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SUPERCOOLING DURING CRYSTALLIZATION OF FUSIBLE METAL 
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The results of studies of phase melting-crystallization transitions in thin films of fusible metals between thicker 

layers of amorphous carbon are given. It has been found that, due to poor wetting in contact systems under study, 

thin layers of fusible metals decompose into separate islands while first heated. Such films are a model of the system 

“fusible particles in the refractory matrix”. Using two independent in situ techniques (electrical resistance measuring 

and electron-diffraction studies during heating and cooling) values of supercooling during crystallization of liquid 

phase nanoparticles in multilayer C-Bi-C, C-Pb-C, C-Sn-C films, equal to 115, 135, and 160 K, respectively have 

been obtained. 
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INTRODUCTION 

Numerous researches in recent time have led to 

more practical use of materials based on various forms 

of carbon [1, 2], among which an important place is 

occupied by the composite structure, in which it is pos-

sible to achieve the combination of properties of various 

materials, including high resistance to radiation damage. 

Nanocomposite materials, the inclusions of which most-

ly not only change the properties of the bulky matrix 

significantly, but they themselves can be active ele-

ments of individual electronic devices such as switches, 

memory elements, strain sensors [3], etc. are of particu-

lar interest to researchers. 

The properties of such materials are related to the 

phase state of inclusions and conditions of phase transi-

tions, as many of the mechanical properties of crystal-

line materials strongly depend on the kinetics of crystal-

lization, which is primarily determined by the reached 

magnitude of supercooling [4, 5]. 

In paper [6] it is shown that during heating and cool-

ing of glass, alloyed by bismuth nanoparticles, and of 

multilayer films, in which thin layers of bismuth were 

alternated with the layers of Al2O3, at certain tempera-

tures, a sharp change in the transmittance of the samples 

occurs. This phenomenon, according to the authors, is 

associated with melting and crystallization of bismuth 

embedded nanoparticles. Melting-crystallization hyste-

resis observed in [6], was about 200 K. 

The prediction of vacuum condensates morphology 

is also often not possible without knowledge of the lim-

its of the stability of the liquid phase. For example, in 

[7] it has been found that during various supercooling, 

the condensed films of bismuth consist of islands of 

different shapes. 

Thus, studying the liquid phase stability limits is 

necessary for many practical applications. At the same 

time, the study of supercooling is difficult enough as the 

value of supercooling is influenced by a number of fac-

tors among which the key factors are mostly various 

kinds of impurities [8-10], which are potential centers of 

crystallization. To get rid of them there are various puri-

fication methods and multiple remelting of the sub-

stances under study that may be combined with the con-

tainerless methods under microgravity or electrostatic 

levitation [11]. 

The micro volumes method, consisting in splitting of 

the sample into a plurality of individual particles, which 

makes it possible to reduce the influence of impurities 

significantly, is rather easy to implement and at the 

same time it is important for the applied use prospects. 

To implement this method practically one can use vacu-

um condensates, which allow obtaining the required 

purity and dispersion of samples. In particular, the 

method of condensation mechanism change [10, 12] 

helped to obtain extremely large supercooling at which 

the crystallization of the cooled melt is almost homoge-

neous [10]. Nanocalorimetric [8, 13], optic [6, 14], and 

electron-diffraction techniques [7] can also be used to 

study supercooling and liquid phase behavior in multi-

component systems. 

The results obtained by using the method of conden-

sation mechanism change (e. g. [10, 12, 15, 16]) in the 

study of liquid phase stability limits for free particles, 

allowed to reveal that, in cases when the particles are 

obtained in sufficiently pure vacuum conditions, the key 

factor determining the value of supercooling is the na-

ture of interaction of the melt with the substrate materi-

al, at which the condensation of substance is made. 

At the same time, there are not mostly so much con-

sistent and reliable data in the literature on the limits of 

stability for the liquid state of the particles embedded in 

a more refractory matrix now. Thus, a number of papers 

(e.g. [17, 18]) suggest that the size dependence of su-

percooling during the crystallization of the liquid phase 

in the matrix of the particle does not occur. On the other 

hand, the authors of [6] have established that reducing 

the amount of bismuth nanoinclusions in the matrix of 

Al2O3 from 30 to 10 nm, the crystallization temperature 

is reduced by about 30 K. However, the observed in-

crease of nearly 100 K of bismuth nanoparticles melting 

temperature in a refractory matrix complicates the inter-

pretation of the results. 

A significant supercooling value change during the 

crystallization of the liquid phase of a fusible compo-

nent of multilayer films was observed in [19]. It has 

been found that if bismuth in the copper matrix is in the 

form of individual particles approximately 100 nm in 

size, its supercooling increases by more than 50 K, 

compared with the case when it forms a single system of 

inclusions in the copper matrix, the typical dimension of 

which is comparable with the size of the entire sample. 
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This phenomenon is due to the fact that in large sam-

ples, under random factors the probability of the crystal 

phase nucleus formation well before reaching the max-

imum supercooling temperature possible in the given 

contact pair is higher [19]. 

A similar phenomenon was also observed in [13], in 

which it has been found that the reproducibility of value 

of supercooling increases sharply during the transition 

from micro- to nanometer particles, what can be obvi-

ously explained by a decrease in the probability of the 

heterogeneous nucleation in the particles of nanometer 

size. 

Different interpretations available in literature are 

probably related not only to the fact that the value of 

supercooling is affected by impurities and other random 

factors, but also it is limited by the applicability of the 

known methods of studying for the phase transitions to 

the systems of “nanoparticles in the matrix”. Thus, the 

combination of vacuum methods for producing with 

new in situ methods of determining the phase transition 

temperatures, which allow fixing melting and crystalli-

zation of a fusible component directly in the vacuum 

chamber is of particular interest. 

Such methods are suggested in [1921]. In these 

methods, it is suggested that multilayer vacuum conden-

sates are used as a model of “a particle in the refractory 

matrix” system, and phase transformation temperatures 

determination is based on the fact that melting and crys-

tallization of a fusible component in such systems must 

be accompanied by a sharp change in their electrical 

[19, 20] and mechanical [21] properties. As the results 

in [19, 20] have shown, the use of vacuum condensates, 

the morphology of which is determined by the condi-

tions of the condensation, allows not only receiving the 

data about supercooling of substances while minimizing 

the impact of uncontrolled impurities, but in some cases, 

within certain limits, controlling the temperature of the 

liquid phase crystallization. 

Furthermore, it is worth noting that such objects 

(heating and cooling of which are accompanied by a 

significant and abrupt change in their electrical, [19], 

mechanical [21] or optical [6] properties) can be used in 

modern technology. Thus they can be used as various 

kinds of temperature sensors and switches, RAM (ran-

dom-access memory) and permanent memory. 

EXPERIMENTAL 

As the subject of our research we have chosen multi-

layer films in which originally continuous layers of fu-

sible metal (Bi, Sn, Pb) were between thick amorphous 

carbon films. The mass thickness of metal layers was 

chosen to achieve the desired value of the electrical re-

sistance of the sample and in different experiments it 

was 20-100 nm. These systems are characterized by the 

absence of chemical compounds and mutual dissolution, 

as well as the almost complete non-wetting of carbon by 

melts of the chosen metals [10, 22]. 

Carbon deposition was carried out by its evaporation 

from the voltaic arc, which allows to obtain the amor-

phous carbon film [23]. Condensation of metal films 

was carried out on the freshly-condensed carbon under-

layer in vacuum 10
-6

 mm Hg by their evaporation from 

molybdenum (Bi, Pb) and tantalum (Sn) boats. The 

thickness of the deposited component was determined in 

the course of their preparation by means of the quartz 

resonator. 

For the registration of phase transitions two inde-

pendent in situ methods were applied. The jumps in 

electrical resistance of samples accompanying melting 

and crystallization of the fusible component were used 

in the first one [19, 20]. Melting and crystallization 

temperature were determined by electron diffraction 

while disappearing when heated (melting) and appear-

ing while cooled (crystallization) of reflections from the 

fusible component crystal lattice in the second one. 

For the implementation of the first technique the 

films were condensed on a glass substrate with copper 

electrical contacts connected to the automatic measure-

ment system. This enables us to measure electrical re-

sistance as in case of the samples condensation and dur-

ing the process of cooling and heating them in a vacuum 

chamber directly without its depressurization. The sub-

strate was suspended on thin contact wires, and the radi-

ation of tungsten coil was used for heating it at a dis-

tance of 1…2 cm from the back side of the substrate. 

The substrate temperature was measured by means of a 

K-type thermocouple. 

For electron microscopy and electron diffraction 

studies we used a transmission electron microscope 

Selmi EMV 100BR, equipped with an attachment de-

veloped in the laboratory for in situ diffraction studies 

of samples during heating and cooling directly in the 

electron microscope column. 

RESULTS AND DISCUSSION 

It has been established that the resistance of carbon 

films that do not contain a fusible component has a sem-

iconductor character and decreases monotonically with 

temperature increasing. The energy of activation of car-

bon film conductivity is about 0.28 eV, which is typical 

for the majority of semiconductors [24]. Thus, in con-

trast to Cu-Bi-Cu and Cu-Pb-Cu films [19], the re-

sistance behaves reversibly in the first heating cycle and 

after the sample being cooled it is back to the value 

which is close to the original one. Possibly, this may be 

due to the fact that carbon is an extremely refractory 

material and its heating up to 300…400 ºC does not 

result in appreciable activation of self-diffusion pro-

cesses usually actively flowing in thin films [25, 26] and 

causing annealing of defects and irreversible reduction 

of resistance of the sample in the case of metal films 

[19]. 

There is only a diffuse halo in the electron-

diffraction patterns corresponding carbon films, and 

annealing of the samples to 400 °C directly into an elec-

tron microscope column does not result in any change in 

the diffraction pattern. 

When studying the films containing layers of fusible 

metal, it has been found that in the first heating cycle, at 

the temperature near its melting point, the resistance of 

samples increases sharply. The results of electron mi-

croscopy studies (Fig. 1) showed that it is due to the 

irreversible breakdown decomposition of the initially 

continuous film into an island one. 



 

 

Fig. 1. TEM image of the C-Pb-C film, after its heating 

to melting point of lead 

In the following heating cycles resistance decreases 

monotonically up to the melting temperature of the fusi-

ble component (Ts), near which there is a particular fea-

ture of a more rapid decrease in electrical resistance 

(Fig. 2). According to [19, 20] it indicates melting of a 

fusible component. While cooling, the electrical re-

sistance of the sample increases monotonically up to a 

certain temperature, at which a more rapid increase in 

electrical resistance starts. It is has a significant temper-

ature range and it stops at a certain characteristic for 

each metal temperature Tg. According to [19, 20], the 

presence of such features on the cooling curves can be 

caused by crystallization of the supercooled melt. Thus, 

even if the fusible component is bismuth, which typical-

ly provides the most relative change of resistance in the 

phase transition [19], the value of a sudden change of 

electrical resistance turns out to be small. In order to 

make these sudden changes more visible instead of 

three-layer films we formed the multilayer structures in 

which up to five-layers of the fusible component were 

alternated with layers of the refractory carbon matrix. 

The average activation energy of conductivity in the 

obtained samples is lower than in the carbon films and it 

is 0.12…0.2 eV, which allows us to consider the studied 

films as promising subjects for manufacturing of visible 

and infrared radiation sensors, solar cells, etc. 

More clearly the emergence of a new phase can be 

detected by a change in the angle of the tangent to the 

cooling curve. To do this, using numerical differentia-

tion method of Savitzky-Golay the temperature depend-

ences of the thermal resistance coefficient were ob-

tained (Fig. 3), clearly showing the position and charac-

ter of the phase transitions. It can be seen that the melt-

ing process in the investigated films is stretched in a 

significant temperature range, which is significantly 

higher than the one observed in [27] for polycrystalline 

films of fusible metals on a carbon substrate. Apparent-

ly this is due to a significant spread according to size of 

the particles that constitute the studied films, as well as 

it is possible due to the fact that the process of the re-

sistance decrease may be caused not only by the appear-

ance of the liquid phase, but also by an avalanche in-

crease in the activity of diffusion processes in the pre-

melting area. 

 

Fig. 2. Electrical resistance of multilayer C-B-C (a),  

C-Pb-C (b) and C-Sn-C (c) films versus  

the temperature 

In situ electron diffraction studies (Fig. 4) have 

shown that in the electron diffraction patterns corre-

sponding to the heating of the sample, the diffraction of 

a fusible metal occurs before its melting temperature Ts. 

Diffraction reflections from metallic layers are no long-

er available in electron diffraction patterns obtained at 

above Ts. During cooling, the reflexes don’t also occur 

up to a certain temperature corresponding to the begin-

ning of a faster growth of electrical resistance on the 

cooling samples graphs (see Fig. 2). 



 

Fig. 3. Diagrams of the numerical differentiation of 

temperature dependence of electrical resistance of  

C-Bi-C, C-Sn-C and C-Pb-C films  

From this temperature on the electron diffraction 

patterns the diffraction reflection is observed from the 

crystal lattice of fusible metals. Their brightness gradu-

ally increases; reaching the initial value after the sample 

is cooled to the temperature Tg. This indicates that in the 

temperature range T = Ts – Tg fusible metals particles 

in the sample are in a supercooled liquid state. 

 

Fig. 4. Electron diffraction patterns of  C-Bi-C (a) and 

C-Sn-C (b) films, corresponding to different tempera-

tures (shown in pictures) 

Supercooling values determined by both methods 

agree with each other and are 115, 135, and 160 K for 

C-Bi-C, C-Pb-C, C-Sn-C films, respectively. 

It should be noted that according to [19], thanks to 

the good wetting, which prevents the formation of is-

land film [28], bismuth in Cu-Bi-Cu films when con-

densed on the substrate at room temperature, i.e. va-

pour-crystal mechanism forms a single system of inclu-

sions in the matrix. Such a system crystallizes almost 

immediately on the entire sample. In the carbon-based 

films under study an array of isolated fusible metal par-

ticles is formed due to the almost complete non-wetting 

soon after the first heating cycle, even if condensed in 

vapour -crystal mechanism (see Fig. 1). 

Such particles are crystallized independently at ran-

dom factors temperature, and the crystallization of the 

entire sample is stretched to a considerable range of 

temperatures. Furthermore, unlike the particles of fusi-

ble metals between the layers of copper, for which the 

resistance change direction in the phase transition coin-

cides with the direction of the resistivity change of a 

fusible component when melting and crystallizing [19], 

in the case of a carbon matrix such a dependence is not 

observed, and the resistance decreases during melting 

and increases during crystallization for all investigated 

contact pairs. 

Accordingly, the model of three parallel conductors, 

proposed in [19] to explain the causes of sudden chang-

es of electrical resistance during phase transitions, and 

qualitatively describing the change in the electrical re-

sistance in Cu-Bi-Cu and Cu-Pb-Cu films during melt-

ing and crystallization of a fusible component is com-

pletely inapplicable to metal particles between carbon 

layers. 

The observed changes of electrical resistance can be 

explained as follows. The resistivity of the carbon film 

is much higher than that of metal. Unrelated metal parti-

cles bypass the individual sections of the carbon film to 

which they relate, reducing its total resistance. In this 

configuration of the sample, interface resistance be-

tween the liquid metal and the carbon film, which is free 

from stresses from the liquid metal side and to some 

extent can be considered ideal, becomes significant. At 

the same time, during crystallization due to various 

causes, such as a sudden volume change, mismatch of 

lattices, the difference in thermal expansion coefficients 

et al., the occurrence of stresses increasing its resistance 

is inevitable on the interface. 

In such a model it is simple to explain the fact that 

for bismuth the quantity of resistivity changes in phase 

transitions is significantly higher than for those of tin 

and lead. As it is seen in Fig. 2 at the phase transition 

for C-Bi-C films relative increase in resistance is about 

0.3, while for C-Pb-C and C-Sn-C samples the same 

magnitude is one order smaller and approximately equal 

to 0.04. One has to take into account the change in the 

electrical resistance of the metal itself at its melting 

(crystallization). Bismuth resistance decreases during 

melting and this effect is added to decreasing the re-

sistance of the interface. At the same time, tin and lead 

resistance increases during melting, this partially com-

pensates improving of interface conductivity. Therefore, 



 

resistance changes of films with Sn and Pb particles 

during phase transitions turn out to be much less. 

The contribution of each of these mechanisms can 

be estimated by comparing the relative change in re-

sistance in the films in which an embedded metal has a 

positive and a negative change of resistance during 

melting (0.04 and 0.3). The evaluation on the basis of 

these values suggests that the contribution of the inter-

face resistance change is about 60%, and change of re-

sistance of the particle itself constitutes 40%. 

As it can be seen, these processes are almost equal, 

what probably makes it possible to change the morpho-

logical structure of the embedded particles (for example, 

by adding small amounts of a third component, which 

will affect the wetting) to vary the magnitude of the 

effect, and even change its sign. 

CONCLUSIONS 

Using two independent in situ techniques, values of 

Bi, Sn, and Pb particles supercooling between the solid 

carbon films have been determined. 

It has been found that in the multilayer carbon-based 

films all the investigated metals after melting form the 

structure consisting of isolated individual particles re-

gardless of the conditions of condensation. 

It has been shown that for nanoparticles of fusible 

metals located between the layers of amorphous carbon 

changes in films resistance at phase transitions take 

place both due to the change in resistivity of a fusible 

component, and due to the change in the quality of the 

contact at the metal-carbon interface. 
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ПЕРЕОХЛАЖДЕНИЕ ПРИ КРИСТАЛЛИЗАЦИИ ЧАСТИЦ ЛЕГКОПЛАВКИХ 

МЕТАЛЛОВ В МНОГОСЛОЙНЫХ ПЛЕНКАХ «УГЛЕРОД-МЕТАЛЛ-УГЛЕРОД» 

С.И. Петрушенко, С.В. Дукаров, В.Н. Сухов  

Приводятся результаты исследований фазовых переходов плавлениекристаллизация в тонких пленках 

легкоплавких металлов, находящихся между более толстыми слоями аморфного углерода. Установлено, что 

вследствие плохого смачивания в исследуемых контактных системах уже при первом нагреве тонкие слои 

легкоплавких металлов распадаются на отдельные островки. Такие пленки представляют собой модель си-

стемы «легкоплавкие частицы в тугоплавкой матрице». С помощью двух независимых in situ методик (из-

мерения электросопротивления и электронографических исследований в процессе нагрева и охлаждения) 

получены величины переохлаждения при кристаллизации наночастиц жидкой фазы в многослойных плен-

ках (C-Bi-C, C-Pb-C, C-Sn-C), равные 115, 135 и 160 K соответственно. 

 

 

ПЕРЕОХОЛОДЖЕННЯ ПРИ КРИСТАЛІЗАЦІЇ ЧАСТОК ЛЕГКОПЛАВКИХ МЕТАЛІВ  

У БАГАТОШАРОВИХ ПЛІВКАХ «ВУГЛЕЦЬ-МЕТАЛ-ВУГЛЕЦЬ» 

С.І. Петрушенко, С.В. Дукаров, В.Н. Сухов 

    Наводяться результати досліджень фазових переходів плавлення–кристалізація в тонких плівках легко-

плавких металів, що знаходяться між  товстішими шарами аморфного вуглецю. Встановлено, що внаслідок 

поганого змочування в досліджуваних контактних системах вже при першому нагріві тонкі шари легкоплав-

ких металів розпадаються на окремі острівці. Такі плівки є моделлю системи «легкоплавкі частки в туго-

плавкій матриці». За допомогою двох незалежних in situ методик (виміри електроопору і електроно-

графічних досліджень у процесі нагріву і охолодження) отримано величини переохолодження при кри-

сталізації наночасток рідкої фази в багатошарових плівках (C-Bi-C, C-Pb-C, C-Sn-C), рівних 115, 135 і 160 K 

відповідно. 

 


