The isomorphism problem for finitary incidence rings

N. Khripchenko

The notion of a finitary incidence algebra was first introduced in [1] as a generalization of the notion of an incidence algebra for the case of an arbitrary poset. It was shown that the isomorphism problem for such algebras was solved positively ([1], Theorem 5). In the present talk we consider this problem in more general case.

Let \mathcal{C} be a preadditive small category. Assume that the binary relation \leq on the set of its objects, such that $x \leq y \iff Mor(x,y) \neq 0$, is a partial order. Consider the set of formal sums of the form

$$\alpha = \sum_{x \le y} \alpha_{xy}[x, y], \tag{1}$$

where $\alpha_{xy} \in Mor(x, y)$, [x, y] is a segment of the partial order. A formal sum (1) is called a finitary series, if for any $x, y \in Ob\mathcal{C}$, x < y there exists only a finite number of $[u, v] \subset [x, y]$, such that u < v and $\alpha_{uv} \neq 0$. The set of the finitary series is denoted by $FI(\mathcal{C})$.

The addition of the finitary series is inherited from the addition of the morphisms. The multiplication is defined by means of the convolution:

$$\alpha\beta = \sum_{x \le y} \left(\sum_{x \le z \le y} \alpha_{xz} \alpha_{zy} \right) [x, y],$$

where $\alpha_{xz}\alpha_{zy} = \alpha_{zy} \circ \alpha_{xz} \in Mor(x,y)$. Under these operations $FI(\mathcal{C})$ form an associative ring with identity, which is called a finitary incidence ring of a category.

It is easy to see, that the description of the idempotents of $FI(\mathcal{C})$ can be obtained as in [1]. This allows us to solve the isomorphism problem for finitary incidence rings of preorders.

Let R be an associative ring with identity, $P(\preccurlyeq)$ an arbitrary preordered set. Denote by \sim the equivalence relation on P, such that $x \sim y$ iff $x \preccurlyeq y$ and $y \preccurlyeq x$. Define M([x], [y]) to be an abelian group of row and column finite matrices over R, indexed by the elements of the equivalence classes [x] and [y]. Consider the following preadditive category C:

- 1. $ObC = P/_{\sim}$ with the induced order \leq ;
- 2. For any pair $[x], [y] \in Ob\mathcal{C}$ define Mor([x], [y]) = M([x], [y]), if $[x] \leq [y]$, and 0 otherwise (the composition of the morphisms is the matrix multiplication).

Denote the finitary incidence ring of this category by FI(P,R). Obviously, FI(P,R) is an algebra over R, which is called a finitary incidence algebra of P over R.

Theorem 1. Let P and Q be preordered sets, R and S indecomposable commutative rings with identity, C and D preadditive categories corresponding to the pairs (P,R) and (Q,S), respectively. If $FI(P,R) \cong FI(Q,S)$ as rings, then $C \cong D$.

Corollary 1. Let P and Q be class finite preordered sets, R and S indecomposable commutative rings with identity. If $FI(P,R) \cong FI(Q,S)$ as rings, then $P \cong Q$ and $R \cong S$.

As a corollary we obtain the positive solution of the isomorphism problem for weak incidence algebras given in [2].

References

- [1] N. S. Khripchenko and B. V. Novikov, Finitary incidence algebras, Communications in Algebra, 37(2009), no. 5, 1670–1676.
- [2] S. Singh and F. Al-Thukair, Weak incidence algebra and maximal ring of quotients, Int.J.Math. Math. Sci. 2004 (2004), no. 53, 2835–2845.

Department of Mechanics and Mathematics, Kharkov V. N. Karazin National University, 4 Svobody sq, 61077, Kharkov, Ukraine NSKhripchenko@mail.ru