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1. INTRODUCTION 

 

       Rheology (from Greek rheos – flow, logos – law) is a field of natural sciences 

in which flows of gaseous, liquid, and solid deformable media are studied, as well 

as their rheological properties – elasticity, viscosity, rigidity, strength, including 

a change in these properties under various physical influences (thermal, electro–

magnetic, radiation, etc.) [1]. 

       Rheology is based on the use of experimental and theoretical mechanics and 

physics. The objects of rheological researches are gases, liquids, solid deformable 

materials, their mixtures, multicomponent and multiphase media – suspensions, 

emulsions, aerosols, carbonated liquids, foams, granular media, powders, films, 

materials with memory and nonlocal properties, including micro– and nano–

sructured materials, polymer solutions and melts, and many others. 

       For experimental measurements of elastic and plastic properties, tensile testing 

machines, extensometers, universal testing machines are used to test the tensile 

strength and compressive strength of materials. Rheometers (or viscometers) are 

used for the viscosity measurements. Due to the strong temperature dependence of 

the viscous and elastic properties of the materials, all measurements are carried out 

with strict control of the temperature and possible drying due to interaction with air. 

       Rheology studies the processes associated with the flow of viscous fluids; 

reversible and irreversible deformations of bodies under external loads; relaxation 

of stresses and strains after unloading; slow deformations of solids under a fixed 

load (creep); plastic flows of materials; returning to the initial state of materials 

with "memory" and similar processes. 

       Theoretical rheology are built on the basis of experimental data and the 

corresponding mathematical models that describe the relationships between 

stresses  and strains  , as well as their time derivatives , , , ,...    . Such 

dependencies are called rheological relations, rheological laws, or constitutive 

equations for a given material (medium). Both discrete models of mechanics and 

continuum models of mechanics of continuous media are used. 

      For correct determination of valid rheological relations for complex media, one 

can use the micro–rheological (rheophysical) approach, in accordance with which the 

features of the interaction of individual molecules, molecular and supramolecular 

structures, fibers, grains and other components of the medium are considered, and the 

properties of the material at the meso– and macrolevels are determined by averaging 

over the individual components and phases of the material. 

      The macro–rheological or phenomenological approach to modeling of the 

rheological behavior of a material is based on the analysis of experimental static 

and dynamical dependencies ( ), ( ),f (... , , ,...)       , relaxation (t) , (t)  

curves, and other dependencies. 

      Rheological methods are widely used: 

1) in geophysics – the study of the rheological properties of oil, gas, groundwater, 

river and waste waters, sediments, wetland liquids, volcanic masses, magma, etc.; 
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in the modeling of fluid flows in open channels and pipes, sediment transport, 

computer simulations of flows of liquids and gases in the development of deposits 

and other practical tasks; 

2) in the building materials industry – the study of the rheological properties of 

concrete, paints, varnishes and other building and decorating materials; the use of 

knowledge of rheological properties for processing of natural wood and stone 

materials, metals and glass; the creation of polymer details; heat and waterproofing 

materials; high–quality artificial materials based on hydration inorganic and 

coagulation organic binders; 

3) in the food industry – the rheology of various masses and mixtures – milk, 

chocolate, sausage, etc., which undergo various stages of heat and chemical 

processing during the manufacturing process, phase transitions, mix and move 

from containers through pipes, pass through stages of stamping, spraying, 

dissolving, drying, etc. Strict viscosity control at each technological stage is 

necessary to obtain a quality product; 

4) in light industry – the study of the rheological properties of technological 

materials – solutions of polymers, fibers, threads, reinforcing components for the 

control and optimization of technological processes both in the primary processing 

of raw materials and in the manufacture of products in textile, chemical; the use of 

materials in furniture, pulp and paper, automotive, aviation, electrical and other 

industries; 

5) in biology – the rheological properties of cells and cellular suspensions, 

populations of microorganisms in water bodies, biological gels and sols; solving 

the problems of moving and transportation of cells and cellular suspensions; 

optimizing the work of microbiological reactors, monitoring and optimizing 

various biotechnological processes and plants (biofuels, etc.); 

6) in medicine – the study of the rheological properties of biological fluids (blood 

suspension and blood plasma, cerebrospinal and lacrimal fluid, synovia (lubricating 

fluid in the joints), bronchial mucus, pulmonary surfactant, bile, milk, etc.), soft 

(skin, muscles, ligaments, cartilage, brain, walls of vessels, airways, respiratory tract 

and hollow inner organs, etc.) and solid (bone, tooth, wood) biological tissues, their 

synthetic analogues and substitutes, implants, prostheses, etc. in connection with the 

use of their rheological parameters in medical diagnostics, to simulate blood flow in 

the blood vessels or tubes of medical devices, air flows in the respiratory system, 

deformation of internal organs and tissues in the natural–governmental loading 

conditions, as well as bumps, hypo– or hypergravitation, thermal and 

electromagnetic effects, etc.; 

7) in smelting, rolling and stamping of metals, sintering of powders (powder 

metallurgy), processing, enrichment and transportation of ore, manufacture of glass 

and paper, processing of polymeric materials, transportation and processing of 

grain as a granular medium, knowledge of their rheological properties is necessary 

for organization and optimization of relevant technological processes. 
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2. HISTORY OF RHEOLOGY 

 

      The term “rheology” was coined in the 1920–s by Eugene Bingham (1878–

1945) and Marcus Reiner (1886–1976), who made a significant contribution to 

theoretical and experimental rheology [2,3] and founded the first rheological 

scientific society (The (American) Society of Rheology, founded on December 9, 

1929). At the congress dedicated to the organization of the Society, a formal 

definition of rheology was given as a science that studies the deformations and 

flows of materials. In 1916, Bingham's work1 devoted to the study of plastic flows 

of non–Newtonian fluids was published, and in 1922, his fundamental work2 on 

viscous and plastic flows was issued; the liquids he described in these studies are 

now called Bingham fluids. He introduced one of the first similarity criteria in 

rheology – the Deborah number3 relDe t / T , where relt  is the relaxation time of 

material deformations and T is the observation time. 

      The study of the deformation properties of materials has a long history, and 

individual elements of rheology have been known since ancient times. It is no 

coincidence that the famous phrase of Heraclitus “panta rhei” (i.e. “everything 

flows”) was chosen as the motto of the Society of Rheology. The properties of 

various natural materials and liquids used in industry, construction, military, 

shipbuilding, etc., had to be determined, and they were given neither strict 

formulations no quantitative characteristics. The elastic properties of solids were first 

discussed after the discovery of the law of elasticity. In 1660, Robert Hook 

formulated this law in the form of an anagram CEIIINOSSSTTUV – the letters of the 

Latin phrase “ut tensio, sic vis” (the strength is like the elongation) in alphabetical 

order. In 1678 Hook published a decoding in the form of a linear relationship 

between the applied force and sample elongation. The proportionality coefficient in 

this dependence was later called the Young's modulus in honor of the famous British 

scientist Thomas Young, who formulated the law in a modern stress–strain form and 

first described elasticity as a property of the material. In modern notation, Hooke's 

law is written as E  , where   is tensile stress,   is deformation, E  is Young's 

modulus. The term “modulus” came from the Latin word “modus”, which translates 

as “measure”. This coefficient was first described back in 1727 in the works by 

L. Euler, and the first experiments in which the modulus of elasticity was measured 

were carried out by the Italian scientist G. Riccati in 1782, who was 25 years ahead 

of similar works by T. Jung. Then the theory of elasticity was developed in the works 

of French mathematicians and mechanics Simeon Denis Poisson (1781–1840) 

and Augustin Louis Cauchy (1789–1857). The first is the relative coefficient of 

transverse compression of the material under tension (Poisson's ratio), and the second 

is the stress tensor. In 1875, the fundamental work of the British mechanic William 

                                                 
1 Bingham E. C. An Investigation of the Laws of Plastic Flow. US Bureau of Standards Bulletin. 1916. 

Vol. 13. P. 309–353. 
2 Bingham E. C. Fluidity and Plasticity. New York: McGraw–Hill, 1922. 219p. 
3 Reiner M. The Deborah number. Physics Today. 1964. Vol. 17. P. 62–65.  
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Thomson (Lord Kelvin) on the elasticity of materials was published. The creator 

of electromagnetic theory, the prominent Scottish scientist James Clerk Maxwell 

(1831–1879) published an article “On the equilibrium of elastic bodies” in 1849, and 

in 1868 he published theoretical works on viscoelastic materials with relaxation 

(Maxwell model4 of a viscoelastic fluid), in which he introduced the concept 

of stress relaxation. 

      The general rheological law for liquids was first formulated in 1687 by Isaac 

Newton5 (1642–1727) on the basis of his experiments on measuring the resistance of 

a plate moving along the surface of a layer of viscous liquid. Newton‟s viscous 

friction law   is similar to Hooke‟s law, but claims a linear relationship 

between forces (shear stresses  ) and shear strain rates  . Newton called the ratio 

  of the friction force per unit area of the plate to the shear rate the lack of 

slipperiness. Subsequently, this coefficient was called the dynamic viscosity 

coefficient (from the Latin word “viscum”, which means “bird glue” – a very viscous 

substance that was obtained from mistletoe fruits and has long been used for catching 

birds by gluing their feet. This interesting liquid does not form drops, it forms a film 

of the uniform thickness when applied at some surface, does not drip from an 

inclined surface, does not freeze in the cold, does not dry out in the wind and does 

not thin out in the sun. The inverse of viscosity ( 1 ) is called fluidity.  

      Newton's law was confirmed in the experiments by Hagen and Poiseuille with 

pipe flows of liquids. The French doctor Jean Léonard Marie Poiseuille (1797–1869) 

was interested in blood circulation regularities, in connection with which he 

conducted experiments on the flows of blood, water and other fluids through thin 

glass tubes and segments of blood vessels. In the result he obtained a relationship 

between the volumetric flow rate Q , pressure drop P  at the ends of the tube, its 

length L  and diameter d  in the form 4Q ~ Pd / L . Poiseuille established this law 

in 1838, but he published the article in 1846, after verification of this law in hundreds 

of experiments with various liquids. Similar experiments on the flow of water 

through metal tubes were carried out by the German engineer Gotthilf Heinrich 

Ludwig Hagen (1797–1884), but with a slight error in writing the law. Hagen 

believed that the velocity profile has a triangular shape. The fluid flow law 
4Q P d / (128 L)    is called the Hagen–Poiseuille law, the regime of laminar 

fluid flow through cylindrical tubes under the action of a longitudinal pressure 

drop is called the Poiseuille flow, and the unit of viscosity is called Poise or  

P ( [ ] = g/(cm ∙ s) = 1 P). 

      Later, the French mechanic Maurice Couette, a student of J. Boussinesq, 

conducted a study of fluid viscosity in a device he had created, based on a laminar 

circular flow of fluid enclosed between two rotating pine cylinders. The device 

                                                 
4 Maxwell J. C. Phil. Trans. Roy. Soc. 1867. Vol. 157. P. 49–88. 
5 Newton I. Philosophiæ Naturalis Principia Mathematica (Mathematical Principles of Natural 

Philosophy). London, 1687. 
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showed high accuracy and the absence of side effects, such as the effect of the 

Fareus–Lindquist in the tubes, on the measurement results. The regime of the laminar 

fluid flow between moving parallel surfaces, plane of curved, is called the Couette 

flow. In addition, as a result of a series of detailed experiments, M. Couette 

confirmed that for viscous fluids the adhesion condition is satisfied as a boundary 

condition on the surface, i.e. the velocity of the boundary layer of fluid is equal to the 

velocity of the surface that is treated as no–slip effect. 

      The results of the experiments of Poiseuille and Couette formed the basis for the 

operation of devices for measuring the viscosity of liquids – viscometers, capillary 

(Fig. 1a) and rotational (Fig. 1b), respectively. An own viscometer (1752) was used 

by Russian scientist M. V. Lomonosov (1711–1765) in his study of fluid fluidity. In 

fact, it was a drip viscometer based on estimating the viscosity of a liquid by 

counting the number of droplets flowing out of the reservoir for a given period of 

time. The same principle was used in the Engler viscometer, which consisted of an 

internal reservoir filled with the test fluid and an external thermostat filled with fluid 

at a fixed temperature. After the thermostat stage, a was opened in the internal 

reservoir hole and the time of the complete dripping out of the test liquid from the 

inner reservoir at a given temperature was measured. Engler viscometers are used to 

determine the viscosity of highly viscous liquids, such as petroleum products. In the 

oil drilling apparatus, for the rapid estimation of viscosity, standard field viscometers 

are used. They are equipped by a reservoir with 500 cm3 of the fluid, and the time 

of the flowing out an amount of 500 cm3 through a conic tip of the tube is estimated 

as a conventional fluid viscosity.  

 

   
          а            b c d 

Fig. 1. Capillary viscometers invented by  Ostwald (a), Ubbelode (b),  

and rotational viscometers by Couette (c) and Searle (d) 

 

       German chemist Leo Ubbelode (1877–1964) proposed a capillary viscometer 

in the form of a U–shaped glass tube in which a known volume of the test fluid 

flowed from one elbow to another through a straight capillary, and the time of this 

flow was measured. The Ubbelode viscometer was improved by the German chemist 

Wilhelm Ostwald (1853–1932); and in this form it was used until the middle of the 

20th century. In this design, both elbows of the tube were equipped with reservoirs, 
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in one of which the studied liquid was collected, and in the other accumulated after 

flowing through the capillary (Fig. 1a). The founder of modern rheology, Bingham in 

1921 was awarded a diploma from the Franklin Institute (Pennsylvania, USA) for the 

variable pressure viscometer he developed. To date, capillary and rotational 

viscometers are the most used both in industry and in scientific laboratories. 

      In 1880, Russian chemist Dmitri Mendeleev, and in 1883, English hydromechanic 

Osborne Reynolds showed that the linear dependence of the resistance force on the 

speed of motion can be measured at low speeds, while at faster flows it is proportional 

to the square of the speed. Reynolds also dealt with issues of dynamic similarity of 

fluid flows, and he established a criterion (Reynolds number) for different flow 

regimes (steady and unsteady, laminar and turbulent). He introduced the term 

"dilatancy", and in 1886 he derived a differential equation describing the pressure 

distribution in a viscous fluid filling the gap between the shaft and bearing surfaces, 

which made a significant contribution to the hydrodynamic theory of lubrication. In 

1883, Russian mechanician Nikolai Petrov (1836–1920) published his first work 

“Friction in Machines and the Effect of Lubricating Oil on It” in the Engineering 

Journal, and in 1885 he proposed his own design for the viscometer. In 1900 he 

published his fundamental work “Friction in Machines”, in which the lubrication 

theory was presented taking into account the eccentric position of the axis in the 

bearing. The study of the viscosity and plasticity of lubricants at various temperatures 

is an important section of modern rheology. 

      Later development of the viscometry techniques was associated with an increase 

in the accuracy of flow setting and stress measurements in the devices. For instance, 

in the Weissenberg rheogoniometer (1960s), the range of shear rates was 
4 4 110 10 c    . In modern viscometers, the measurement of translational and 

rotational speeds is carried out by electronic optical systems with high accuracy 
8~ 10 rad/s . 

      In 1932, Fritz Höppler patented a falling ball viscometer based on the Stokes 

formula of the resistance force acting on the sphere moving in a viscous fluid. The 

English mathematician and mechanic George Stokes (1819–1903) received it in 

1851. Later, Auguste Norcross improved this type of viscometer by adding a device 

that allows the falling part to be automatically raised and cleaned of liquid, which 

was made in the form of a cylinder converging to a cone or a series of cylinders 

instead of spheres. The Norkross design allowed the viscosity of thixotropic fluids to 

be measured with high accuracy. In 1986, high–precision viscometers based on the 

oscillating motion of the falling part of the device in an external electromagnetic field 

with the ability to measure the viscosity of microvolumes of liquids were developed 

on this basis. 

      The development of viscometry techniques has contributed to the discovery of 

new rheological properties and models of materials. Russian physicist F. Shvedov 

(1840–1905) pioneered in the rheology of dispersed systems. In 1889, he 

experimentally investigated the elasticity and viscoelastic behavior of colloidal 

gelatin solutions using a rotational viscometer. In 1900, he presented his report “La 
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rigidité des liquides” at the Congress of Physics in Paris. In this presentation he 

described the rheology of viscoplastic fluids, 16 years ahead of the publication of the 

famous article by Bingham (see page 6). The class of linearly viscoplastic fluids is 

called Shvedov–Bingham fluids or Bingham plastic fluids. 

      In addition to the series two–element Maxwell model of a viscoelastic fluid 

(see page 7), the parallele two–element model of a viscoelastic solid is called the 

Voigt model (Kelvin–Voigt) in honor of the German physicist Waldemar Voigt 

(1850–1919). In 1898, Voigt also introduced the concept of tensor in the modern 

meaning of the term.  

      The first experiments that revealed the viscoelastic behavior of solid 

materials were carried out by German physicist Wilhelm Weber (1804–1891) in 

1835 on silk threads. During loading, the strands underwent instant deformation, 

and then continued to elongate slowly, returning to the initial length after unloading. 

A combination of Maxwell and Voigt rheological models was proposed by 

H. Jeffreys6 in 1929 to describe the deformations of the earth's crust. 

      The first theoretical work7 on the rheology of suspensions was published by great 

scientist Albert Einstein. In this paper he derived the dependence of the viscosity 

coefficient   on the concentration C  of particles in a dispersed suspension of 

spherical solid particles in a Newtonian fluid at low concentrations (C 5%)  in the 

form 0(C) (1 kC)   , where 0  is the viscosity of the basic fluid, and k 2.5  

for spherical particles. After this seminal work, a series of theoretical and 

experimental papers dedicated to confirmation and generalization of the formula for 

the particles of various shapes, nature and concentrations have been published. 

      Further development of theoretical rheology was connected, first of all, with the 

study of rheological equations and their integration. In 1912, B.P. Weinberg 

integrated the equations of motion of the Bingham fluid between rotating cylinders. 

By 1924, a series of works by M.T. Huber, R. Mises and G. Hencky on the plastic 

flows of materials and a criterion for plastic deformations (Huber–Mises–Hencky 

yield criterion) was proposed. In 1909, Ostwald and his students proposed a power 

law for fluid viscosity   n 1,        , where   is an indicator of consistency. 

In 1925–1926 he introduced the concept of "structural viscosity" to describe the 

differences in the values of the coefficient of viscosity, measured at low and high 

shear rates. In 1928, P.A. Rebinder discovered the effect of the adsorption decrease 

in the strength of solids (the Rebinder effect), and his works laid the foundation for a 

new field of knowledge – physical and chemical mechanics, which is associated with 

rheology, hydrodynamics, physical and colloid chemistry. In 1929, M. Reiner coined 

the term “non–Newtonian fluids,” and the theory of capillary viscometry was 

developed in a series of works by B. Rabinovich, M. Muni, G. Barr, A. Metzner, 

and W. Read. 

                                                 
6 Jeffreys H. The Earth. Cambridge Univ. Press, 1929. 
7 Einstein A. Eine neue Bestimmung der Moleküldimensionen. Annalen der Physik, 1906. Vol. 19. 

P. 289–306. 
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      Rotational viscometers also underwent changes, associated primarily with errors 

that were introduced into the measurements by the presence of the bottom of the 

device, in which the fluid motion was not purely shear (Fig. 1c). M.P. Volarovich 

suggested a modification of the rotational viscometer using long narrow cylinders 

with a spherical bottom, and M. Mooney proposed similar ones with a conical 

bottom. In addition, the cone–plane viscometers were elaborated. M.A. Unger 

proposed a rotational viscometer in the form of two coaxial rotating hemispheres 

with a thin gap R   between them. I. Friedman, A.F. Dobriansky and 

A.P. Sivertsev used the viscometers with such narrow gaps between the rotating parts 

that the tested liquid even did not reach the bottom, which eliminated the 

measurement inaccuracy produced by the complex flows near the bottom. With the 

development of industry, ever more complex mixtures, suspensions and melts were 

created, which needed the improvements of viscometry technology.  

      Vibration viscometers in which a plate/crystal driven by oscillatory motion is 

immersed in the microvolumes of the liquid have been developed for biological and 

medical applications and micro/nano technologies. The rotating ball/cylinder 

viscometers driven by an external electromagnetic field have also been designed for 

microscopic volumes of fluids. In parallel with the emergence and expansion of the 

use of ferromagnetic, electrically conductive, piezoelectric materials and suspensions 

of the corresponding particles, electro– and magnetorheology, as well as biorheology, 

the rheology of biological fluids, solid and soft biological tissues, has been 

developed. Based on knowledge of the rheological properties of materials, novel 

techniques for the processing and use of liquid and solid materials in modern 

technologies have been elaborated. 

 

3. FUNDAMENTALS OF DEFORMATION THEORY 

 

      Liquid materials are characterized by density, viscosity, fluidity (inverse to 

viscosity), and solid materials – by density, elasticity, stiffness (inverse to elasticity), 

strength, and endurance [2,4]. Elasticity is the property of materials to resist any 

changes in their volume or shape under the influence of external forces and to restore 

their original state after the load relief. Elastic properties are proper to all solid 

bodies. Viscosity is a property of gases and liquids, characterizing their resistance to 

the action of external forces that cause the flow of the medium. All real liquids have 

viscous properties. 

      To measure the elastic parameters, a sample of the material is deformed by 

external forces, the strains are measured, and stress–strain curves are plotted for 

further analyses. 

      Deformation is a change in the relative position of the points of the body under 

the action of the applied forces. The main types of deformation are tension–

compression, bending, shear, torsion. As a measure of deformation the following 

quantitative characteristics are used: 0L L L    – absolute deformation, 

0L / L    – relative deformation, 0L / L   – elongation, 0u r r   – 

displacement vector. 
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      In modern rheology, single– (Fig. 2a) and biaxial (Fig. 2b) extensiometers, 

tensile testing machines (Fig. 2c), as well as indentometers (micro– and 

nanoindentometers), in which the penetration depth of the diamond tip 

(microneedles) is measured at different pressure forces, are used for comprehensive 

study of the elastic properties of solid rigid, soft and viscoelastic materials. 

 

 
  

а b c 

Fig. 2. Single (a) and biaxial (b) extensiometers,  

and tensile testing machine (c) 

 

      Types of experiments in rheology of solid materials: 

– Stretching by a constant force (creep); 

– Uniaxial tension by constant/non–constant force; 

– Compression; 

– Fixed deformation (stress relaxation study); 

– Cyclic tests (periodic loading–unloading); 

– Study of the hardening of the material after loading–unloading; 

– Rupture of the sample and study of material fatigue; 

– Multiaxial tension and compression. 

      The tensorial strain characteristic is the strain tensor 
 

11 12 13 1 3 2

ik 21 22 23 3 2 1

31 32 33 2 1 3

0.5 0.5

0.5 0.5

0.5 0.5

     

      

     

   ,                          (1) 

 

where j  is the angle of rotation of the fibers of the material relative to the axis j0x  

or in the plane i k0x x . The physical meaning of the diagonal components ii  of the 

tensor ik  is tension–compression along the corresponding axis. The off–diagonal 

components are shear deformations (rotation angles). The components ik  can be 

calculated by the Cauchy formula, which in the case of small deformations has the 

form 

i k
ik

k i

u u1

2 x x


  
  

  

                                                   (2) 
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      In the case of small deformations, the change in each small volume is 
 

x x y y z z x y z0
V

0 x y z

x y z x y x z y z x y z x y z

(L L )(L L )(L L ) L L LV V

V L L L

div(u)



              

      
  

          

 

 

      Then the rate of volumetric deformation V div(v)  ; accordingly, the 

condition div(v) 0  is a condition of incompressibility of the medium. 

      The stress state is characterized by a stress tensor 
 

11 12 13

ik 21 22 23

31 32 33

  

   

  

 , 

 

in the i–th line of which are the projections of the stress vector measured at an 

infinitesimal (physical) point calculated on an arbitrary unit area orthogonal to the 

axis i0x  (Fig. 3a). 

      The experimental dependences ( )   have the following characteristic points 

(Fig. 3b): 

– p  is the limit of proportionality; when p  the dependence ( ) E    is 

linear (Hooke's law), where E  is the elastic (Young‟s) modulus; 

– e  is the elastic limit; when p e     the dependence ( )  becomes non–

linear (for example 2/ E a    ) but upon unloading the sample returns to its 

original state with 0  , and the load and unload curves coincide; 

–   is the yield strength; when the sample is unloaded from any point in the 

region e     , it returns to a state characterized by residual deformations 

/ 0   , and the discharge curve usually lies below the load curve, although 

some materials exhibit the opposite behavior (see below); when    the 

dependence ( )  becomes more flat (yield zone), i.e. at low increase in  , large 

deformations are observed; 

– *  is the tensile strength; the destruction of the material starts here. 

      According to their properties, materials could be homogeneous (i.e. density, 

elastic modulus, and other parameters are the same at all “points” and their gradients 

are zero), non–homogeneous (properties vary from point to point, 0  ), isotropic 

(properties are the same in all directions) or anisotropic (along some directions, the 

properties differ from others). For anisotropic materials, the Hooke's law takes the 

form 

ik iklm lmE  ,                                                  (3) 
 

where iklmE is the tensor of elastic modulus of rank 4; it has 34= 81 components. 
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а b c 

Fig. 3. Calculation of the stress tensor components at the point M (a);  

curves for hard (b) and soft (c) materials 

 

      Due to the symmetry of the tensor ik , the tensor iklmE  is symmetric in the 2nd 

pair of indices, so iklm ikmlE E . It is known that in the absence of internal moments 

of rotation in the medium, the stress tensor is also symmetric [5], which means that 

the tensor iklmE  is also symmetrical in the first pair of indices, so iklm kilmE E . 

Counting the number of independent components of the tensor iklmE , we get that  

there remain 36 = 62 independent components. This leads to the idea of replacing the 

4–th rank tensor iklmE  by the 2–nd rank tensor, which is easily represented in the 

form of a matrix or table with 6 rows and 6 columns. Then instead of stress and strain 

tensors, the stress and strain vectors can be introduced in the form 
 

   11 22 33 23 13 12 11 22 33 23 13 12, , , , , , , , , , , , ,                
 

      Then the Hooke's law (3) can be written as 
 

  i ik kA   or i ik ka  ,                                          (4) 
 

where ikA  is the stiffness matrix, 1
ik ika A  is the compliance matrix 

      For isotropic materials, the compliance matrix has the form 
 

ik

1/ E / E / E 0 0 0

/ E 1/ E / E 0 0 0

/ E / E 1/ E 0 0 0
a

0 0 0 1/ G 0 0

0 0 0 0 1/ G 0

0 0 0 0 0 1/ G

 

 

 

  


  
 

 


 

 

 , 

 

where   is the Poisson‟s ratio, 
E

G
2(1 )




 is the shear modulus or the 2–nd 

Lame coefficient [6]. 
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      For transversely isotropic materials, the properties of a material in one direction 

differ from its properties in a plane orthogonal to this direction, i.e. in this plane the 

material is isotropic. Then the compliance matrix has the form 
 

1 12 1 12 1

12 1 2 13 2

12 1 13 2 2
ik

1

2

2

1/ E / E / E 0 0 0

/ E 1/ E / E 0 0 0

/ E / E 1/ E 0 0 0
a

0 0 0 1/ G 0 0

0 0 0 0 1/ G 0

0 0 0 0 0 1/ G

 

 

 

  


  
 

 


 

 

, 

 

where 1E  and 2E  are the Young's module along the selected direction and in the 

orthogonal plane accordingly, 12  and 13  are the corresponding Poisson's ratios, 

1G  and 2G  are the shear module. 

      For orthotropic materials, the properties are different in three mutually 

perpendicular directions, for example, along the axes of the Cartesian (glued from 

layers of plywood), cylindrical (tree trunk) or spherical (anisotropic shell) coordinate 

systems. For such materials, there are three different moduli of elasticity 1,2,3E  and 

shear 1,2,3G and 
 

1 21 2 31 3

12 1 2 32 3

13 1 23 2 3
ik

1

2

3

1/ E / E / E 0 0 0

/ E 1/ E / E 0 0 0

/ E / E 1/ E 0 0 0
a

0 0 0 1/ G 0 0

0 0 0 0 1/ G 0

0 0 0 0 0 1/ G

 

 

 

  


  
  

 


 

 

, 

 

where the upper quadrant of the matrix is symmetric, so that 21 2 12 1/ E / E  , 

31 3 13 1/ E / E  , 32 3 23 2/ E / E  . 

 

4. VISCOMETRY 

 

      Viscometry (rheometry) is a chapter of experimental rheology devoted to 

experimental methods for studying rheological parameters (coefficients) of materials. 

In this case, rheometers are used to measure the deformation (rheometric) 

coefficients, in particular, viscosity coefficients (by viscometers). The measured 

viscosities of liquids and gases are in a rather wide range of values (Fig. 4), which 

imposes limitations on the possible types of devices used for the measurements [7]. 
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Fig. 4. Viscosities of some liquid substances 

 

      Currently, the following types of viscometers are most often used: 

1) Rotational viscometer. In this case, the test fluid is placed in a narrow gap with 

a width   between two coaxial cylinders, one of which rotates at a given angular 

velocity   (Fig. 5a), and the second cylinder with radius R is hanging on the rope 

and rotates due to the action of the moment M  of friction forces from the side 

involved in fluid rotation and this moment can be measured by the angle of twist of 

the rope. During the measurements, the dependence M( )  is recorded. In this case, 

the moment тр трM RF R 2 R     of friction forces acting on the lateral surface 

of the internal cylinder of the device. For friction тр , we take the Newtonian fluid 

model тр  , then for narrow gaps R  we have тр R /   . Then we 

finally obtain the working formula of the viscometer for calculating the viscosity 

app kM /  , where 3k / (2 R L)   is the constant of the device. Since the 

assumption of Newtonian fluid may be incorrect, the calculated values do not 

correspond to real viscosity. That is why it is called apparent viscosity. 

      If in the experimental measurements with different  , the same values for 

app  are obtained, the test fluid is Newtonian. In other cases, there is an effect on 

the viscosity of the rotation speed value   (non–linearly viscous properties), 

duration of the experiment or the pause between successive experiments, the effect 

of unsteady  twisting (t)  (temporal properties). In such cases the computed 

viscosities are different that means the liquid under consideration is non–

Newtonian. Modern rotational viscometers make it possible to study the viscosities 

of various liquids in the 3 610 10   Pa˖s range. 

2) In the capillary viscometer, the test fluid moves along a thin long cylindrical 

tube under the influence of a pressure drop between its inlet and outlet. Assuming 

that the Poiseuille flow is realized in the tube, and the liquid under investigation is 

Newtonian, it is easy to obtain the working formula of the viscometer from the 

Poiseuille formula app k P / Q  , where 4k R / (8L) is the constant of the 

capillary viscometer used. The movement of fluid in a capillary viscometer can be 
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caused by gravity (Ostwald, Ubellode viscometers; Fig. 1a) or by creation of 

a vacuum at one end (Hess capillary viscometer, Fig. 5b). Hess viscometers are used 

to study the relative viscosity of a liquid f  compared to the viscosity of water at the 

same temperature. In this case, using the switching valve 1, water and the test liquid 

are drawn into the two tubes, respectively. After that, the valve is installed in an 

intermediate position and due to the pressure drop identical for both capillaries, both 

liquids move along the tubes by the same pressure drop. The inlet pressure equals to 

the atmospheric pressure for both tubes. We create a pressure drop and move the 

liquid until the water column reaches mark 1; at the same time, the column of the 

studied liquid reaches the mark corresponding to the value f . In this case 
 

2 2 2

f f f

H O H O H O

Q V t

Q V t






 


. 

 

      The range of operation of capillary viscometers is 4 510 10   Pa˖s. Again, 

if experiments with different P  values give the same values for app , then the 

liquid under study is Newtonian. 

 

 

 

а b 

Fig. 5. Scheme for calculating the working formula  

of rotation (a) and Hess viscometer (b) 

 

3) The falling ball method. A vertical tube of a given length L is filled with 

a known liquid of the density f . Then a small boll of radius R made of a material 

of known density s  is thrown from the upper end of the tube. We fix the time T of 

the ball falling to the bottom of the tube. Using the formula for the velocity 

( v L / T ) that is supposed to be constant and the radius of the ball is much smaller 

than the radius of the tube, the simple formula 
2s f

f

2( )
v gR

9

 




  can be computed 

from the balance equation of the gravity, buoyancy and Stokes forces acting on the 
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ball. The formula for the fluid viscosity can be obtained then as app s fk( )T    , 

where 2k 2gR / (9L) . The range of the viscometer is 410 1   Pa˖s. 

      In spite the apparent simplicity of the measurement procedure, viscometers 

should also be equipped with: 

– thermostat – to control and maintain a constant temperature of the sample  

(from –10 to + 130 ° C); 

– adapter for samples with low viscosity (<10–3 Pa˖s); 

– adapter for samples of small volume (up to 2–16 ml); 

– resistant spiral motion – allows you to measure the viscosity of low–flowing 

materials (resins, gelatins, pastes, putties, creams); 

– a device for the destruction of the film formed on the surface of the liquid 

volume in contact with air, evaporation. 

      In that way, the viscometers of different types are precise and quite sophisticated 

devices that can be connected to PC for automatic recording, treatment and analyses 

of the measured data. 

 

5. RHEOLOGY OF VISCOELASTIC MEDIA 

 

      Natural and artificial materials reveal quite complex rheologic properties. Such 

materials can be composed from the fluid, solid particles and gases, so they are 

multicomponent and multiphase ones. There are the most important among them:  

 Composites – are heterogeneous multicomponent materials with exact 

boundaries between the components;   

 Emulsions – are suspensions  of liquid particles in the immiscible fluid (like 

a ydrophobic fluid with a hydrophilic one); 

 Suspensions  – are mixtures of solid rigid or soft particles in  a fluid;  

 Gels – are elastic deformed materials contained fluid phase inside in the form 

of drops or hydrogenated structures;  

 Аerogels  – are gels, in which the fluid phase was replaced by gas; the percentage 

of gas is high,  ~90–99%; 

 Sols  – are elastodeformed fluids contained solid phase in the form of separate 

moving inclusions; sols can be obtained by mixing or heating of gels; 

 Aerosols  – are mixtures of liquid  particles (droplets) in the air (gas); 

 Gaseous fluids –  are fluids with gas bubbles;  

 Foams  – are whipped fluids or foamed and dried solid structures, similar to 

aerogels. 

 

5.1 Viscoelasticity 

 

      Viscoelasticity is the property of materials to exhibit both elastic and viscous 

properties.  Mathematically the elasticity is described as the dependence of stress 

on the deformation ( )   , for example in the form of (4). The simplest 
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physical model of elastic body is a spring (Fig. 6a). At the loading the spring is 

stretching instantly, and after the unloading, it instantly returns to the unstrained 

state (Fig. 6b). Both the linear (Hooke‟s law) and the nonlinear elasticity law 

(nonlinear springs) can be accepted for the spring.  

      The viscosity is described as the dependence of the shear stress on the strain 

rate ( ( )  ) in the linear Newton‟s law of viscous friction or the generalized non–

linear non–Newtonian laws. If the dependence is liner    then the fluid is 

Newtonian; if it is not linear like in the case      or others, the fluid is 

non–Newtonian. At fast (impulse or shock) loads ( 0  )  the fluids exhibit 

elastic properties. The physical model for viscous behavior in the piston moving 

into a tube filled with a viscous liquid (Fig. 6c). It means, when the applied stress 

is constant the form of the specimen is changed (Fig. 6d) and after the unloading 

( 0  ) the elongation of the sample remains constant ( const  , see Fig. 6d) 

that corresponds to the residual strain.  
 

  
   

а b c d 

Fig. 6. The models of elastic (a) and viscous (c) elements  

and their behavior at the step–function loads by force, (c) and (d) respectively 
 

      In viscoelastic materials the stress depends on the strain and the strain rate 

( ( , )    ), and possibly on their higher derivatives on time:  ( , , , ...)      

or in the implicit form 
 

f( , , , , , , ...) 0       .                                          (5)  
 

     The properties of viscoelastic media are usually modeled as parallel and series 

connections of elastic (spring) and viscous (damper) elements which sketched out 

in the discrete rheological models as analogous of electric circuits composed by 

resistors, capacitors, inductance, current sources, etc.  The rheological models give 

opportunities to get the form of the dependence (5) and study the behavior of 

material at given external load in the form of applied forces or deformations. The 

lumped parameter models are constructed for one dimensional (1D) problems and  

do not take into account possible non–uniform distribution of fibers (and mechanic 

properties) inside the material. As the models of complex spatial deformation of 

the specimen it is necessary to use corresponding tensorial characteristics (4).  
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5.2. Two–element rheological models 

      Viscoelastic properties are proper to complex materials that are made from 

deformed fibers (particles, grains, microstructures) with the space between them 

filled with viscous fluid(s) (Fig 7a). The first viscoelasticity concept appeared at 

the end of the XIX–th century after the experiments of Maxwell, Boltzman, Kelvin 

and after the researching of the creeping and the relaxation of materials, rubber, 

glass and some other materials. The simplest models of such continuous media are 

two–element models that consist of the fibers of one type (a spring) and a fluid 

(damper) that are connected in a parallel (Fig. 7b) or series (Fig. 7c) connection.   

 

5.2.1. Voigt model of viscoelastic solids 

 

      The Voigt model (or the Kelvin–Voigt model) consists of the spring and damper 

that are connected in parallel (Fig. 7b). For the material stretched in Fig. 7a, the 

Voigt‟s model corresponds to the loading along the fibers by the forces 1F . The 

relative deformation   of the material is defined as the change of distance between 

the points of A and B (Fig. 7b), that relates to the relative deformation of the both 

spring and damper which are in parallel connection. The elongating stresses   are 

applied at the points A and B; they are proportionally distributed between the elastic 

and viscous elements depending on their relative resistances to the deformation. 

There is a direct analogy with the parallel connection of resistors and capacitors in an 

electric circuit scheme. In this mechanic electric analogy the electric current 

I corresponds to the mechanical stress  , and the electric  potential U corresponds to 

the relative deformation  . In the parallel connection both electric resistivity and 

mechanical stresses are additive. In the series connection the electric potentials and 

the mechanical deformations are additive. The system of equations for the 

rheological Voigt model consists of the Hook‟s law for elastic elements and the 

Newton viscous law for viscous elements. The distributions of stresses and 

deformations in the nodes of the mechanical scheme are analogical for the Kirchhoff‟s 

rules and the Om‟s law for the electric circuit. For the rheological scheme given in 

Fig. 7b, those laws are: 
 

1 2

1

2

,

,

E .

  

 

 

 




                                                 

(6) 

 

      Let us exclude the unknown stresses 1 , 2  by substitution of the two last 

equations (6) into the first one, one gets the rheological equation for the Voigt 

model in the form   
 

E                                                       (7) 
 

       One can solve the differential equation (7) only when one of the two unknown 

functions (t)  and (t) is given. In the experiments the material can be loaded by 
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a determined stress (t)  and the corresponding deformations could be measured, 

and vise versa. When the material is loaded by a constant stress ( * const  , 

Fig. 7d), the experiment is called isotonic. When the material is stretched and fixed 

(or compressed and fixed, * const  , Fig. 7e), the experiment is called isometric. 

One can conduct both isometric and isotonic experiments with rheological equation 

in the form of (7) or other forms by substitution of  * const   or * const   into 

the equation and studying its solutions.  

      The isotonic experiment with the Voigt model (7) gives the linear non–

homogeneous ordinary differential equation (ODE) of first order with constant 

coefficients for the deformation (t) : 
 

d
E *

dt


    .                                              (8) 

 

   
a b c 

  
d e 

Fig. 7. The scheme of the internal structure of the viscoelastic material (a);  

Voigt model (b); Maxwell model  (c), isotonic (d) and isometric (e) experiments 

 

      Let us assume that loading begins at t 0  from an non-deformed state, 

i.e. (0) 0  . Then the solution of (8) has the form Et(t) (1 e ) * /E   . The 

function (t)  is increasing and convex (Fig. 8a) because Et(t) e * / 0    , 
Et 2(t) e E * / 0     . Thus, at constant load, the deformation of the sample 
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will slowly increase with time (creep). After unloading at a time 1t , the behavior 

of the material will be described by equation (8) with * 0   and with the initial 

condition 1 1(t )  , where 1 is the deformation of the material at the instant 

time   of unloading. In accordance with the solution of equation (8), 

1 1(1 exp( Et )) */E     . The solution of equation (8) for * 0   with the 

selected boundary condition has the form 1 1(t) exp( E(t t ) )     . Computing 

the derivatives of (t) , we find that this function is decreasing concave (Fig. 8a). 

At t   one has 0  .  

       In physics the process of changing the parameters of a material toward an 

equilibrium state is called relaxation. To characterize the relaxation, a parameter 

relt  (the relaxation time) that is the time during which the parameter(s) of the 

material decrease in e times is introduced. As follows from solution (8), for the 

Voigt material relt / E , i.e. the material with bigger elasticity of its fibers and 

lower viscosity of the fluid goes to equilibrium faster. When the Voigt body is 

loaded in the domain e  , the spring returns to its original state and drives the 

piston, which also returns to its original state after the unload. Thus, a parallel–

connected elastic element plays the role of a returning force, and the Voigt body is 

a model of a viscoelastic solid that goes back in the initial state after discharge. 

     One can carry out identification of the model parameters E and   if there are 

experimental curves (t)  and (t)  measured on a viscoelastic material. Then one 

can choose several values of time 2 3 4t , t , t , ...  and definite the correspondent 

values of deformation 2 2(t )  , 3 3(t )  , 3 3(t )  ,… on the experimental 

curves.  Then the values E and   can be calculated from the relations 

j j(1 exp( Et )) */E      and j 1 j 1exp( E(t t ) )      as transcendent 

equations.  If for all the points 2 3 4t , t , t , ...  one gets the same values of E and   then 

the material under consideration can be modeled as Voigt body, otherwise  more 

complex rheological models must be used (see § 5.3).  

      Let us carry out an isometric experiment with Voigt body. In this case, 

a sample of material must be deformed (to say, stretched) and fixed (Fig. 7e). Then 

the stress relaxation (t)  over the sample can be measured by stress gauges. The 

behavior of the material will be determined by equation (7) at * const   , 

i.e. E *   and relaxation is absent (Fig. 8b). Thus, if the material under study 

demonstrates relaxation of deformations under isotonic loading and an instantaneous 

reaction under isometric stress, then Voigt‟s body can serve as a model of such 

a material. Most of natural and synthetic viscoelastic materials exhibit relaxation 

under both isotonic and isometric loads that correspond to more complicated 

rheological models. 
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a b 

Fig. 8. The behavior of the Voigt body  

at isotonic (a) and isometric (b) stresses 

 

      One can also carry out dynamical experiments with materials and their rheological 

models. In such experiments oscillating stresses *(t)  or deformations *(t)  are 

applied to the material. Let us apply harmonic oscillations of deformations (the 

length of the sample) i t
0(t) e    with the frequency  to the equation (7). Then 

one can obtain that the stresses in the material i t
0(t) (E i )e      (or in standard 

form 2 2 2 i( t )
0(t) E e        ) will oscillate with the same frequency  , 

amplitude 2 2 2
amp 0 E      and with the phase shift arctg( E)  . This 

result can also be used for identification of the rheological parameters E and   based 

on the measured amplitude amp  and phase shift  . As an analogy to the static 

Young modulus, the dynamic modulus of elasticity can be introduces as a ration of the 

amplitudes of the stresses and strains i t
dyn 0 0 0E / e /      . In this case one 

gets dynE (E i )  ; it means the real part of the dynamical modulus equals to the 

static (Young‟s) modulus  Re dyn(E ) E , and the ratio of the imaginary and real parts 

Im dyn(E ) /Re dyn(E )  corresponds to the phase shift. In purely viscous materials the 

phase shift is 90º, and in pure elastic materials it is 0º , while in the viscoelastic 

materials ]0;90 [  . 

 

5.2.2. Maxwell model of viscoelastic liquids 

 

      In the Maxwell rheological model, the elastic and viscous elements are in 

series connection (Fig. 7c). This model corresponds to the loading of the material 

sample (Fig. 7a) by the forces 2F  orthogonal to the direction of springs (i.e. elastic 

fibers of the material). The stress  is applied at the points A and B and it is the 

same in both elastic and viscous elements. The total deformation   measured 
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between the points A and B is the sum of the deformations 1  and 2  of the elastic 

and viscous elements accordingly. The stress and deformation of the spring obey 

the Hook‟s law, and the stress and strain rate of the damper obey the Newton‟s law 

of viscosity. Thus we have the closed systems of equations 
 

1 2

1

2

,

E ,

.

  

 

 

 




                                                      

(9) 

 

      In order to exclude 1  and 2  and obtain the rheological law ( )  , one must 

apply the differentiation operator d/dt to each component of the two equations (9). 

The obtained equations 
 

1 2

1

,

E ,

  

 

 


 

 

together with the last equation (9) allows excluding 1  and 2 . Finally, the 

rheological equation for the Maxwell model can be obtained as  
  

E

 



    or   E E     .                              (10) 

 

      Let us proceed with isotonic experiments with this model of viscoelastic 

materials by substitution * const   into (10). Then the equation 
*




  can be 

integrated over time with initial condition for the non–deformed sample 

(0) 0  is a liner function of time 
*

(t) t





 . For the reloading of the material 

one must substitute * 0   into (10) and obtain its solution const  . It means the 

piston will keep the same position after the discharge because there is no any 

returning   force for the spring (Fig. 9a). The repetition of the stress loads leads to 

accumulation of strains (Fig. 9a). Such behavior is proper to pure liquids because it 

means the absence of elastic properties.  

      The isometric experiments with the Maxwell body can be modeled by 

substitution of * const    into (10) that gives linear homogeneous ODE of the 

first order with constant coefficients.  
 

d E
0

dt





  .                                               (11) 

 

      The initial stress is non–zero 0(0)   because the material was deformed that 

produced internal stresses. Then the solution of (11) has the form Et/
0(t) e    .  

The relaxation of stresses goes faster at lower values of viscosity and greater values 

of the Yung‟s modulus (Fig. 9b).  
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      The dynamic experiments on Maxwell model at the applied harmonic 

oscillations of stress
i t

0(t) e   , correspondingly to (10), produce harmonic 

oscillations of the deformation in the form i t
0(t) ( iE)e / ( E)      

(or  i t 2 2 2 i( t )
0 0(t) e E e / ( E)          ) with the phase shift 

arctg(E / )  , amplitude 2 2 2
0 E    , and the dynamic modulus of 

elasticity dynE E / ( iE)   . 

      The dynamic experiments at harmonic variations of deformation 
i t

0(t) e    (the length) of the specimen lead to the internal stress oscillations 

i t
0(t) i E e / (E i )      with the same phase shift arctg(E / )  , 

amplitude 2 2 2 2 2 2
amp 0E E / (E )          and he dynamic modulus of 

elasticity 2 2 2 2 2 2
dynE (E iE ) / (E )       . 

 

  

a b 

Fig. 9. The behavior of Maxwell body at isotonic (a)  

and isometric (b) loading and unloading (relaxation) 

 

      Therefore, after discharge the material does not return to initial zero–strain 

state and the Maxwell model corresponds to a viscoelastic liquid8 .  

 

5.3. Three–element rheological models 

 

      Rheological properties of real viscoelastic materials do not describe accurately 

by two–element models like Voigt and Maxwell bodies. The accurate enough and 

still simple models are composed by at least two elastic and viscous elements; the 

so–called three–element rheological models.  

                                                 
8 In the course of theoretical physics by L.D. Landau and E.M. Lifshits (Theoretical Physics. Vol. 7. 

Theory of Elasticity) the Maxwell's model is described in §35 untitled «Very viscous liquids». 
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5.3.1. Three–element models of viscoelastic solids 

 

      When the material consists of two types of fibers with different elasticity and 

the one liquid (Fig. 10a), its load by the forces 2F   can be described by the discrete 

model presented  in Fig. 10b,  and the load by the forces 1F  – by the discrete model 

presented  in Fig. 10в).  

      The first model is known as general Kelvin–Voigt model (the model of 

standard linear body) and the second one is the Zener model.  The correspondent 

distributions of inner stresses 1 2,   and deformations 1 2,   of the elements are 

presented in Fig. 10b,c accordingly. Note that here again the parallel elements have 

the same deformations and their stresses are additive, while the elements in series 

have the same mechanical stresses and their deformations are additive (like 

potentials and currents in the electric circuits). 

 

   

a b c 

Fig. 10. The scheme of the material with two types  

of elastic fibers and one type of liquid (а), three–element Kelvin–Voigt model (b)  

and Zener model (c) for viscoelastic solid bodies 

 

      Let us consider first the model by Zener. The additive conditions (analogues 

to the Kirchhoff‟s rules for electric circuits) for stresses in parallel connections of 

elements and for deformations in series connection of elements, the Hook‟s laws 

for the springs and the Newton‟s law of viscosity for the damper give the following 

system of equations 
 

1 2 1 2

1 1 2 1 2 2 2

, ,

E , , E .

     

     

   

  
 

 

      One can exclude the unknowns 1 2,  and 1 2,   from this system and get the 

rheological relation for the Zener model in the form 

2 1 2 1 2E E E (E E )        . 
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      The isotonic experiment with Zener model can be carried out by substitution 

* const   in the rheological law. Then one has the linear non–homogeneous 

ODE of the first order with constant coefficients 
 

1 2 1 2 2
d

(E E ) E E E *
dt


     .                                (12) 

 

      The solution of (12) with initial condition (0) 0   has the form 

*

1(t) (1 exp( E t / ))
E


    , 1 2 1 2E E E / (E E )  . Since (t) 0  , (t) 0  ,  the 

dependence (t) is increasing and convex (Fig. 11 a) . After the reloading started 

at 1t t  the solution of (12) at * 0   and new initial condition 1 1(t )   gives 

1 1(t) exp( E(t t ) / )     , where *
1 1 1(1 exp( E t / )) / E      (Fig.11a). The 

time of relaxation of deformations rel 1t / E  does not depend on  2E , since the 

relaxation is connected with redistribution of deformations from elastic elements to 

viscous ones and the role of the returning force for the damper performs the 

element with 1E . The identification procedure is sketched in Fig. 11b. 

    

  

a b 

Fig. 11. The behavior of Zener’s body at isotonic loading (a),  

and identification of the parameters of the model (b) 

 

      For isometric experiments with Zener model one can get the linear ODE of 

the first order with constant coefficients and initial condition 
 

*
1 2 1 2

0

d
(E E ) E E ,

dt

(0) .


  

 

  



                               (13) 

 

       The solution of (13) has the form  
 

* *
1 2 1 2

0 1 2
1 2 1 2

E E E E
(t) exp( (E E )t / )

E E E E

 
  

 
     

   

.                    (14) 
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      Note that the initial stress 0  corresponds to the instantaneous elastic 

deformations of springs. For the parallel connection 0 1 2(E E ) *   ; therefore, 

the component in the square brackets in (14) is positive and (t) 0  , (t) 0  . 

After the reloading started at 1t t the behavior  of the body is described 

as solution of the equation (13) with * 0   and the initial condition 

1 1(t )  . The solution is 1 1 2 1(t) exp( (E E )(t t ) / )      , where 

* *
1 2 1 2

1 0 1 2 1
1 2 1 2

E E E E
exp( (E E )(t t ) / )

E E E E

 
  

 
      

   

. This dependence is similar to 

the one presented in Fig. 9b. For the identification of the rheological coefficients 

1 2E ,E ,  one has to the several points with coordinates  
n

j j j 1
( , t


, n 3  and 

calculate the relative values j  at the chosen  jt  from the dependences  (t)  (for 

the increasing ones)  or  (t)  (for the decreasing ones).  These relations can be 

solved as a system of transcendental equations.  If the calculated coefficients 

1 2E ,E ,  are the same for different points, the model by Zener describes very well 

the material properties. If different values for 1 2E ,E ,  are computed on different 

triplets of points on the stress–strain curves, the model by Zener is not satisfactory 

and more complex models must be tried.  

      As it is clear from Fig. 10c, the spring with 1E  generates the returning force for 

the damper. Similar conclusion that Zener‟s model describes the viscoelastic solid 

body can be derived from the rheological equation (12) that contains the term with 

 . In the rheological equations for viscoelastic liquids deformations are always 

absent, only their time derivatives are present. 

      The dynamic experiments with Zener‟s model can be started with harmonic 

oscillations of stresses i t
0(t) e   , that lead to the oscillations of deformations 

with different amplitudes and unknown yet phase shift in the general form 
i( t )

0 0(t) ( , ,..)e       . Similar experiments can be conducted with the 

oscillations of deformation i t
0(t) e    imposed. The correspondent solution can 

be found as i( t )
0 0(t) ( , ,..)e       .  

Individual task: substitute the general forms into the rheological equation and 

obtain solutions for the dynamical experiments and the correspondent dynamic 

elastic modules of the Zener‟s model. 

Individual task: Derive the rheological relation for the three–element Kelvin–

Voigt model and study its properties in the isotonic, isometric and dynamic 

experiments. Describe the method for identification of the rheological coefficients 

when the corresponding stress–strain curves and known from experiments.  
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5.3.2. Three–element models of viscoelastic fluids 

      Let us consider the three–element models of viscoelastic fluids composed by 

two different fluids and one type of elastic fibers (Fig. 12a). There are two types of 

the corresponding models called Jeffrey rheological model (Fig. 12b,c) which are 

similar in structure to the models sketched in Fig. 10b,c. An example of such fluids 

is a suspension of elastic capsules or biological cells with their internal liquid 

contents with the viscosity 1  in the base fluid with viscosity 2 . Then the elastic 

modulus Е characterizes the elasticity of the shell (capsule or the cellular membrane). 

 

   
a b c 

Fig. 12. Liquid material formed by liquid drops 

in elastic capsules suspended in another viscous liquid  (а)  

and two different  Jeffrey’s  models (b,c) of a viscoelastic liquid 

 

      Let us start with the model presented in Fig. 12b. The system of equations has 

the form 
 

1 2 1 2

1 1 1 2 2 1 2,

, ,

, E .

     

       

   

  
 

 

      By elimination of 1 2,  and 1 2,    one can derive the rheological relation in 

the form 
 

1 1 2 1 2E E( )           .                               (15) 
 

      At isotonic loading * const   the linear non–homogeneous ODE of the 

second order with constant coefficients  
 

2

1 2 1 22

d d
E( ) E *

dtdt
                                         (16) 

 

can be obtained from (15) 

      The general solution of the homogeneous equation (16) has the form 

1 1 2 2(t) C exp( t) C exp( t)    , where 1 2,  – the roots of the characteristic  
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equation for (16). The partial solution of the non–homogeneous equation is the 

linear function *
1 2t / ( )   . To find the constants 1 2C ,C one must have two 

initial conditions for deformations. If the loading starts from the non–deformed 

state and with zero load velocities, the boundary conditions for (16) are (0) 0   

and (0) 0  . Since 1 0  ,  finally the solution of (16) is 
 

**
1 2 1 2

2
1 2 1 21 2

E( )t
(t) 1 exp( t)

E( )

    


    

 
    

   
.                 (17) 

 

Individual task: obtain the relaxation curve (t)  after the reloading of the material 

and calculate the relaxation time. Check the first and second order time derivatives of 

(t)  and (t) , and plot the curves (t)  and (t) similar to Fig. 11a.  

Individual task: Carry out the dynamical experiments with this rheological model 

and determine the dynamical elastic modules for the loads by oscillating stresses 

and strains. Compare the properties of this viscoelastic fluid model with the 

Maxwell‟s body. 

Individual task: Repeat all the experiments and conclusions for the second 

Jeffrey‟s model (Fig. 12c) and compare it to the Maxwell‟s body. 

 

5.4. Multi–element rheological models 

 

      Multi–elements models consists of n 4  elements.  The first example is the 

double Maxwell model (Fig. 13a) useful for the description of deformation of 

polymers. The double Voigt model (Fig. 13b) is used as the simplest model of the 

vertebral bone (viscoelastic body of the bone and the intervertebral disc). The 

Burgers model is a series connection of the Voigt and Maxwell models (Fig. 13c).  

 

   
a b c 

Fig. 13. Four–element rheological models:  

double Maxwell model (a), double Voigt model (b)  

and Burgers model (c) 
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      Let us start with the double Maxwell model (Fig. 13а). To obtain its rheological 

relation, one can use the Maxwell‟s body equation (10). Let‟s in the left Maxwell 

element the general stress is 1 , in the right element the stress is 2 . Then the 

rheological equations (10) for the elements will be 1 1 1 1 1 1E E       and 

2 2 2 2 2 2E E      . Since the general stress   in the parallel connection of both 

Maxwell‟s elements is 1 2    . One can express 1  and 2  by the method of 

inverse operator. The rheological equations for 1 2,   in the form of differential 

operators are   
 

1 1 1 1 1
d d

E E I
dt dt


  

 
  
 

,      
2 2 2 2 2

d d
E E I

dt dt


  

 
  
 

, 

 

where I  – is the unitary operator. 

      Then the expressions for 1 2,   as functions of 1 2,   can be obtained as 
 

1

1 1 1 1 1
d d

E I E
dt dt


  


   

    
   

,     
1

2 2 2 2 2
d d

E I E
dt dt


  


   

    
   

 

 

      Designated the operators in the square brackets on the left–hand sides as  1[G ]  

and 2[G ]  accordingly, one can obtain for the general stress 1 2     

   1 1
1 1 1 2 2 2E G E G    

 
  . After application of the double operator 

1[G ] · 2[G ]  to each term in the rheological equation, one can get 

      1 2 1 1 2 2 2 1G G (E G E G )     . Substitution of the expressions for 1[G ]  

and 2[G ]  one can get the final form of the rheological relation for the double 

Maxwell body for a viscoelastic liquid in the form  
 

1 2 1 2 2 1 1 2 1 2 1 2 1 2 1 2(E E ) E E E E ( ) (E E )                 . 
 

      In the same way the rheological equation for the double Voigt model for 

a viscoelastic solid (Fig. 13b) can be obtained based on two equations (7) with 

different elastic and viscous material parameters. Since the two models are in a series 

connection, their deformations must be added 1 2    . Then, using the method of 

inverse operators one can obtain the final rheological relation in the form  
 

1 2 1 2 1 2 1 2 2 1 1 2( ) (E E ) E E (E E )                . 
 

      The Burgers model of a viscoelastic liquid (Fig. 13c) can be treated in the same 

way. For the series connection of one Voigt model and one Maxwell model one 

can use (7) and (10) with different rheological coefficients 1 1 1 1 1E E       

and 2 2E    . Then the total deformation can be calculated as  

  1
1 2 1 1

1 1

1
E [G]

E
      



     , d
[G] EI

dt
  . 
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      Application of the operator [G] to each term of the rheological equation gives 

its final form 
 

 1 2 1 2 1 1 2 1 2 1 2 1 1 1 2(E E ) E E E E E E               . 
 

Individual task: Conduct the isotonic, isometric and dynamic experiments on the 

double Maxwell model. 

Individual task: Conduct the isotonic, isometric and dynamic experiments on the 

double Voigt model. 

Individual task: Conduct the isotonic, isometric and dynamic experiments on the 

Burgers model. 

      Note, in all the cases any non–harmonic dynamic loads by the stresses 

*(t) or strains *(t)  can also be carried out. Then the solutions of the 

corresponding non homogeneous ODEs will differ by only the partial solutions in 

the form of integrations  of the given functions  *(t)  or *(t)  according to the 

qeneral theory of OEDs.  

      In the same way the rheological relations for the multi–element Maxwell model 

(known as Maxwel–Wihert model, Fig. 14a), n–element Voigt model (Fig. 14b) 

with n different elastic and n different viscous parameters can be obtained. It is 

proposed to do calculations yourself.  

      An example of more complex 5–element model that corresponds to passive 

muscle tissue that is composed mostly by three types of fibers and two types of 

liquids presented in Fig. 15. The distributions of the internal stresses and 

deformations of each element is given in Fig. 15. The additive conditions for the 

stresses and strains, and the corresponding Hook‟s and Newton‟s laws are 

 

  
                    а                                                                   б 

Fig. 14. General n–element Maxwell (a) and Voigt (b) models 

 

 
Fig. 15. Five–element rheological model 
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1 2 2 3 4 1 2 3

1 1 1 2 2 2 1 2 3 3 3 3 2 4

, , ,

E , E , , E , .

         

           

      

    
 

 

      Excluding the unknown values 1,2,3,4 , 1,2,3  with the method of inverse 

operators give the rheological relationship 
 

 1 2 1 2 2 1 2 3 1 2 3

1 2 3 1 2 1 3 1 2 2 1 1 2

(E E ) ( )E (E E )E

E E E (( )E E E E E .

       

       

      

    
 

 

Individual task: Conduct the isotonic, isometric and dynamic experiments on the 

n–element Maxwell model. 

Individual task: Conduct the isotonic, isometric and dynamic experiments on the 

n–element Voigt model. 

Individual task: Conduct the isotonic, isometric and dynamic experiments on the 

five–element rheological model presented in Fig. 15. 

Individual tasks: Several more sophisticated n–element rheological models are 

proposed for the detailed studies based on the schemes presented in this issue 

(Fig. 16a–f). 

 

 
 

а b 

 
 

c d 

  

e f 

Fig. 16. The discrete rheological models for individual tasks 

 

      In the most general form the rheological equations for the viscoelastic solid and 

liquid bodies are  
2 2

2 1 12 2

d d d d
... E ...

dt dtdt dt

   
            ,                    (18) 
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2 2 3

2 1 1 22 2 3

d d d d d v
... ...

dt dtdt dt dt

   
            ,                 (19) 

 

where   is the shear stress in liquids, E, , 1 2 3, , , ...    1 2, , ...   are the 

rheological coefficients that must be identified from a comparative study of the 

„mathematical‟ experiments on the rheological models and the measured 

experimental curves.  

      The relationships (18), (19), that were derived from the discrete springs and 

dampers rheological models can be also re–written in the tensor form for the 

continual media. For example, the uniform isotropic Voigt body with the 

rheological equation (7) will have the form  
 

ik
ik ll ik ik

d
u 2

dt


                                           (20) 

 

where   and   are Lame coefficients.  

      The equation (20) must be substituted in the momentum equation   
 

2

2

u
ˆdiv( ) f

t
  


 


, 

 

that gives the equation  
 

2

2

u du
u div(u) f

dt 3t


    
 

     
 

,                       (21) 

 

which coincides with the classical momentum equation of solid mechanics at 0  . 

      For the viscoelastic liquid materials their rheological models must be 

substituted into the Navier–Stokes equations in their general form  
 

v
ˆdiv(v) 0, (v )v p div( ) f .

t
   


      


                     (22) 

 

      For example, when one uses the continual version of Zener‟s body  
 

1

ik 1 1 ik
d d

I 2 v
dt dt

   


  
    
   

, 

 

the momentum equation will be  
 

1
1 1

d v d df
I (v )v p v v f

dt t 2 dt dt


       

  
            

.          (23) 

 

      Therefore, the momentum equations for viscoelastic materials have the time 

derivatives of higher order in comparison to the classical equations and additional 

initial conditions for the derivatives of the displacements or velocities are needed.  

The corresponding theorems of existence and uniqueness of their solutions are still 

not proven but there are thermodynamic estimations based on the second law that 

restricts the values of the model parameters.       
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6. CLASSIFICATION OF RHEOLOGICAL MODELS  

OF NON–NEWTONIAN FLUIDS 

 

      Newtonian fluids exhibit the linear dependence ik ik2 v   between their stress 

and strain rate tensors. The viscosity of such liquids j(T,C )   only depends on 

temperature T and, possibly, on the concentration of some dissolved substances with 

concentrations jC , which could significantly change the viscosity of the suspension 

at even very low concentrations [7]. In this case, the viscosity remains independent of 

the shear rate, exposure time and other factors. The examples of the Newtonian fluids 

are: water, aqueous solutions of mineral components, vegetable oils, milk, purified 

juices, alcohols, air, gas and many others. 

      Materials for which the dependence ik ik(v ) is different from the linear one are 

called non–Newtonian, and there are various types of non–Newtonian behavior. 

Examples of the non–Newtonian liquids: polymer melts, suspensions of hard and 

soft particles, lubricants, food masses and many others (§1 and Fig. 4). 

 

6.1. Liquids with transverse viscosity 

 

      In such liquids, the dependence ik ik(v )  is nonlinear due to the appearance of 

additional nonlinear terms, for example, second power of the tensor ikv  
 

ik ik il lk2 v v v       or   2ˆ ˆ ˆ2 v v                                (24) 
 

where   is the transverse viscosity. For the liquids with transverse viscosity, the 

normal stresses appear in purely shear flows. For example, in the Couette flow of 

such a liquid (Fig. 17a), the velocity vector v (v(y),0,0)  and the strain rate 

tensor have nonzero components 12 21v v dv / dy  . Then (24) gives 
 

2
11 11 2l l2 12

2
22 22 2l l2 12

12 12 21

2 v v v v 0,

2 v v v v 0,

2 v 0.

   

   

  

   

   

  

 

 

  
а b 

Fig. 17. Couette flow with normal and shear forces (a) 

and expansion of the jet (b) 
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      Thus, not only tangential, but also normal stresses 11 , 22  arise in such a liquid. 

Some paints have transverse viscosity, and their jets at the outlet of the spray gun is 

expanded due to the normal stress effect, thus covering a larger area (Fig. 17b). 

      Obviously, the addition in (24) of higher order terms like  
 

2 3ˆ ˆ ˆ ˆ2 v v v ...                                               (25) 
 

does not lead to new rheological models because according to the Hamilton–Cayley 

theorem any power n>2 of a tensor is expressed in its first and second powers. 

Therefore, the rheological law (24) is the most general form of power dependencies. 

The fractional powers ˆ ˆ ˆ2 v v      are also presented in rheology for specific 

materials as approximations of the corresponding experimental curves [8, 9]. 

      Another possibility to introduce nonlinearity into the dependence ik ik(v )  is to 

set the dependence of viscosity on the ikv  components. Since the scalar quantity   

cannot depend on the components of the tensor (why?) and only depend on 

some   combinations of the components called invariants, the dependence 

ik j ik ik2 (T,C ,v )v   can be written in the only form 1v 2v 3v(I ,I ,I )  where 

1v ik kkI Tr{v } v  , 2 2 2
2v xx yy yy zz xx zz xy yz xzI v v v v v v v v v      , 3v ikI det | v |  

are invariants of the tensor of the 2nd rank ikv . For incompressible media, it is 

sufficient to leave the dependence 2v(I )   (why?), and it is convenient to redefine 

2vI  as 2 2 2 2 2 2 2
2 1v 2v xx yy zz xy yz xz ik ikI 2(I 2I ) 2(v v v 2(v v v )) 2v v         , 

then for laminar flows we get 2I   – shear rate (check!). 

      For the dependence ( )  , two rheologically different behaviors are possible: 

/ 0     or / 0    . 

 

6.2. Shear–thickening liquids 

 

      Shear–thickening (or dilatant) fluids are media in which viscosity increases with 

increasing the shear rate ( / 0    ). Suspensions of hard non–smooth particles 

exhibit shear–thickening properties. The dilatancy mechanisms are particle 

interaction, collisions and dry friction between them that significantly increase at 

higher shear rates. The examples are particles of ore or sand in washing solutions, 

quicksand and similar natural and technical fluids. Another mechanism of shear–

thickening is electrostatic or chemical interaction between the particles (Fig. 18), 

which leads to loss of flow energy and results in an increase in viscosity. 

      An increase in viscosity with an increase in shear rate depends on the 

concentration, size, shape and nature of the particles. Examples of dilatant media are 

also colloidal systems, chocolate masses and others. 

 



37 

  
а b 

Fig. 18. A schematic representation of the chemical (a)  

and electrostatic (b) interaction of particles in shear–thickening suspensions 

 

      Recently, much attention has been paid to the development of effective “liquid 

armor” – a dilatant medium that exhibits fluidity at low impact forces, but at large 

forces (hit by a bullet or dagger) immediately undergoes a phase transition and 

becomes a solid body. One type of armor is based on silicone nanoparticles 

suspended in polyethylene glycol. This material is very light, with high ability for 

plastic deformations (Fig. 19a). At high strain rates (impact, bullet, dagger), the 

nanoparticles adhere, forming a microstructure with high strength (Fig. 19b). 
 

  

а b 

Fig. 19. A schematic representation of “liquid armor” before (a) 

and after (b) the phase transition, which is associated with structure 

formation upon absorption of impact energy 

 

      In connection with the progressive development of nanotechnology, such 

materials with unique rheological properties are being developed in a wide variety 

and are commercially available, including the laboratory research purposes. 
 

6.3. Shear–thinning liquids 
 

      The viscosity of shear–thinning (or pseudoplastic) fluids decreases with increasing 

shear rate ( / 0    ). The mechanisms of shear–thinning behavior are unwinding 

of long molecular chains by the flow, orientation and stretching of polymer molecules 

in the flow. If pseudoplastic fluids contain elongated particles or polymer fibers, then 

in the flow they are oriented along streamlines, which leads to a decrease in friction 

between them, and to improved streamlining, i.e. to a decrease in viscosity with an 

increase in shear rate. Examples of such liquids are: polymer solutions, ketchup, 

blood, paints, juices with pulp, vegetable purees, paper pulp. Schematically, the change 

in the orientation of the particles of the pseudoplastic fluid in the flow at different 
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shear rates is shown in Fig. 20a. The rounded particles of such media are arranged in 

longitudinal chains (Fig. 20b in the center), in contrast to non–interacting particles 

(Fig. 20b, above), and dilatant media that form a microstructure (Fig. 20 b, below).  

 

  
а b 

Fig. 20. The patterns of elongated (a) and rounded (b)  

particles in shear–thinning suspensions at different flow rates 

 

       In 1909, Ostwald proposed 

a power–law rheological model 

in the form  
n

k  . Here, 

viscosity  
n 1

/ k   


   is 

a power function of shear rate. 

When n 1  we have Newtonian 

fluid, when n 1  – it is  

shear–thickening, and when 

0 n 1  – it is shear thinning. 

To compare their behavior, the 

diagrams ( )   and ( )   are plotted in Fig. 21a and Fig. 21b, respectively. 

  

6.4. Viscoplastic liquids 

 

      Viscoplastic liquids begin to flow only when the shear stress applied exceeds 

a certain critical value 0 , which is called the initial yield stress, i.e. 0  when 

0  and 0  when 0  . The mechanism of viscoplasticity is associated with 

the presence of bonds between the particles at low or zero strain rates, due to which 

they can form a microstructure at rest (Fig. 22a). To destruction the microstructure 

and start the flow, a stress 0   must be applied. Examples of such liquids 

are  blood (Fig. 22b), toothpaste, tomato paste, solidifying or polymerizing 

solutions, etc. 

 

 
а                                                    b 

Fig. 21. The dependences ( )   (a) and ( )   (b) 

for Newtonian (1), shear–thickening (2) and shear–

thinning (3) liquids;   is the asymptotic viscosity 
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а b 

Fig. 22. A sketch of the microstructure formed by elongated particles (а)  

and the microstructure formed by the erythrocytes in blood (б) at rest 

 

      The simplest linear model of a viscoplastic liquid (the Bingham model, §2) is 
 

0 0

0

at ,

0 at ,

    

  

  

 
 

 

or in the tensor form        0
ik ik 2 0

2

2 v , I 2
I





  


  

 
. 

      The first nonlinear model was proposed by Caisson in his experiments on 

a suspension of soot particles in water and has the form 
 

0 0

0

at ,

0 at ,

    

  

  

 
 

 

or in the tensor form    

2

0
ik ik 2 0

2

2 v , I 2
I





  


   

 
. 

      A generalization of Caisson model was proposed by Schulman in the form 
m m n

0 k    , where n/mk   is the viscosity for the Ostwald power fluid. 

      To compare the rheological 

properties of the above discussed 

fluids, their dependencies ( )   

and ( )   are plotted in Fig. 22a 

and Fig. 22b, respectively.  

      Similar to the power–law 

model, a generalized Hershel–

Bulkley viscoplastic fluid model 

was proposed in the form 

2vˆ ˆ2 (I )v,   n 1 0
2v 2v

2v

(I ) kI
I


   . 

In the case 0 0, n 1   , it gives a Newtonian fluid; in the case 0 0, n 1    it is 

the linear Bingam plastic fluid; at 0 0, 0 n 1    it is a shear–thickening fluid, 

at 0 0, n 1   it is a shear–thinning fluid; in the case 0 0, n 1   it is a visco–

 

 
а                                                    b 

Fig. 22. Sketches of the dependences ( )   (a) and 

( )   (b) for viscoplastic  Bingham (1), Caisson 

(2), Schulman (3) and shear–thickening fluid (4) 
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plastic fluid with shear–thickening behavior, and in the case 0 0, 0 n 1     it is 

a viscoplastic fluid with shear–thinning behavior. 

      The presented models allow us to conduct not only isometric and isotonic 

experiments with materials, but also dynamic experiments (§5) and solve steady 

and non–steady fluid mechanics problems [8, 9]. 

      To build more complex models of viscoplastic media, discrete rheological 

models (see §5) are used with further replacement of the scalar variables by their 

tensor equivalents (see §6.5). 

      A number of very specific models obtained in experiments with various 

nonlinearly viscous liquids is presented in literature, such as the Ellis rheological 

model n
0 k     , the Steiger model 

2
1 2k k








, the Reiner–Phillipov 

model 0
21 ( / A)

 
 






 
    

, the Eyring model 1 2k k sin( / A)    , the 

Williams model 1

2

k

k


  


 


, the Haven model 0

n
31 k

 






, where 1,2,3A,k  

are additional empirical rheological coefficients. 

 

6.5. Viscoelastic liquids 

 

      Viscoelastic fluids exhibit liquid properties at slow deformations (shear loads), 

while they behave as elastic solids at fast (impulse) loads. Therefore, viscoelastic 

materials exhibit both elastic and viscous properties at different ranges of the 

external loads and their rheological law can be written in the most general form as 
 

F( , , ,..., , , , ,...) 0        . 
 

      Viscoelasticity is associated with the presence of elastic particles of various 

shapes or large molecules and molecular complexes (micro/nanostructures). The 

models of viscoelastic liquids consisting of springs and dampers are considered 

in detail §5. It should be noted that the rheological properties of real liquids are much 

richer and more interesting [8–10], 

therefore, other types of elements of 

rheological models were introduced 

(Fig. 23). To model the initial yield 

stress effects, the Saint–Venant 

element (1870) which imitates the 

rest friction can be used (Fig. 23a). 

It is depicted as a block lying on the rough surface. To bring the element into motion, 

it is necessary to apply a force exceeding the static friction stress ( 0 ). The Pellet 

element is a viscous element with a deformation restriction (Fig. 23b). It describes an 

abrupt or monotonous change in the conformation of polymer molecules (unwinding 

 

 

 

 

а b 

Fig. 23. Saint–Venant sliding element (a)  

and Pellet element (b) 
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and straightening of their chains), after which the deformation stops. It is depicted as 

a piston in a closed tube filled with a viscous, exponential, or other fluid inside. 

      A parallel connection of the Saint–Venant element with a viscous one gives the 

Bingham model (Fig. 24a at k  ) or the model of a viscoplastic power fluid 
 

1/n
0

0 0, ; 0,
k

 
     

 
    
 

. 

 

      A combination of the Saint–Venant element with the Maxwell body gives the 

Bingham–Maxwell model (Fig. 24b)  
 

0
1 2 0,

E

 
    




     . 

 

      Note that when the friction element is connected in parallel with the spring, the 

latter, after unloading, will only partially return to its initial state until the stresses in 

the system become 0  , after which the spring remains in a state with permanent 

deformation, i.e. the friction element provides inelastic behavior of a number of 

the elastic elements. 

      Similarly, a composition of the Saint–Venant element with the Voigt body 

gives the Bingham–Voigt model. It is shown in Fig. 24c with the Ostwald liquid 

instead of Newtonian one in the viscous element. Its rheological relation is 
 

n
1 2 0 0E k ,

E


              . 

 

      A combination of the Saint–Venant element with the Burgers body gives the 

popular Sheffield–Scott–Blair model (Fig. 24d) with the rheological relation 
 

 2

2

E 0
0

1 2 1

exp t ,
E 

  
  

 


      . 

 

  

а b 

 

 

c d 

Fig. 24. Ostwald viscoplastic (a), Bingham–Maxwell (b),  

Bingham–Voigt (c), and Sheffield–Scott–Blair (d) discrete rheological models 
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      The latter model describes well the rheology of baked bread and is used for 

elaboration, improvement and optimization mechanical tools for its slicing and 

processing. The criterion for tool optimization is to achieve the condition 0   

with the least plastic deformations of the sample is achieved [10]. 

 

6.6. Thixotropic liquids 

 

      Thixotropic fluids are an example of another class of non–Newtonian behavior 

that demonstrates the temporary effects. Thixotropy is the property of some liquids to 

change their viscosity over time under the influence of mechanical (stirring, shaking), 

thermal (heating, cooling), chemical, and some other influences. After the cessation 

of external load, the viscosity of such liquids increases with time [8–10]. In 

thixotropic fluid models, viscosity depends on some parameter(s) characterizing the 

microstructure of the medium and obeying additional evolutionary equation(s).  

      Examples of thixotropic liquids: blood, biogels, yogurt, kefir, honey, gelatin. 

      Thixotropy mechanism: the interaction of system components with a gradual 

change in the phase state. For example, honey or solution of gelatin exhibit slow 

increase in viscosity with time right up to final solidification. When they are heated, 

their viscosity decreases due to the phase transition and destroyment of their 

microstructure. Yogurt or kefir at rest go into the state of a viscoelastic solid, but with 

mechanical stirring their viscosity decreases. Ketchup flows out of the container only 

after vigorous shaking. 

      The state of the microstructure of thixotropic liquids can be described by 

internal variable(s), like the length msL  of the chains or fibers, the number N of 

particles in them, their relative shape, etc. Then, to say, ik ms ik2 (T,L ( ))v   . 

Upon substitution of this relation into (22), one will obtain an unclosed system of 

Navier–Stokes equations (4 equations with 5 variables). To close the system, one 

needs the corresponding evolution equation in the form 
 

dL
f (L, )

dt
     or   

dN
K (N, ) K (N, )

dt
     ,                      (26) 

 

where the function f (L, ) is set from physical conditions, statistical mechanics, 

experimental results, etc., and   is the characteristic time of the microstructure change. 

      If T  , where T is the characteristic time, then in (26) we can neglect the 

left–hand side and get the expression L L( ) from the condition f (L, ) =0. In this 

case, thixotropy is reduced to viscoplasticity, and the internal variable disappears. 

      As a basis for constructing equations (26), a discrete model can be used. The very 

first formulation of such a model was done by M. Smoluchowski in 1916. He 

considered Brownian coagulation in colloids. At the initial time, the dispersed system 

is spatially homogeneous and contains aggregates of various masses composed from 

single particles. If the aggregate consists of k  particles, then its mass k 0m km . Due 

to Brownian fluctuations, the aggregates approach each other and stick together, 
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forming new particles with a mass equal to the sum of the masses of the colliding 

particles. Paired collisions can lead to the formation of an aggregate of k particles if 

aggregates of k–p and p particles collide and stick together (Fig. 25a,b). There are also 

negative sources when the k–particle aggregate sticks to the p–particle aggregate 

forming a new (k+p)–particle aggregate. The Smoluchowski kinetic equation for pair 

interactions is 
 

   
k 1

k
k p p k p

p 1 p 1

dN 1
K k p,p N N K k,p N N

dt 2

 



 

    ,                  (27) 

 

where    K k p,p K p,k p   is the core of the kinetic equation of coagulation, 

corresponding to the probability of collision and coalescence of the (k–p)– and  

p–particle aggregates. 
 

    

а b c d 

Fig. 25. Positive (a, c) and negative (b, d) adhesion  

of aggregates (a, b) and exchange interactions (c, d) 
 

      The continuous analogue of (27) can be written in the form 
 

N
dN

K (C,N, ) K (C,N, ) div(J )
dt

     . 

 

where NJ  is the diffusion flux of aggregates [8,9]. 

      There are also anti–thixotropic (or rheopectic) fluids, which, on the contrary, 

behave as fluids at low strain rates and as viscoelastic solids – at rapid loads 

(deformations). Such fluids can flow out of a slightly inclined vessel. The stress–

strain curves for thixotropic and anti–thixotropic fluids at periodical loadings are 

presented in (Fig. 26 a–c).  
 

   

а б в 

Fig. 26. Curves ( )  for thixotropic (1) and rheopectic (2) liquids  

during loading–unloading (a), absorption (b) and release (c) of energy 
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6.7. Fluids with internal degrees of freedom 

 

6.7.1. Oriented fluids 

 

      An example of oriented fluids is liquid crystals (LC) which possess rheological 

properties of either liquids (fluidity, Fig. 27c) or crystals (anisotropy, Fig. 27a). 

LC consist of elongated, disk–, rod–shaped or more complex molecules that are 

ordered in a certain way (Fig. 27b,d,e,g). The orientation of the molecules is 

determined by the vector n , which is called director (Fig. 27e,f). Due to thermal 

motion the particles oscillate around the direction n (Fig. 27b). Additional heating 

destroys the order and LC became a liquid (Fig. 27c).   

      LC can be divided into nematic (Fig. 27d), smectic (Fig. 27e,f) and cholesteric 

(Fig. 27g) types. External physical fields like electric or magnetic fields, can change 

the orientation of particles, which leads to a change in the optical and other physical 

properties of LC, that is widely used in different devices and technologies (displays, 

monitors, switches, sensors, etc.). 

 

  
а                          b                               c d 

  
e                                        f g 

Fig. 27. The structure of solids (a), LC (b), liquids (c), nematics (d),  

smectics of type A (e) and type C (f) and cholesterics (g) 

 

      The rheological relation for LC has the form ˆˆ ˆ2 v T(n)   where the tensor 

T̂(n) is constructed based on the properties of the material. For oriented fluids, the 

simplest way to build this additional tensor is T̂(n) n n   (or ik i kT n n ), 

where (T,...)  . The system of Navier–Stokes equations (22) must be  completed 
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by the rheological relation for LC and the equation of evolution of the vector n , 

which leads to a closed system of equations 
 

2dv ˆdiv(v) 0, p v div(T(n)) f ,
dt

dn
G(n, v, f ,...)

dt

        



 

 

      In cholesterics n n(z) , where the 0z axis in the axis around which the 

particles are packed in a spiral (it is orthogonal to the plane of Fig. 27g). 

 

6.7.2. Micropolar fluids 

 

      The particles of microporal fluids can rotate (Fig. 28a) in space with an 

angular velocity   that differs from the speed of rotation of the liquid rot(v)   

due to slippage or active mechanisms. Examples: bacterial suspensions (Fig. 28b), 

micromotors, granular media. 

 

  
а b 

Fig. 28. The structure of a micropolar liquid (a)  

and a bacterial suspension with actively rotating cells (b) 

 

      The rheological law for micropolar liquids has the form ˆˆ ˆ2 v T( )      . 

The tensor of active rotations T̂  is constructed according to experimental data. 

Accordingly, the governing mass, momentum and energy equations must be 

completed by the equations for internal rotations, for example, in the form 
 

2dv ˆp v div(T( )) f ,
dt

d
G( , v, f ,...).

dt

    




      



 

 

      For the active micropolar liquids autocatalytic chemical reactions, energy 

absorption, and its conversion from chemical to mechanical energy (for living 

cells) must be taken into account in the function G. 
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6.7.3. Micromorphic fluids 

 

      These fluids are suspensions of deformable particles. In the course of fluid 

flows some part of the flow energy is spent on deformations of the particles 

appeared due to their inelastic collisions. The loss of energy resulted in the increase 

in effective viscosity in comparison with the basic fluid. Examples: cellular 

suspensions, blood, polymer solutions, suspensions of elastic capsules. The 

rheological law for such fluids has the form ˆ ˆˆ ˆ2 v T(W)   , where Ŵ is the 

tensor of microdeformations of particles [8–11]. 

      To construct this tensor, a coordinate system associated with the particle‟s 

surface must be introduced and the mechanics of the surface deformation as 

a  membrane, thin or thick shell, etc. must be formalized (Fig. 29a). Effective 

modeling for a small number of particles can be carried out by the finite element 

method (Fig. 29b). The model parameters must be then identified by the comparative 

study of the numerical simulations and experimental data. 
 

 

 

 

а b 

Fig. 29. Mechanics of microdeformations of one (a)  

and a group (b) of soft particles on the example of red blood cells 

 

6.8. Models with integral operators 

 

6.8.1. Materials with memory 

 

      In the materials with memory the stress state at a given moment is determined 

by the history of deformation. Such materials can be viscoelastic solid/fluid with 

different rheological behavior (shear–thinning or thickening, etc.). They are able to 

“remember” their stress–strain state and restore it later (Fig. 30a). Examples: 

memory alloys (Cu–Al–Ni, Ni–Ti, Fe–Mn–Si, Cu–Zn–Al, Cu–Al–Ni), memory 

polymers (polyurethanes, polystyrenes, and many others). Under certain conditions, 

such materials experience plastic and viscoplastic deformations (flow). 
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      The rheological law for materials with memory can be written in the form 
 

 
t

ˆ ˆ(t, r) K(t, t)v(t, r)dt



  ,                                       (29) 

 

where the operator K(t, t)  describes the entire history of deformation and formally 

corresponds to variable viscosity despite it has the dimension of stress ( [K] Pa ). 

For liquids, (29) must be substituted into (22) and the momentum equation will be  

the integro–differential equation in the form 
 

t
2dv

ˆp v div( K(t, t)v(t, r)dt) f
dt

  



      .                       (30) 

 

                 
а b 

Fig. 30. A fingerprint “remembered” by a material with memory (a)  

and a scheme of material with nonlocal properties (b) 

 

6.8.2. Materials with non–local properties 

 

      In such materials, the stress–strain state in each point of the medium depends 

on the deformations in a certain volume V around this point (Fig. 30b), therefore, 

the rheological relation has the form 

V

ˆ ˆ(t, r) K(r,R)v(t,R)dR   ,                                         (31) 

where the operator K(r,R)  sets the uniform or non–uniform distribution of the 

influence of deformations in the point with radius–vector R  on the stress in the 

point r .  

      Examples: composites, biological tissues (due to nervous and chemical regulation). 

 

7. CONCLUSION 

 

      At present, rheology is an actively developing field of science due to elaboration 

of new smart materials, synthetic polymers and composites, the development of new 

methods of physical and chemical processing of materials, recent studies of biological 

materials and their substitutes, successes in nanomaterials, nanophysics and 

nanoreology. 
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