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Abstract – A detailed model of the human circulation is 
developed. The large systemic arteries are presented by the 
branching system of straight viscoelastic tubes which 
corresponds topology of the human circulation. Terminal 
elements at the outlets of the system are presented by tree-like 
systems with a given topology (with/without anastomoses) and 
certain geometrical relations between the lengths and 
diameters of the vessels of different branching orders and the 
relation between the maximal total length of the vasculature 
and diameter of the feeding artery. The relations have been 
obtained by analysis of the morphometric data. They allow 
correct calculations of the hydraulic resistance and wave 
impedance of the arterial beds of different organs. The 
proposed outflow boundary conditions are more preferable 
then the Windkessels and the regular tree-like systems because 
they describe both resonant properties of the intraorgan 
vasculatures and the distributed sources of the  reflected 
waves. The model describes realistic pressure and flow waves 
and pressure-flow dependences either in the aorta or in the 
feeding arteries of the inner organs. The latter underlies 
possibility of the novel noninvasive diagnostics of the state 
(normal or pathological) of the intraorgan circulation by non-
invasive measuring the wall oscillations and blood flow velocity 
in any cross-section of the feeding artery of the organ.  
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conductivity, input admittance, wave propagation.  

 
 

I.  INTRODUCTION 
 

Geometry of the arterial vasculatures is an important 
factor that defines pressure-flow relationships in different 
parts of the circulatory system and pulse wave propagation 
and reflection. The arterial systems of different individuals 
exhibit significant variations in lengths and diameters of the 
arterial segments and topology of the vasculatures. A multi-
branched model of the human extraorgan arteries that 
includes large systemic arteries  has been proposed in [1-2]. 
Wave reflection at the terminuses can be modeled by the 
three-element Windkessels [3] and by regular self-similar 
tree-like branching systems  of compliant tubes [4]. The 
parameters of the terminal elements have to  be selected to fit 
the in vivo pressure oscillations in the aorta [1-4]. Usually 
the intraorgan arterial beds are considered as bifurcating 
trees whereas real arterial vasculatures possess different 
topology that includes the tree-like systems (lung, kidneys, 
liver, heart), systems with a few anastomoses between the 
large intraorgan arteries (stomach, limbs) and systems with 
numerous anastomoses (large and small intestine). 

Morphometric analysis revealed some regularity in 
geometry of different intraorgan vasculatures [5-9]. 
Theoretical estimations of the input admittance Y of the 
intraorgan beds that is calculated as the ratio of the flow rate 
Q to pressure P in the inlet of the feeding artery of the organ 
have revealed some differences in Fourier spectra of the 
admittances of the vasculatures with different geometry that 
can be used in medical diagnostics [10–13].  

On the basis of the latest morphometric data we propose 
a novel detailed digital model of the human arterial system 
that includes the realistic topology, branching regularities of 
the extraorgan and intraorgan arterial systems of the main 
inner organs of a human. The detailed analysis of the 
dynamics of arterial blood flow and pulse wave propagation 
taking into account the distributed nature of the pulse wave 
reflections at bifurcations and terminal arterial vasculatures 
can be carried out on the model. 
  

II. RE GULARITIES IN THE   STRUCTURE OF THE INTRAORGAN 
ARTERIAL BEDS  

 Geometry and topology of the arterial beds of the inner 
organs and extraorgan large arteries have been invesigated 
on the plastic casts of the arterial system of the corpses  of 
the healthy young human whose death was not connected 
with circulatory diseases [5]. It is well known that arterial 
beds of the inner organs possess different topology [14]. 
Vasculature of the liver, kidneys, spleen, lungs and heart 
resembles tree-like branching systems  (see the model 
number 1 in Fig.1). The most part of the branches are 
dichotomous divisions of the parent vessel into two daughter 
branches. Nevertheless according to the morphometric  
observations [9] some part of the branches is always 
presented by trichotomous divisions. In the organs with tree-
like arterial beds some anastomoses between the arteries of 
the 4n ≥  branching order can also be found. Some  other 
arterial vasculatures are presented by systems with 
anastomoses between the arteries of the 32n −=  
branching order. In stomach the branches of the feeding 
artery form four arteries which are connected into two loops 
(number 3 in Fig.1). The downstream vasculature s begin in 
several points along the loops. The points can be considered 
as bifurcations though the flows in the bifurcations in some 
of the points converge. The most important extraorgan 
systems of this kind are vasculatures of the upper and lower 
limbs (number 2 in Fig.1) . In the upper limbs the radial and 
ulnar arteries form two palma r arcs and the digital arteries 
which supply the fingers begin in several points along the 
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arcs. Due to significant individual variations in topology of 
the arterial systems the arcs  can be presented in different 
forms [14,15]. The last group of the inner organs possesses 
the vasculature with numerous loops formed by bifurcations 
of their feeding arteries. The first order branches of the large 
and small intestine form a complicated system of loops (the 
model number 4 in Fig.1). Anatomical variations of the 
vasculature include different number of loops, presence of 
some incomplete peripheral loops and different number of 
the terminal tree-like structures penetrated into the tissues of 
the organ [14,15].  

Anastomoses are very important as additional pathways 
for blood supply to the organ. Moreover when the pressure 
and flow waves propagate through the vasculature with 
loops the additional pathways for the wave propagation and 
reflection produce an increase in the wave amplitudes due to 
superposition of the waves [16]. The waves have small 
phase shifts due to high wave velocity in the intraorgan 
arteries. That is a possible explanation of using some 
arteries of the limbs for the pulse palpation and diagnosis of 
the pathologies in the oriental medicine [12,16].  

 
Fig.1. The model of the human arterial system including the tree-like (1) 

intraorgan beds, the beds with 1-2 (2,3) and numerous loops (4). 
 

Basing on the detailed data on geometry of the arterial 
vasculatures of the inner organs the dependences between 
the lengths jL , diameters jd , branching angles jϕ  of the 

vessels of the branching order j  (according the Strahler 
ordering) have been investigated. Perfect agreement of the 

dependences )( jj dϕ  and the relationships between the 

diameters 21
jd ,  and 0

jd  of the daughters and parent vessels 

in the bifurcations j   to the optimal principle based on the 
minimization of the total energy expenses in the arterial 

system (Murray’s law γγγ += )()()( 2
j

1
j

0
j ddd ) 

[5,6,17,18] has been found for the tree-like arterial 
structures. The dependence between the average diameters 

of the daughter vessels 2ddd 2
j

1
j

12
j /)( +>=< is 

presented in Fig.2. It is close to linear dependence 

( b0
j

12
j dad )(>=< , ].,.[ 87805620a ∈ , ].,.[ 08619820b ∈ , 

].,.[ 94508810R2 >∈< ) for all the examined systems. In 
that way the diameters of the daughter vessels are 
determined by the inflow conditions produced by the blood 
flow in the parent vessel.  

The dependence of the optimal parameter 
33

j
32

j
31

j ddd )/())()(( +=µ of the bifurcation on the 

branching asymmetry coefficient { } { }21
j

21
j dd ,, max/min=ν  

is presented in Fig.3. The solid line corresponds to the 
asymmetrical bifurcations with { } 0

j
21

j dd =,max  when the 

bigger daughter vessel can be regarded as a prolongation of 
the parent vessel.  

 
Fig.2. The average diameter of the daughter arteries >< 12

jd  (mm) as a 

function of the diameter 0
jd  (mm) of the parent vessel. 

 

 
Fig.3. Non-dimensional Murray’s parameter µ  versus the branching 

asymmetry coefficient ν . 
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Dependences )( 1dLΣ  between the length ΣL  of the 
longest arterial path in the vasculature from the feeding 
artery to the smallest arteries and the diameter 1d   of the 
feeding artery have also been calculated for all the 
intraorgan vasculatures. For the coronary arteries the 
dependence )( 1dLΣ  has been obtained in [19] and 
explained by the suggestion about the uniform shear stress 
in the blood vessels [20]. Based on the detailed data [9] the 
approximations )( 1dLΣ  have been found for the inner 
organs by the least-square method [21]. The obtained 
relations can be used for computer generation of the realistic 
arterial systems. The models possess the realistic structure 
of the corresponding arterial systems, the total hydraulic 
resistance ΣZ  and the input wave impedance )(ωwZ of the 

vasculatures where ω is the wave frequency. 
 

II. MODEL OF HUMAN CIRCULATION  

 The proposed model of the human arterial circulation 
includes the large extrtaorgan arteries with given lengths, 
diameters, wall thicknesses and Young’s modules [1,2] and 
intraorgan vasculatures that are considered as branching 
systems with anastomoses and without them depending on 
the morphometric data. The corresponding relationships 
between the diameters of the consequent arterial segments 
as well as between the total length of any vasculature and 
the dia meter of its feeding artery which are proper to 
diffe rent intraorgan arterial beds are embedded into the 
model. The smallest intraorgan arteries in the model (d ≤ 0.1 
mm) terminate in three-element Windkessels which 
properties reflect the microcirculation state in the organ. The 
beds are combined into the total circulatory system (Fig.4).  
 Each artery in the model is considered as a thick-walled 
viscoelastic tube with Poiseuille hydraulic resistance 

))(/()( 4
jjjj dLd128Z πµ= . The  hydraulic resistances 

of separate intraorgan beds and the total circulatory system 
have been calculated by taking into consideration the type of 
connection of the tubes , where µ is the blood viscosity 
which is a function of the diameter for the small vessels due 
to the Fahreus-Lindquist effect. For the tree-like systems the 
parallel and series connections of the segments give the 
simple iterative procedure for calculation Z. For the systems 
with loops the pressure P  and volumetric rate Q continuity 

conditions 2
j

1
j

0
j PPP == , 2

j
1
j

0
j QQQ +=  and Poiseuille 

law for each tube jj
0

1j
0
j ZQPP =− +  give the algebraic 

system of equations for pressures and flow rates in the tubes.  
 Possible normal and pathological variations in topology 
of the vasculatures  (absence of some loops or additional 
loops at different orders of branching) as well as 
physiological variations in the lengths ( ± 30%) and 

diameters ( ± 10%) of the tubes have been  considered. 
Different pathologies that are connected with 
narrowing/widening of separate tubes (stenosis/aneurisma), 
increasing the rigidity and thickness of the wall 
(atherosclerosis, hypertension or age-induced changes), 
increasing/decreasing the resistive and compliant properties 
of the terminal elements (different pathologies at a capillary 
level) can be modeled by corresponding variations of the 
geometrical and mechanical parameters of the tubes at a 
given topology of the system.  
 

 
Fig.4. Model of the systemic arterial tree terminated in branching systems 
with different topologies: tree-like vasculatures of the brain (1B), muscles 
(1M), liver (1L), spleen (1S), kidneys (1K), heart (1H), arterial beds of the 
limbs where 1-2 arcs are presented (2),  intraorgan systems with a few arcs 

(3) and numerous arcs (4). 
 
 Wave input impedance for the tree-like systems (the 
models number 1 in Fig.4) can be calculated in the same 
way with the  characteristic impedances of the separate 

tubes ))(/( 2
jjwj dc4Z πρ=  instead of the Poiseuille 

resistances, where jc  is the wa ve velocity, ρ  is density of 

the blood [22].  The characteristic admittance corresponds to 
the tube without wave reflections at the end of the tube (the 
open end). In the real vessels the observed wave shapes are 
always the composition of the forward and numerous 
backward waves. The input impedance taking into 
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consideration the wave reflections can be calculated basing 
on the Womersley model of the wave motion of the viscous 
fluid through the thick-walled viscoelastic tube [23] namely: 
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Womersley number, 10
i

0
i ZY −= )( , iΓ  is  the complex 

reflection coefficient fbi PP=Γ , where fbP ,  are 

amplitudes of the forward and backward going pressure 
waves.   

For the tree-like systems the method of calculation the 
total input impedance is described in [22]. For the arterial 
systems with anastomoses (models number 2-4 in Fig.4) the 
pressure and volumetric rate boundary conditions give the 
system of non-linear equations for the unknown pressure 

amplitudes 0
iP  and the reflection coefficients iΓ . The 

modified Newton’s numerical method for calculating the 

sets { }ji
0

iP Γ,  is presented in [12]. 

III. RESULTS  AND DISCUSSIONS  

 An important feature of the proposed model is 
connected with so-called resonant properties of the 
intraogran vasculatures of different inner organs [10–12,24]. 
That implies that the input admittance of the intraorgan 
vasculature possesses a set of resonant harmonics. Any 
variation in the parameters of reflection conditions at the 
terminal arteries and in blood rheology cause noticeable 
alterations of the amplitudes of resonant harmonics and 
negligible alterations of the amplitudes of other harmonics. 
The set of resonant harmonics is independent of some 
variations in the tree geometry and correlate with the length 
of the feeding artery of the arterial system [11–13]. The sets 
are different for the tree-like arterial systems and the 
vasculatures with anastomoses [12].  In Fig.5 a,b the 
dependences of the dimensionless input wave admittances of 
the systems with/ without anastomoses versus the number of 
harmonics are presented. In the normal state the wave 
transmitted into the arterial system of the organ has its 
maxima and minima at certain harmonics. In contrary, the 
wave reflected at the bifurcation of the feeding artery of the 
organ is characterized by the minimal amplitudes of the 
resonant harmonics of the inner organ. In that way the 
pressure wave propagated along the aorta and reflected at its 
bifurcations carries some information about circulation in 
the inner organs. On the other hand when the pressure 

bf PPP +=  and flow bf QQQ −=  waveforms are 

measured in any cross-section of the feeding artery of the 
intraorgan vasculature the propagated waves ff QP ,  carry 

information from the inlet of the arterial system whereas the 
reflected waves bb QP ,  carry information on the state of the 
intraorgan circulation that can be used for diagnostics. 
 

 
Fig.5. Dependences of the non-dimensional admittance Y* on the 

harmonics number n for a tree-like vasculature (a) and a system with 
anastomoses between the vessels of the second branching order (b). 

 
 The exact data on geometry of any intraorgan arterial 
system contains a few thousand values which are 
characterized by significant individual variations. When the 
intraorgan system is considered as a three element 
Windkessel the single wave reflection with a complex 
reflection coefficient 21 iΓ+Γ=Γ  is taken into account. 
Optimal tree-like systems can be generated by the diameter 
of the initial (feeding) artery 1d  and the coefficients in the 

dependence )( jjj dLL =  that is used in the model, the 

asymmetry coefficient ν and the Murray power γ  which 
are usually kept constant for the tree. The sets of the 
parameters { }γν,),(, jj1 dLd  are different for different 

inner organs. When the model of the systemic arteries 
contains 20-25 terminal elements [1,2,4] the wide variation 
range of the parameters of the terminal trees  allows 
obtaining the realistic wave patterns in different sections of 
the aorta [4]. The sets of the parameters of the intraorgan 
vasculatures are taken from the statistical analysis of the 
morphometric data and can not be varied in an arbitrary way 
to obtain the best fit to the experimental pressure and flow 
curves. The only unknown parameters are reflection 
conditions at the terminal elements which reflect the 
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microcirculation and can vary both in the normal state and 
in pathology.  
 Basing on the detailed model of the human circulation 
the calculations of the pressure and flow waveforms and 
pressure-flow relationships have been calculated and 
compared to the experimental data on the blood flow and 
wave propagation in different parts of the aorta, in the 
carotid, subclavian, brachial, radial and kidney arteries  [25–

27]. Individual variations in the lengths ( %30± ) and 
diameters ( %10± ) of all the arteries in the model have 
been set by the random function. Variations in the reflection 
coefficients at the terminal elements 2

j
1
jj iΓ+Γ=Γ , 

],[, 1121
j −∈Γ  correspond to all possible microcirculation 

state including open and closed end and negative reflections 
[28]. As a result a lot of different curves have been 
calculated and some of them are presented in Fig.6. Due to 
different reflection conditions in the peripheral vessels the 
radial and carotid waveforms undergo significant variations 
in the number and relative amplitudes of the peaks, position 
of the dicrotic wave(s) and the incisura and only one of them 
are presented in Fig.6 b,c. The variations of the terminal 
conditions in the model lead to some variations in the shape 
of the waves whereas the number of the dicrotic waves and 
position of the incisura on the descending part of the wave 
remain quite stable. That can be explained by the fixed 
topology of the arterial systems of the upper limbs (2 arcs) 
while significant variations on the wave patterns can be 
connected with variation in topology of the palmar arcs 
(unclosed arcs and others [14,15])  and different elastic 
properties of the arterial walls. Variation of the mechanical 
parameters of the wall within the physiological limits 
produce a great variety of the wave shapes which 
correspond to age-induced and pathological conditions. In 
that way different pathological variations of the pressure-
flow relationships can be in-depth investigated on the basis 
of the developed model. On the other hand the model 
provide the input conditions for the intraorgan systems  and 
the intraorgan blood circulation can be investigated using 
the realistic input pressure conditions in the inlet of the 
feeding artery of the inner organ. Our preliminary 
investigations  confirmed existence of the resonant properties 
of the intraorgan arterial beds  as it was shown in the models 
with a simple sinusoidal input [12,13 ] and in experimental 
measurements in the systems of latex tubes and in the acute 
experiments with rats [10,11,24]. 

IV. CONCLUSIONS  

 The model gives realistic values for the total hydraulic 
resistance of the circulatory system and separate inner 
organs that can be compared to physiological data. 
Parameters of the pulse wave in the aorta and radial arteries 
correspond to the experimental measurements. In contrast to 
the tree-like systems the vasculatures with numerous loops 
exhibit insignificant changes in the total input impedance Z  

 
a 

 
b 

 
c 

Fig.6. Dependences of the pressure P (mm Hg) on time t(ms) in the thoracic 
aorta (a), carotid artery (b) and radial artery(c) at some variations of the 

reflection conditions at the terminal elements (thin, dashed and dotted lines) 
in comparison with the experimental curves (solid line).  
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some large arteries are narrowed due to stenosis or other of 
the vasculature and blood flow in the smallest tubes when 
pathology. The computer modeling has revealed existence 
of the resonant harmonics in vasculatures with different 
topology. Amplitudes of the resonant harmonics 
significantly vary when the reflection conditions at the 
terminal elements are changed due to the pathology at a 
microcirculatory level whereas the variations of the 
amplitudes of the other harmonics are insignificant. The 
tree-like vasculatures and the systems with loops possess 
different unique sets of the resonant harmonics (Fig.5) that 
makes possible the diagnostics of different circulatory 
pathologies. The results and the proposed detailed model 
can be used for improvement the methods of pulse wave 
analysis in medical diagnostics. Additional information 
about the state of the intraorgan circulation can be obtained 
by estimation of parameters of the pressure-flow loops and 
wave intensity analysis of the pressure and flow curves in 
the feeding arteries of the inner organs and superficial 
arteries of the upper and low extremities which are 
accessible for the noninvasive measurements. 
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