серія фізична «Ядра, частинки, поля», вип. 2 /42/

77

Элементный и фазовый состав...

УДК 669.295.539.121.537.534

ЭЛЕМЕНТНЫЙ И ФАЗОВЫЙ СОСТАВ ТИТАНОВОГО СПЛАВА ВТ-22, ИМПЛАНТИРОВАННОГО ИОНАМИ W⁺ и Mo⁺

А.Д. Погребняк¹, В.М. Береснев², С.Н. Братушка¹, Л.В. Маликов²

¹Сумской институт модификации поверхности a/я 163, Сумы, Украина e-mail: <u>apogrebnjak@simp.sumy.ua</u> ² Научный физико-технологический центр МОН и НАН Украины г. Харьков, 61022, Свободы пл., 6, Украина

Поступила в редакцию 16 июня 2009 г.

С помощью методов резерфордовского обратного рассеяния ионов гелия и протонов, растровой электронной микроскопии с микроанализом, рентгенофазового анализа в геометрии скользящего луча (0,5°), мессбауэровской спектроскопии исследованы приповерхностные слои образцов титанового сплава BT-22, имплантированных ионами W и Mo. Методом наноиндентирования измерены механические характеристики. Обнаружено увеличение твердости приповерхностного слоя имплантированного титанового сплава BT-22 за счет формирования мелкодисперсных интерметаллидов.

КЛЮЧЕВЫЕ СЛОВА: двойная ионная имплантация, нанотвердость, профили распределения элементов, фазовый состав.

ELEMENTAL AND PHASE COMPOSITION OF TITANIUM ALLOYS VT-22 IMPLANTED BY IONS W⁺ AND Mo⁺

A.D. Pogrebnjak¹, V.M. Beresnev², S.N. Bratushka¹, L.V. Malikov²

 ¹Sumy Institute for Surface Modification PO BOX 163, 40030 Sumy, Ukraine
 ²Scientific Center of Physical Technologies Kharkiv, 61022, Svoboda Sq., 6, Ukraine

With the help of methods of back-scattering (RBS) of helium ions and protons, scanning electron microscopy (SEM) with a microanalysis EDS, WDS, X-ray phase analysis (XRD) in geometry of sliding beam (0.5°), Mossbauer spectroscopy (MS), nanoindentation were investigated samples of titanium alloys VT-22. The increase of hardness almost in 2 times, decreasing of wearing and increase of fatigue resistance is revealed due to formation of fine-dyspersated (nanodimension) intermetallide phases. **KEY WORDS:** double implantion, nanohardness, types of distributing of elements, phase composition.

ЕЛЕМЕНТНИЙ І ФАЗОВИЙ СКЛАД ВТ-22, ІМПЛАНТОВАНОГО ІОНАМИ W⁺ І Мо⁺

О.Д. Погребняк¹, В.М. Береснєв², С.М. Братушка¹, Л.В. Маліков²

¹Сумський інститут модифікації поверхні

а/с 163, Суми, Україна

²Науковий фізико-технологічний центр МОН і НАН України, м. Харків

За допомогою методів резерфордівського зворотного розсіювання (P3P) іонів гелію і протонів, растрової електронної мікроскопії (SEM) з мікроаналізом (EDS), рентгенофазового аналізу (XRD) у геометрії ковзного променя (0,5°), мессбауерівської спектроскопії (MS) досліджені приповерхневі шари зразків титанового сплаву BT-22, імплантовані іонами W та Mo. Методом наноіндентування визначено механічні характеристики. Виявлено збільшення твердості приповерхневого шару імплантованого титанового сплаву BT-22 за рахунок формування дрібнодисперсних інтерметалідів. **КЛЮЧОВІ СЛОВА:** подвійна іонна імплантація, нанотвердість, профілі розподілу елементів, фазовий склад.

Ионная имплантация, как способ модификации поверхности демонстрирует эффективное влияние на целый комплекс физико-механических свойств и характеристик материала. В последнее время большее распространение получила двойная ионная имплантация газов и металлов, что обеспечивает иной характер изменения физико-механических свойств [1-4]. В работах [5, 6] показано, что двойная имплантация в титановые сплавы ионов Cu и Ni, Fe и Zr приводит к изменению микротвердости, вызванной упрочнением поверхностного слоя за счет образования мелкодисперсных карбидов и оксикарбидов [7-14]. Результатов, касающихся исследования влияния двойной имплантации на изменение физико-механических и химических свойств титановых сплавов опубликовано незначительное количество. Цель работы - исследование влияния двойной имплантации ионов W и Мо на изменение структуры, фазового состояния и физико-механических свойств титановых сплавов BT-22.

МЕТОДИКА ПРИГОТОВЛЕНИЯ И ИССЛЕДОВАНИЯ ОБРАЗЦОВ

Исследовались образцы титанового сплава BT-22 размером 15 15 2 мм следующего состава: Ti ~ 84 %, Al ~ 4,0-5,9 %, V ~ 4,2 %, Fe ~ 1,2 %, Mo ~ 4,0-5,5 %, Cr~ 0,5-2,0 %. Перед ионной имплантацией проводилась полировка и отжиг для снятия остаточных напряжений и наклепа. Имплантация металлических ионов W и Mo проводилась с использованием вакуумно-дугового имплантера «Диана-2» при следующих параметрах: доза имплантации 5 10^{17} см⁻², длительность импульса составляла около 200 мкс, температура поверхности образцов не превышала 573 K, остаточное давление в камере 10^{-3} Па. Подложка, на которой крепились образцы, охлаждалась водой. Для анализа элементного состава образцов использовался метод РОР ионов гелия и протонов с энергией 2,035 МэВ и 2,012 МэВ соответственно. Для исследования структурно-фазовых процессов, протекающих в тонких приповерхностных слоях твердых тел при ионной имплантации, использовался метод мессбауэровской спектроскопии с регистрацией конверсионных электронов (МСКЭ). Фазовый состав поверхности анализировался с помощью рентгеновского дифрактометра ДРОН-2 в СиК_α -излучении. Испытания на нанотвердость проводились на приборе «Nano Indentor-II»

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ

Изучение рельефа поверхности образцов титанового сплава BT-22 проводилось на растровом электронном микроскопе РЭМ-102Е. На поверхности сплава не обнаружено кратеров как в случае имплантации ионов азота в TiNi [15] с энергией от 60 до 90 кэВ и плотностью ионного тока до десятых долей миллиампера. Рельеф поверхности не изменяется в сравнении с исходной поверхностью, в основном она гладкая и однородная. Энергетические спектры POP, снятые с образцов BT-22, после двойной имплантации ионов W и Mo, приведены на рис. 1. Анализ спектральных кривых свидетельствует, что после имплантации в образце наблюдается широкий набор элементов: присутствуют пики, отвечающие исходному состоянию материала BT-22 и пики имплантированных элементов W и Mo, пики C и O, адсорбированные поверхностью титанового сплава за счет невысокого вакуума (10^{-3} Па) при ионной имплантации. С целью снятия напряжений, возникающих в приповерхностных слоях в результате имплантации, а также частичного снятия радиационных дефектов проводился отжиг титановых сплавов BT-22 при температуре 823 К в вакууме 10^{-2} Па.

Результаты исследований с помощью РОР приведены на рис. 2 (стрелками указаны кинематические границы элементов).

Рис. 1. Энергетический спектр РОР ионов He⁴ с энергией E= 2,035 МэВ, с поверхностного слоя образцов BT-22

Рис. 2. Энергетический спектр РОР ионов He⁴ с энергией E = 2,012 МэВ, снятых с того же участка после отжига при 823 К в течение 2 часов

Видно, что пик углерода исчезает, а концентрация кислорода уменьшается (рис. 2). При этом, дополнительные исследования с помощью вторичной ионной масс-спектрометрии подтверждают результаты метода POP. Исследования свидетельствуют, что кислород находится в связанном состоянии в виде оксида титана. Термический отжиг приводит к увеличению глубины проникновения имплантированных ионов почти в 1,5 раза.

Одной из важных и весьма трудных в экспериментальном отношении задач при использовании метода ионной имплантации является определение геометрических параметров концентрационных профилей по глубине облучаемого материала. На основе этих данных можно определить характерную область доз имплантации в имплантируемом слое, толщину модифицированного слоя, концентрацию имплантируемой примеси, которой можно достичь при выбранных режимах. Профиль внедренных атомов описывается кривой Гаусса [16]. Однако экспериментальные исследования показали, что данное описание существенно не адекватно экспериментально снятым профилям для большинства имплантированных ионов. Это связано с тем, что процессы, определяющие профили распределение, а с другой – эффекты, связанные с перераспределением и изменением атомного состава матрицы, изменением ее плотности, которые существенно влияют на величину проекционного пробега и характер межатомных столкновений имплантируемых ионов и атомов имплантируемого слоя. Результатом является изменение формы распределения и смещение максимума при увеличении дозы, что обусловлено эфектом изменения элементного состава и распыления поверхности одновременно. При этом, трудно определить какой процесс, в данном случае, является доминирующим. В связи, с этим предлагается определение профилей

распределения элементов по глубине по следующей формуле

$$dC(h) = \frac{j}{\sqrt{2\pi\Delta R_p}} \exp\left[-\frac{1}{2}\left(\frac{h - \left(\frac{j}{N}\sum_{k=1}^n w_k s_k\right)t - R_p}{\Delta R_p}\right)^2\right] dt,$$
(1)

<u>م</u> ٦

где C – концентрация имплантированных элементов; n – количество параметров влияния на элементный состав и распыление; N – количество атомов в 1 см³ вещества; j – плотность потока ионов; h – глубина имплантации; R_P – средний проективный пробег ионов; ΔR_P – среднеквадратичное отклонение проективного пробега ионов; w_k – статистический вес параметров; s_k – коэффициент распыления; t – время имплантации.

На рис. 3 а, б приведены зависимости изменения концентрационных профилей распределения вольфрама и молибдена в приповерхностном слое титанового сплава BT-22 после имплантации W и Mo дозой 5×10^{17} см⁻² с энергией 60 кэВ (экспериментальные данные) и результаты, полученные путем расчета.

Полученные результаты являются некоторым упрощением по сравнению с реальными условиями ионной имплантации. Так, помимо указанных выше параметров процесса, оказывающих влияние на распределение имплантированных ионов присутствуют дополнительные процессы, оказывающие заметное влияние на перераспределение имплантируемых примесей и соответственно на концентрационные профили. К ним следует отнести эффекты радиационно-стимулированной и термической диффузии в имплантированных материалах, сегрегацию примесей, влияние кристаллической ориентации матрицы (эффект каналирования) и т.п. Результаты расчета позволяют достаточно близко к экспериментальным данным (рис. 3 а, б) смоделировать распределение имплантированных примесей по глубине. Это позволяет количественно оценить такие важные параметры, как толщина имплантированного слоя, максимальная концентрация и т.д., которые могут быть достигнуты при выбранных условиях ионной имплантации.

Рис. 3. Расчетные и экспериментальные профили распределения по глубине имплантированных ионов W⁺ и Mo⁺ с энергией 60 кэВ в матрице титанового сплава BT-22 а) – молибден б) – вольфрам

Метод РОР позволят определить концентрационные профили разных элементов в имплантированных системах, однако информации, о том, в каком состоянии находятся элементы между собой (твердый раствор, химическое соединение), он не предоставляет. В табл. 1 приведены результаты рентгеновского дифракционного анализа, снятого с образцов титанового сплава ВТ-22.

Результаты фазового анализа, проведенного на образцах ВТ-22 показали, что приповерхностный слой состоит из: α -Ti, β -Ti и Al₃Ti, а также фаз Al_{0,6}Cr_{0,07}Ti и Al₃Ti_{0,8}V_{0,2}. (табл. 1). В процессе ионной имплантации W⁺ и Mo⁺ происходит перераспределение интенсивности дифракционных линий Al₃Ti, Al_{0,67}Cr_{0,08}Ti_{0,25} и Al₃Ti_{0,8}V_{0,2}. Для получения информации о вкладе ионной имплантации W и Mo на фазовый состав и микронапряжения, возникающие в приповерхностных слоях снимались дифракционные спектры в касательной геометрии (угол 0,5°). Результаты свидетельствуют, что происходит уширение линии (110) α -Ti. Это указывает на тенденцию увеличения деформации кристаллической решетки α -Ti, обусловленной имплантацией W и Mo. Уширение дифракционных линий, по-видимому, обусловлено микродеформациями (дефектами упаковки) кристаллической решетки и негомогенностью. Форма и интенсивность отражений зависит от атомных смещений, смещение отражений, в свою очередь, свидетельствует об изменении параметров решетки.

	и мо (доза имплантации 5×10 см.)						
N⁰	Угол	Межплоскостное	Относительная	Фаза	HKL	Угол	Интенсивность
П/П		расстояние	интенсивность			эталона	
1	21.060	4 2183	15 38	Al ₃ Ti	002	20,705	15
1	21,000	4,2105	15,58	Al ₃ Ti _{0.8} V _{0.2}	002	20,747	6
2	24,680	3,6071	33,85	Al ₅ Ti ₂	102	23,643	5
3	35,260	2,5453	18,46	α-Ti	100	35,123	25
4	38,460	2,3406	66,15	β-Τί	110	38,514	100
				Al ₃ Ti	112	39,150	100
5	39,260	2,2947	46,15	Al ₃ Ti _{0.8} V _{0.2}	112	39,345	100
				Al _{0.67} Cr _{0.08} Ti _{0.25}	111	39,395	100
6	40,300	2,2378	84,62	α-Ti	101	40,205	100
7	53,200	1,7217	27,69	α-Ti	102	53,051	13
8	57,100	1 6120	72,31	Al ₃ Ti	1019	56,910	12
		1,0130		Al _{0.67} Cr _{0.08} Ti _{0.25}	112	56,936	5
9	63,460	1,4658	66,15	α-Ti	110	63,007	11
10	71,040	1,3269	100,00	β-Τί	211	70,728	17
11	76,800	1,2411	76,92	α-Ti	112	76,293	9
12	93,160	1,0613	18,46	α-Ti	104	92,829	1
13	110,280	0,9395	15,38	α-Ti	211	109,17	4
14	115,320	0,9124	33,85	α-Ti	114	114,42	3

Таблица 1. Фазовый состав поверхностного слоя титанового сплава BT-22 после ионного легирования W

В процессе ионной имплантации W и Mo в титановый сплав BT-22 появляется поле напряжений, что приводит к возникновению упругих искажений кристаллической решетки, величина которой максимальна вблизи границ раздела. Для подтверждения этого предположения были проведены исследования субмикрокристаллического состояния титанового сплава BT-22 имплантированного ионами W и Mo с помощью мессбауэровской спектроскопии. Исследование субмикрокристаллического Fe, входящего в состав титанового сплава BT-22 с помощью мессбауэровской спектроскопии показывает, что экспериментальный спектр является суперпозицией спектров соответствующих двум различным состояниям железа. Одно из них (состояние атомов Fe в кристаллитах) совпадает с состоянием атомов железа в обычном крупнозернистом α -Fe. Вторая составляющая экспериментального спектра отражает особое состояние атомов железа на границах раздела, хотя кристаллическая структура зерен и их границ раздела одинакова. Полученные результаты свидетельствует, что в процессе имплантации ионов W и Mo атомы Fe вошли в качестве примеси в уже существующие фазы (либо образовались в небольшом количестве), например, Al₃Fe, в котором атомы железа находятся в парамагнитном состоянии или из-за малых размеров (< 100 нм) в супермагнитном состоянии. Это свидетельствует о локальной неоднородности в ближайшем окружении атомов железа, соответствующей либо аморфному состоянию, либо образованию большого числа примесей.

Для определения механических свойств, в частности твердости, поверхностных слоев использовался метод наноиндентирования, который позволяет с высокой точностью записывать кривые индентирования в координатах нагрузка-перемещение, как при нагружении, так и при снятии нагрузки [18].

Испытания проводились при постоянной скорости внедрения индентора, равной 5 нм/с. На каждом образце наносилось по 5 отпечатков на расстоянии 30 мкм один от другого. Остановка на 30 секунд во время разгрузки производилась для измерения скорости теплового расширения стержня индентора. Это вызвано тем, что температура индентора и образца никогда не бывает абсолютно одинаковой. Поэтому после контакта индентора с образцом начинается расширение или сокращение стержня индентора, которое прибор воспринимает как изменение глубины контакта. Высокая чувствительность прибора приводит к тому, что различие в температуре образца и индентора даже на несколько десятых долей градуса может существенно исказить результаты испытаний (особенно при малых глубинах отпечатка и/или низких скоростях нагружения). Чтобы уменьшить различие в температуре образца и индентора, образец помещается в прибор за 12 часов до начала испытаний.

На основании полученных данных были построены графики изменения твердости по глубине, рис. 4. Твердость исходного образца слабо уменьшается с ростом глубины отпечатка от 50 до 150 нм. Это обычный масштабный эффект (indentation size effect). Имплантация ионов W и Mo дозой 5×10^{17} см⁻² приводит к увеличению твердости почти в два раза на глубине 50 нм при уменьшении до 45 % на глубине 150 нм.

Отжиг после имплантации (см. рис. 4, кривая 3) приводит к резкому росту твердости поверхностного слоя, что связано с образованием оксикарбидов.

Результаты измерения твердости и модуля упругости при глубинах отпечатков 50, 100 и 150 нм приведены в таблицах 2 и 3.

Рис. 4. Изменение нанотвердости в приповерхностных слоях титанового сплава ВТ-22: 1 – исходный, 2 – имплантация, 3 – отжиг после имплантации

Таблица 2. Тверлость припо	верхностных слоев	з титанового сплава	вт-22. ГПа
тиолици 2. твердоств прино	Sepande millin ender		, DI 22, I IIu

Образец	50 нм	100 нм	150 нм
Исходный	$5,8 \pm 0,8$	$5,8 \pm 0,5$	$5,7 \pm 0,7$
После имплантации	$10,0 \pm 2,5$	$8,3 \pm 2,2$	$7,5 \pm 2,0$

Таблица 3. Модуль	упругости титанового сплава	BT-22,	ГПа
-------------------	-----------------------------	--------	-----

Образец	50 нм	100 нм	150 нм
Исходный	125 ± 12	129 ± 16	129 ± 16
После имплантации	168 ± 32	147 ± 26	148 ± 34

Наблюдается уменьшение твердости с глубиной по сравнению с исходным образцом. Это результат влияния ниже лежащего не упрочненного материала. Модуль упругости образцов из титанового сплава BT-22 после имплантации также возрастает на малых глубинах при индентировании (50 нм) до 50% и уменьшается с увеличением глубины индентирования (табл. 3).

выводы

1. При имплантации ионов W и Mo в титановый сплав BT-22 рельеф поверхности имплантированных образцов не изменяется. Показано, что отжиг титанового сплава BT-22, подвергнутого имплантации ионами W⁺ и Mo⁺ при температуре 823 К приводит к исчезновению углерода, снижению концентрации кислорода по глубине, которые были адсорбированы поверхностью титанового сплава в процессе имплантации.

2. Показано, что при облучении титанового сплава BT-22 ионами W⁺ и Mo⁺ происходит перераспределение интенсивностей дифракционных линий. Обнаружено, что уширение дифракционных линий, снятых с поверхности титанового сплава BT-22 связано с появлением поля напряжений, которое приводит к возникновению упругих искажений кристаллической решетки, величина которого максимальна вблизи границ раздела.

3. Проведен сравнительный анализ распределения имплантированных примесей по глубине (экспериментальные результаты) с расчетными значениями. Результаты расчета позволяют достаточно близко к экспериментальным данным смоделировать распределение имплантированных примесей по глубине.

4. Твердость титанового сплава BT-22, подвергнутого имплантации ионами W^+ и Mo⁺ дозой 5 10^{17} см⁻² увеличивается от 5,8 до 10,0 ГПа, а модуль упругости от 125 ГПа до 168 ГПа.

СПИСОК ЛИТЕРАТУРЫ

1. Хирвонен Дж.К. Ионная имплантация в металлы.- М.: Металлургия, 1985.- 457 с.

- 2. Комаров Ф.Ф. Ионная имплантация в металлы.- М.: Энергоатомиздат, 1990. 262 с.
- Pogrebnjak A.D., Tolopa A.M. A revive of hign-dose implantion and production of ion mixed structures // Nucl. Instr. and Meth.-1990. - Vol. B52. - P.24-43.
- 4. Pogrebnjak A.D., Kobzev A., Gritsenko B.P. et al. Effect of Fe and Zr ion implantion and high-current electron irradion treat-

ment of chemical and mechanical properties of Ti-V-Al alloy // Jour. of Appl. Phys. - 2000. -Vol. 87, № 5. - P.2142-2148.

- 5. Pogrebnjak A.D., Bakharev O.G., Pogrebnjak N.A. et al. Certain features of high-dose and intensive implantation of Al ions in iron // Phys. Lett. 2000. Vol.A265. P. 225-232.
- 6. Pogrebnjak A.D., Bazyl E.A. Certain features of high-dose and intensive implantation of Al ions in iron Certain features of high-dose and intensive implantation of Al ions in iron // Vacuum. 2002. Vol.64. P. 1-7.
- 7. Анищик В.М., Углов В.В. Ионная имплантация в инструментальные стали. Минск: БГУ, 2000. 182 с.
- 8. Бахарев О.Г., Погребняк А.Д., Базыль Е.А., Соколов С.В. Исследование эффекта дальнодействия при высодозовой ионной имплантации в металлы // Металлофизика и новейшие технологии. 1999. Т.21, №8. С. 61-70.
- 9. Базыль Е.А., Погребняк А.Д., Соколов С.В., Свириденко Н.В. Процессы карбидообразования в сплавах молибдена и титана при высокодозовой ионной имплантации // ФХОМ. 2000. № 1. С. 17-26.
- Кадыржанов К.К., Комаров Ф.Ф., Погребняк А.Д. и др. Ионно-лучевая и ионно-плазменная модификация материалов.-М.: МГУ, 2005. - 640 с.
- 11. Азаренков Н.А., Береснев В.М., Погребняк А.Д. Структура и свойства защитных покрытий и модифицированных слоев.- Харьков: ХНУ, 2007. - 565 с.
- 12. Гусева М.И. Ионная имплантация в металлы // Поверхность. 1982. №4. С. 27-50.
- 13. Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments // J. Mater. Res. -1992. Vol.7, № 6.- P. 1564-1583.
- 14. Дуб С.Н., Новиков Н.В. Испытания твердых тел на нанотвердость // Сверхтвердые материалы. 2004, № 6. С. 16-33.
- Pogrebnjak A.D., Bratushka S.N., Uglov V.V. et al. Structure and properties of Ti alloys after double implantation // Vacuum. -2009. - Vol.83, №. 6. - P. S241-S244.
- Комаров Ф.Ф., Новиков А.П., Соловьев В.С., Ширяев С.Ю. Дефекты структуры в ионно-имплантированном кремнии. -Минск: Университетское, 1990. -318 с.
- 17. Nastasi M., Mayer J.W., Hirvonen J.K. Ion-solid interactions: Fundamentals and applications. Cambridge: Univ. Press., 1996. 578 p.
- 18. Головин Ю.Н. Наноиндентирование и механические свойства твердых тел в субмикрообъемах, тонких приповерхностных слоях и пленках //ФТТ. -2008. -Т.50, № 12. С.2113-2140.