume can be presented as
e = daf (VD) = o i (242 ) = e ymz 7 (2)). (19)
1

From symmetry off (u,v) it follows that f (u) = f (u™?).

Let us consider an example. The simplest functions satisfying (18) are usual averages: arithmetic mean, harmonic
mean and geometric méefatt is reasonable to consider their linear combination, which gives for the generalized ‘interaction’
invariant volume the following expression

d*z VI1 + /9 2

d4-Tf (\/gla \/92) = a - 2 +b¢/g192 + 1
at+b+c 2 n

V91 V92

1 a g1 g2 1
= dir Ygigs —— |2 (L 2) b2
9192 a+b+c 2( g2 gl> af9L 4 afd2
L 92 g1

dQint (a, b, ¢)

1
a+b+c

1 1
— d' Yaig- §<y+y>+b+2c |, (20)

y+ -
L Y

1Usually one considers the geometric mean only (e.g. see [16]).
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wherea, b, c are arbitrary real constants apd= ¢ -‘;—;. Similar formulas are valid folV-multigravity

9293---gN gi193---gN 9192---gN-1

N-1 N—-1 N-1
Qns = d*z -  (\/GT, s /38) = d*z /g1gn - f f{/ 9 f{/ 2, f(/ In ) (21)

Evidently, this formula forV = 2 (bigravity) gives (19).
Let us denote théy arguments of the functiofi as

N — — N
= \/g Yoy tgstgnt s = \/g oY gy gt ue) = o e gy e (22)

which obviously satisfy

(N) . (N) (V)

Y Yy e yy =1 (23)
Therefore the functiorf has actuallyV — 1 independent arguments, and so
A = Ao - (g1, Vo) = Ao grogn - f (o080 (24)

which for N = 2 gives (19). Using the means as in (20) we obtainNitanalog

N

dQne = d*z - 2X/g7... b+ec——m—|, 25

c=d'z- /g gn - a+b+c Zyz + +cZN : (25)
™

’L

which can be considered as the most general ‘interaction’ invariant volume for multigravity.

GENERALIZED INTERACTION POTENTIAL IN MULTIGRAVITY
Let us construct the most general expression for the interaction term in (3)

Sint = /d4xW(g(1), g?, .. .gMy. (26)
It is convenient to extract the generalized invariant volume (presented in previous section*)
Sint - /dantV(g(l)a g(2)7 .. g(N))a (27)

whereV (g™, g, ... g™)) is the scalar interaction potential of multigravity.
As we noted before, the symmetry of the full action (3) can be reduced to only one diffeomorphism group which is
the diagonal subgroup of common diffeomorphisms acting on metrics as Lie derisgitive- £.g(* or in manifest form

()+Ep (1) (28)

5gu) = ePg(®) +5pugp ngﬂ

gp,u P

wheree? is the same for all metrics. This symmetry restricts the shape of the scalar interaction potential: it should depend
from invariant which can be constructed frdmmemCSg(”)
Let us consider bigravity as an example [14, 16]. The scalar potential should depend from invariants of the mixed
tensor
1 2
Yh = g(gPn, (29)

which can be treated as tensorial analog of the scalar variafstem (20). Note thaty# is diffeomorphism invariant,
i.e. under transformation (28) we ha¥¥ = L.Y, because of the samé for all metrics. To calculate invariants of the
tensor (29) we take powers of traces of the the matrisorresponding to the tens¥t!, and the number of invariants in
4 dimensions is 4 by the Cayley theorem, which can be taken as

=TrY, s60=TrY? 53=TrY3 s, =TrY"% (30)

Let A\ (¢ = 0,1,2,3) are eigenvalues of the tensef, which can be treated as relative eigenvalues of the meitric
relativelyg(®). In the special bi-orthogonal vierbeﬁﬁf) the metrics can be written as follows

g[(LlV) = )\(0)6&0 €, /\(1)6 1) /\( (2) )\( )6&3)6(3), (31)

(2) = 00 e(l) m _ (2)61(/2) _ eff’)el(f)a (32)

&)

g;ux o
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and so the matri¥ is diagonal. In case of real and positive eigenvaliigsit is convenient to introduce

By = In g (33)
and consider their powers
o1 = o)+ ) ) R, 02 = o) T Gy T )+ i) (34)
o3 = Koy T H{y UGy UGy T4 = Koy T H(y F Ay F G- (35)
Then the scalar potential of bigravity is a function of the introduced invariants
V(gW,g®) =V(o1,02,03,04). (36)

An important class of bigravity models has the symmetry + g(>). In this case for eigenvalues we havg, — )\(;)1

anduy — —p(), therefore

V(01,02,03,04) = V(—01,02, —03,04). (37)
~In the wqak field limito; — 0 it is sufficient to take into account only two first invariants, oo and consider

Vo (01,02) = V(01,02,0,0), which appears naturally in brane models [6] and “Pauli-Fierz-like” bigravity [14]. For the
latter we expand

g\ =M +V2k1h(), g2 =+ V/2koh (2, (38)
wheren,,, is the same flat metric. In this limit the mixed tensor (29) is
YU =6 + 2kt hDF — \/2kah (. (39)
Let us consider the combinations
h), =@ h,(fy) + Q2h£13a hi™* =q h,(fu) — g2 h/(}u)v (40)

whereg + ¢5 = 1, then it can be shown th&f,, is massless anid].*** contains the Pauli-Fierz term. Indeed,

o1 = /2kth(F — \/2koh# 4 kph (DM@ — g h (DR e (41)
oy = 2kt 4 2kohDhEE — 4 [k koh (k. (42)
Finally we obtain
2 1
hmass hmass,,ul/ _ hmass”u — _ L2 . 43
p () = Sy (21 “3)
Thus, if we choose the interaction in the form
Sin = - dan V 3 ) 44
=i [ iV 01,0) (@)
wheredS?;,,, is defined in (20) and the scalar interaction potential is
> PF m2PF 2
Vo (01702): 8 (02—0’1)7 (45)

then the weak field limit of bigravity generates the Pauli-Fierz mass term [18] of the shape

Sint = —niw/d“x (hﬁfsshm“s’“” — (h;”“ss’“f) : (46)
For the brane motivated bigravity scenario [4,21] the scalar potential has the form [16]
Vobmne (01,02) = m? (cosh o cosh M) . (47)
4 44/3
In the weak field limit it reproduces the Pauli-Fierz mass term (45), indeed
V" (01,02) e Vg = Vo ! (01,02). (48)

Note that the “perturbative limit” which corresponds to existence of critical point of potential and from which for
bigravity (with potential of form (29) only) it follows thag,‘}J = gfu), was considered in [16]. Here we present a more
general case which is not connected with any concrete form of the interaction potential and does not demand consideration

of spaces with constant curvature.
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CONCLUSIONS

So in this paper we have analyzed the generalized structure of the interaction term of multigravity. We introduced
the coincidence limit and obtained the compatibility equation for the interaction potential which was studied in the weak
perturbation limit. We considered the most general properties of invariant volume and the scalar potential. As an example,
we derived the Pauli-Fierz mass term for bigravity in the weak field limit.
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HNPEJAEJ COBITAJJEHUS U CTPYKTYPA OBOBIIEHHOI'O B3AI/IMOI[EI71CTBHH B
MVYJIBTUT'PABUTALIUN
C.A. I[yn.]mﬁl, A.T. KorBunkuii2
L @usuro-mexnuueckuii paxynomem, Xapoxosckuii Hayuonanvhoiti ynusepcumem um. B.H. Kapasuna
ni. Ce0600vt, 4, 2. Xapvkos, 61077 Ykpauna
2 Pusuneckuii gaxynemem, Xapvrogckuil HayuoHarbHwlll yrugepcumem um. B.H. Kapaszuna
nn. Ceo600vi, 4, 2. Xapvkos, 61077 ,Ykpauna

B pabote npoananu3nposaHa 0000LIIEHHAs CTPYKTypa B3aUMOJAEHCTBHUS B MOZIENISIX MYy/IBTUTPaBUTALlNK. B BBEZIeHHOM ITpesiernie coBma-
JICHUSI TIOJIy4eHO ypaBHEHHE COBMECTHOCTH IS TIOTEHIMANa B3aUMOACHCTBHS, KOTOPOE N3y4aeTcs IPH CIIa0bIX BO3MYIIEHHIX METPH-
ku. MccnenoBansl Hanbonee o0mMe CBOMCTBA MHBAPHAHTHOTO 00beMa M CKAIIPHOTO MOTEHIMA a B MYIbTHIpaBUTAINA. [lomydeHa
ob1ast popmyra Ju1si HHBAPHAHTHOTO 00beMa C NCIIOIb30BAaHUEM TPEX BUAOB CPEIHUX: apU(PMETHIECKOr0, TEOMETPUIECKOTO U rapMo-
Hu4eckoro. B npenene ciraboro moss it GUrpaBUTAINHN ITOTyYSHO MaccoBoe ciaraemoe Tuna [laymu-®dupia.

KJIIFOUEBBIE CJIOBA: nipenen coBajieHus, ypaBHEHHE COBMECTHOCTH, HHBAPHAHTHBIA 00BEM, MIPEIEN CI1aboTo MOoIsl, CKaJIPHBIN
MOTEHIHAT





