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The generalized structure of the interaction term of multigravity is analyzed in detail. The coincidence limit of any multigravity theory
is defined and the compatibility equation for the interaction potential is derived which is studied in the weak perturbation limit of metric.
The most general properties of the invariant volume and the scalar potential of multigravity are investigated. The general formula for
multigravity invariant volume using three means (arithmetic, geometric and harmonic) is derived. The Pauli-Fierz mass term for bigravity
in the weak field limit is obtained.
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The multigravity extension of General Relativity (in first papers it was called “f-g theory” or “strong gravity” [1–3]) is
important both from theoretical constructions (quantum gravity and branes [4–6], discrete dimensions [7,8], renormalization
[9], massive gravity [10] etc.) and experimental facts (dark matter and dark energy [11–13], cosmic acceleration [14, 15]
etc.). In this respect it is worthwhile to consider non-linear formulation of multigravity [16]. The shape of interaction term
plays the most crucial role in constructing models.

The goal of this paper is to consider the generalized structure of the interaction term in detail (see also [17]). That is, we
introduce the coincidence limit of a multigravity theory and obtain the compatibility equation for the interaction potential
and analyze it in the weak perturbation limit. Note that a particular case of our general construction, a “perturbative limit”
which corresponds to critical points of interacting potential and depends from their special form of interaction potential,
was considered in [16] for bigravity only. Here we propose the multigravity generalizations and do not consider any
restrictions on the metric, as in [16] (where only spaces with constant curvature were considered).

Also we study the most general properties of invariant volume in the interaction term and the scalar potential of
multigravity. We generalize the invariant volume for multigravity for three means and obtain the Pauli-Fierz mass term [18]
for bigravity in the weak field limit [16], as an example.

MULTIGRAVITY AND THE COINCIDENCE LIMIT

We consider several Universes (labelled byi = 1, . . . N ) each described by the metricg(i)µν (we use the signature
+−−−), the set of matter fieldsΦ(i) (scalar, spinorial, vector ones) and the action

SG(i) =

∫

dΩ(i)
[

F (i)(g(i)) + L
(

g
(i),Φ(i)

)]

, (1)

wheredΩ(i) = d4x
√

g(i), g(i) = −det
(

g
(i)
µν

)

> 0 (distinguishingg(i) as a positive number andg(i) as a tensor) is the

invariant volume andF (i)(g(i)) is pure gravity Lagrangian ofi-Universe,L
(

g
(i),Φ(i)

)

describes coupling of matter fields
and gravity. In the concept of Weakly Coupled Worlds [16] due to the no-go theorem of [19] the only consistent nonlinear
theory ofN massless gravitons is the sum of decoupled gravity actions (1)

S0 =
N
∑

i

SG(i) (2)

which has the huge symmetry
∏N

i diff(i) (eachdiff(i) acts on its metricg(i)µν and matter fieldsΦ(i)). The full action of
multigravity, as Weakly Coupled Worlds mixing by their gravitational fields only, is

SmG =

N
∑

i

∫

dΩ(i)
[

F (i)(g(i)) + L
(

g
(i),Φ(i)

)]

+

∫

d4xW (g(1), g(2), . . . g(N)), (3)

whereW (g(1), g(2), . . . g(N)) is the interaction term which is a scalar density made up from metrics taken at the same point,
i.e. in ultralocal limit [16]. The symmetry of (3) reduces to only one diffeomorphism, because of the no-go theorem [19].
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Therefore, it is interesting to consider the case when also the Universities are described by the same metric. So let us
introduce the coincidence limit, wheng(1)µν = g

(2)
µν = . . . = g

(N)
µν ≡ gµν . In case of the absence of interaction (W = 0)

and matter, we have

S0 =

∫

dΩ

N
∑

i

F (i)(g). (4)

If F (1)(g) = F (2)(g) = . . . = F (N)(g) ≡ F (g), thenS0 = N
∫

dΩF (gµν), and therefore noninteracting full theory
coincides with the initial one. But in the case of interacting theory and moreover nonvanishing interacting term in the
coincidence limit the multigravity can be equivalent to some effective gravity theory described by the effective metricg̃µν

and effective functioñF (g̃). Thus we arrive to the compatibility equation

√
g (F (g) + U (g)) =

√

g̃F (
˜
g), (5)

where
√
gU (g) = W (g, g, . . . g) 6= 0, and all functions are taken in the same ‘point’. The equation (5) is defined up to

covariant divergence of any function, because it will not contribute to the equations of motion. In [1, 2, 16] the only case

W (g, g, . . . g) = 0 (U (g) = 0) was considered, and the compatibility equation has the trivial solution
˜
g = g only. Here

we extend the consideration to nonvanishingU (g), which allows us to obtain possible nontrivial solutions. The physical
sense of the compatibility equation (5) is treatment of two equal interacting Universes (having the same functionF ) in the

limit of coinciding metric tensors, as some “effective” Universe described by this functionF , but another metric tensor
˜
g.

In general case the formal solution of the compatibility equation (5) can be presented as

g̃µν = Φµν (g, U (g)) ,

where the functionΦµν is a symmetric covariant tensor determining the transformationgµν → g̃µν .
Let us solve the compatibility equation in the simplest case: small fields expansion

g̃µν = gµν + pµν . (6)

We note that here we considergµν as an arbitrary metric, but not necessarily flat space metricgµν 6= ηµν . In the first
order ofpµν for determinants we derive

det (g̃) = det (g) + pαβK
αβ (g) , (7)

Kαβ (g) = εµνρσ
(

δα0 δ
β
µg1νg2ρg3σ + δ

α
1 δ
β
ν g0µg2ρg3σ + δ

α
2 δ
β
ρ g0µg1νg3σ + δ

α
3 δ
β
σg0µg1νg2ρ

)

.

If we consider expansion around Minkowski metricgµν = ηµν , thenKαβ (g) = −ηαβ andg̃ = −det (g̃) = 1+Tr p,
whereTr p ≡ pαβηαβ . In general case, after substitution of (7) into the main compatibility equation (5), we obtain

U (g) =

(

∂F (g)

∂gµν
− 1

2
√
g
F (g)Kµν (g)

)

pµν +
∂F (g)

∂gµν,ρ
pµν,ρ +

∂F (g)

∂gµν,ρσ
pµν,ρσ + . . . , (8)

where “. . . ” denote similar derivatives by higher than two derivatives ofgµν terms.
So any multigravity model (1) induces the interaction term which in the coincidence limit has the form (8). On the

other hand, the relation (8) can be considered as an equation forpµν , and therefore we can determine an effective metric
g̃µν of gravity theory, which is equivalent to a given multigravity in the coincidence limit, for any interaction term.

In most casesF (g) is a function of Riemann curvatureRµνρσ (g) which contains only up to 2 derivatives of the
metric, and so the higher terms in (8) denoted by. . . will not appear. The most general polynomial shape of suchF (g) is

F (g) = F̂ (Rµνρσ (g)) = A ·Rn (g) +B ·Rmµν (g) + C ·Rrµνρσ (g) , (9)

whereA,B,C are constants and

Rµνρσ (g) = Γµνσ,ρ (g)− Γµνρ,σ (g) + Γµτρ (g) Γτνσ (g)− Γµτσ (g) Γτνρ (g) , (10)

Γµνρ (g) =
1

2
gµσ (gσν,ρ + gσρ,ν − gνρ,σ) , (11)

Rµν (g) = Rρµρν (g) , R (g) = gµνRµν (g) . (12)

The standard Einstein gravity corresponds toF (g) = AEinsten ·R (g) [20]. In this case and using (6) we have (note
the absence of the first derivatives ofgµν)

UEinsten (g) = AEinsten

[(

∂R (g)

∂gµν
− 1

2
√
g
R (g)Kµν (g)

)

pµν +
∂R (g)

∂gµν,ρ
pµν,ρ +

∂R (g)

∂gµν,ρσ
pµν,ρσ

]

. (13)
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It is convenient to use covariant derivatives bygµν , then

Γ̃µνρ = Γµνρ +
1

2
gµσ(pσν;ρ + pσρ;ν − pνρ;σ), (14)

R̃µνρσ = Rµνρσ +
1

2
gµα(pαν;σρ + pασ;νρ − pνσ;αρ − pαν;ρσ − pαρ;νσ + pνρ;ασ), (15)

R̃ ≡ g̃νσR̃µνµσ = R− pαβRαβ −�p
α β
α;β +

1

2
gαβgµν(pβµ;να − pβµ;αν + pβν;µα + pµα;βν), (16)

where� is covariant D’Alambertian defined as� = ∇µ∇µ and∇µ is covariant derivative bygµν , i.e.�p ≡ pα β
α;β .

After substitution to (5) we obtain

∫
R̃
√
g̃d4x =

∫
√
gd4xR

+

∫
√
gd4x

[
−pαβRαβ −�p+

1

2
gαβgµν(pβµ;να − pβµ;αν + pβν;µα + pµα;βν)−

R

2
√
g
pαβF

αβ

]
. (17)

GENERALIZED INVARIANT VOLUME IN MULTIGRAVITY

In consideration of the interaction term of multigravity it is important to choose consistently the invariant volume
which in coincidence limit transforms to the standard invariant volumed4x

√
g. For simplicity, first we consider the

bigravity case [16].
Note thatd4xW (g(1), g(2)) is a scalar, whiled4x andW (g(1), g(2)) are the scalar densities of opposite weights. By

analogy with usual invariant volumedΩ = d4x
√
g, we can presentd4xW (g(1), g(2)) as a productd4x · f

(√
g1,
√
g2
)
·

V (g(1), g(2)), whereV (g(1), g(2)) is a scalar interaction potential.
Now we demand that the ‘interaction’ invariant volumedΩint = d4xf

(√
g1,
√
g2
)

should be a scalar which in the

coincidence limitg(1)µν = g
(2)
µν ≡ gµν gives the standard invariant volumedΩint → dΩ. To satisfy these conditions we

require the following general properties of the functionf (u, v):
1) Idempotencef (u, u) = u; 2) Monotony; 3) Homogeneityf (tu, tv) = tf (u, v); 4) Symmetryf (u, v) = f (v, u).
From homogeneity and symmetry it follows thatf (u, v) can be expressed through the function of one variable, the

ratio
u

v
, as

f (u, v) = u · f
(v
u
, 1
)
= v · f

(u
v
, 1
)
=
√
uv · f

(√
u

v
,

√
v

u

)
. (18)

Thus, the interaction invariant volume can be presented as

dΩint = d
4xf (

√
g1,
√
g2) = d

4x · 4√g1g2 · f
(

4

√
g1

g2
, 4
√
g2

g1

)
= d4x · 4√g1g2 · f̂

(
g2

g1

)
. (19)

From symmetry off (u, v) it follows that f̂ (u) = f̂
(
u−1
)
.

Let us consider an example. The simplest functions satisfying (18) are usual averages: arithmetic mean, harmonic
mean and geometric mean1. It is reasonable to consider their linear combination, which gives for the generalized ‘interaction’
invariant volume the following expression

dΩint (a, b, c) = d4xf (
√
g1,
√
g2) =

d4x

a+ b+ c


a
√
g1 +

√
g2

2
+ b 4
√
g1g2 + c

2
1
√
g1
+
1
√
g2




= d4x · 4√g1g2 ·
1

a+ b+ c


a
2

(
4

√
g1

g2
+ 4

√
g2

g1

)
+ b+ 2c

1

4

√
g1
g2
+ 4

√
g2
g1




= d4x · 4√g1g2 ·
1

a+ b+ c



a

2

(
y +
1

y

)
+ b+ 2c

1

y +
1

y


 , (20)

1Usually one considers the geometric mean only (e.g. see [16]).
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wherea, b, c are arbitrary real constants andy = 4

√

g1
g2

. Similar formulas are valid forN -multigravity

dΩint = d
4x · f (√g1, ...,

√
gN ) = d

4x 2N
√
g1...gN · f





2N

√

gN−11

g2g3...gN
,
2N

√

gN−12

g1g3...gN
...,

2N

√

gN−1N

g1g2...gN−1



 . (21)

Evidently, this formula forN = 2 (bigravity) gives (19).
Let us denote theN arguments of the functionf as

y
(N)
1 =

2N

√

gN−11 g−12 g
−1
3 ...g

−1
N , y

(N)
2 =

2N

√

g−11 g
N−1
2 g−13 ...g

−1
N , . . . y

(N)
N = 2N

√

g−11 g
−1
2 ...g

−1
N−1g

N−1
N , (22)

which obviously satisfy
y
(N)
1 · y(N)2 · . . . · y(N)N = 1. (23)

Therefore the functionf has actuallyN − 1 independent arguments, and so

dΩint = d
4x · f (√g1, ...,

√
gN ) = d

4x 2N
√
g1...gN · f̂

(

y
(N)
1 , y

(N)
2 , . . . y

(N−1)
N

)

, (24)

which forN = 2 gives (19). Using the means as in (20) we obtain itsN -analog

dΩint = d
4x · 2N√g1...gN ·

1

a+ b+ c











a

N

N
∑

i=1

y
(N)
i + b+ c

N
∑N

i=1

1

y
(N)
i











, (25)

which can be considered as the most general ‘interaction’ invariant volume for multigravity.

GENERALIZED INTERACTION POTENTIAL IN MULTIGRAVITY

Let us construct the most general expression for the interaction term in (3)

Sint =

∫

d4xW (g(1), g(2), . . . g(N)). (26)

It is convenient to extract the generalized invariant volume (presented in previous section*)

Sint =

∫

dΩintV (g
(1), g(2), . . . g(N)), (27)

whereV (g(1), g(2), . . . g(N)) is the scalar interaction potential of multigravity.
As we noted before, the symmetry of the full action (3) can be reduced to only one diffeomorphism group which is

the diagonal subgroup of common diffeomorphisms acting on metrics as Lie derivativeδg(i) = Lεg(i) or in manifest form

δg(i)µν = ε
ρg(i)µν,ρ + ε

ρ
,µg
(i)
ρν + ε

ρ
,νg
(i)
µρ, (28)

whereερ is the same for all metrics. This symmetry restricts the shape of the scalar interaction potential: it should depend
from invariant which can be constructed fromN metricsg(i)µν .

Let us consider bigravity as an example [14, 16]. The scalar potential should depend from invariants of the mixed
tensor

Yµν = g
(1)
νρ g

(2)ρµ, (29)

which can be treated as tensorial analog of the scalar variabley from (20). Note thatYµν is diffeomorphism invariant,
i.e. under transformation (28) we haveδY = LεY, because of the sameερ for all metrics. To calculate invariants of the
tensor (29) we take powers of traces of the the matrixY corresponding to the tensorYµν , and the number of invariants in
4 dimensions is 4 by the Cayley theorem, which can be taken as

κ1 = Tr Y, κ2 = Tr Y
2, κ3 = Tr Y

3, κ4 = Tr Y
4. (30)

Let λ(i) (i = 0, 1, 2, 3) are eigenvalues of the tensorYµν , which can be treated as relative eigenvalues of the metricg(1)

relativelyg(2). In the special bi-orthogonal vierbeine(i)µ the metrics can be written as follows

g(1)µν = λ(0)e
(0)
µ e

(0)
ν − λ(1)e(1)µ e(1)ν − λ(2)e(2)µ e(2)ν − λ(3)e(3)µ e(3)ν , (31)

g(2)µν = e(0)µ e
(0)
ν − e(1)µ e(1)ν − e(2)µ e(2)ν − e(3)µ e(3)ν , (32)
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and so the matrixY is diagonal. In case of real and positive eigenvaluesλ(i) it is convenient to introduce

µ(i) = ln λ(i) (33)

and consider their powers

σ1 = µ(0) + µ(1) + µ(2) + µ(3), σ2 = µ
2
(0) + µ

2
(1) + µ

2
(2) + µ

2
(3), (34)

σ3 = µ3(0) + µ
3
(1) + µ

3
(2) + µ

3
(3), σ4 = µ

4
(0) + µ

4
(1) + µ

4
(2) + µ

4
(3). (35)

Then the scalar potential of bigravity is a function of the introduced invariantsσn as

V (g(1), g(2)) = V̂ (σ1, σ2, σ3, σ4). (36)

An important class of bigravity models has the symmetryg(1) ↔ g(2). In this case for eigenvalues we haveλ(i) → λ−1(i)
andµ(i) → −µ(i), therefore

V̂ (σ1, σ2, σ3, σ4) = V̂ (−σ1, σ2,−σ3, σ4). (37)

In the weak field limitσi → 0 it is sufficient to take into account only two first invariantsσ1, σ2 and consider
V̂0 (σ1, σ2) = V̂ (σ1, σ2, 0, 0), which appears naturally in brane models [6] and “Pauli-Fierz-like” bigravity [14]. For the
latter we expand

g(1)µν = ηµν +
√

2k1h
(1)
µν , g

(2)
µν = ηµν +

√

2k2h
(2)
µν , (38)

whereηµν is the same flat metric. In this limit the mixed tensor (29) is

Yµν = δ
µ
ν +

√

2k1h
(1)µ
ν −

√

2k2h
(2)µ
ν . (39)

Let us consider the combinations

h0µν = q1h
(2)
µν + q2h

(1)
µν , hmassµν = q1h

(2)
µν − q2h(1)µν , (40)

whereq21 + q
2
2 = 1, then it can be shown thath0µν is massless andhmassµν contains the Pauli-Fierz term. Indeed,

σ1 =
√

2k1h
(1)µ
µ −

√

2k2h
(2)µ
µ + k2h

(2)
µν h

(2)µν − k1h(1)µν h(1)µν , (41)

σ2 = 2k1h
(1)
µν h

(1)µν + 2k2h
(2)
µν h

(2)µν − 4
√

k1k2h
(1)
µν h

(2)µν . (42)

Finally we obtain

hmassµν hmass,µν −
(

hmass,µµ

)2
=

1

2 (k1 + k2)

(

σ2 − σ21
)

. (43)

Thus, if we choose the interaction in the form

Sint = −
1

k1 + k2

∫

dΩintV̂0 (σ1, σ2) , (44)

wheredΩint is defined in (20) and the scalar interaction potential is

V̂ PF0 (σ1, σ2) =
m2PF
8

(

σ2 − σ21
)

, (45)

then the weak field limit of bigravity generates the Pauli-Fierz mass term [18] of the shape

Sint = −
m2PF
4

∫

d4x
(

hmassµν hmass,µν −
(

hmass,µµ

)2
)

. (46)

For the brane motivated bigravity scenario [4,21] the scalar potential has the form [16]

V̂ brane0 (σ1, σ2) = m
2

(

cosh
σ1

4
− cosh

√

4σ2 − σ21
4
√
3

)

. (47)

In the weak field limit it reproduces the Pauli-Fierz mass term (45), indeed

V̂ brane0 (σ1, σ2) |m=√3mPF = V̂
PF
0 (σ1, σ2) . (48)

Note that the “perturbative limit” which corresponds to existence of critical point of potential and from which for
bigravity (with potential of form (29) only) it follows thatg(1)µν = g

(2)
µν , was considered in [16]. Here we present a more

general case which is not connected with any concrete form of the interaction potential and does not demand consideration
of spaces with constant curvature.
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CONCLUSIONS

So in this paper we have analyzed the generalized structure of the interaction term of multigravity. We introduced
the coincidence limit and obtained the compatibility equation for the interaction potential which was studied in the weak
perturbation limit. We considered the most general properties of invariant volume and the scalar potential. As an example,
we derived the Pauli-Fierz mass term for bigravity in the weak field limit.
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ПРЕДЕЛ СОВПАДЕНИЯ И СТРУКТУРА ОБОБЩЕННОГО ВЗАИМОДЕЙСТВИЯ В
МУЛЬТИГРАВИТАЦИИ
С.А. Дуплий1, А.Т. Котвицкий2

1Физико-технический факультет, Харьковский национальный университет им. В.Н. Каразина
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В работе проанализирована обобщенная структура взаимодействия в моделях мультигравитации. В введенном пределе совпа-
дения получено уравнение совместности для потенциала взаимодействия, которое изучается при слабых возмущениях метри-
ки. Исследованы наиболее общие свойства инвариантного объема и скалярного потенциала в мультигравитации. Получена
общая формула для инвариантного объема с использованием трех видов средних: арифметического, геометрического и гармо-
нического. В пределе слабого поля для бигравитации получено массовое слагаемое типа Паули-Фирца.
КЛЮЧЕВЫЕ СЛОВА: предел совпадения, уравнение совместности, инвариантный объем, предел слабого поля, скалярный
потенциал

66
«Journal of Kharkiv University»,  No.784, 2007 S.A. Duplij, A.T. Kotvytskiy




