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Abstract. The stability of the steady flow of a viscous

liquid through a thick-wall, three-layer, viscodlastube
with different rheological parameters for each faye
studied. It is shown that the system can be ih bbsolute
and convective unstable states. It is shown trettisolute
instability of the system can be converted intmavective
instability, and in some cases the system can den
stabilized with an appropriate choice of the rhgual
parameters. It is found that an anisotropic tub@pmosed
of layers possessing distinct rheological values c
completely eliminate all absolute instability mod&he
present model can be applied to blood vessels ahat
composed of three viscoelastic layers with distin
rheological properties and to distensible tubeasveging
fluids in different technical devices.

Introduction

Different phenomena due to fluid-structure intei@ttcan
be observed when fluid moves over a deformableasarin
heat and mass exchangers or through the tubeshandels

of different man-made devices and natural beds. F

example, a laminar flow that is ordinarily stabtegaven a
low Reynolds number if the surface is rigid candme
unstable with respect to small disturbances ifsindace is
compliant, as it has been shown by Hamadiche amdeGa
Hak (2002). Hamadiche and Gad-el-Hak (2004) cduwigt
an extensive analysis to classify the nature ofribbility
in soft duct flow where they found the instability be
absolute in nature. Hamadiche, M., Kizilova, N. dbad-
el-Hak, M. (2008) considered the flow of a viscdiggid
through a thick-wall, three-layer viscoelastic tulagth
different rheological parameters for each layer amalysed
the fluid structure system stability. Influence dfe
material parameters of the layers (thickness, itigns
viscosity, Young modules and Poisson ratio) and f
Reynolds number on the spatial and temporal arogtitin
rate of the most unstable mode has been investigahe
importance of transition between absolute and octiwe
instabilities and the possibility of eliminatingettabsolute
instability are elucidated.

Spatio--Temporal | nstability

The flow is said to be absolutely unstable, if thierat least
one growing mode having zero group velocity. Thisange
that the local system response to an initial imgpglows in
time. Absolute instabilities can occur when a meda
exists for upstream disturbance propagation, asXample
in the separated flow over a backward-facing steprev the
flow recirculation provides such mechanism. In tbése,
some of the growing disturbances may travel upstraad
continually disrupt the flow even after the initia
disturbance is neutralized. Flow oscillations iis ttase are
self-excited. Therefore, absolute instabilities geaerally

coelastic Tube Conveying Fluid

more dangerous and more difficult to control,
consequently, it has to be suppressed as much as
possible. In some flows, for example two-dimensiona
blunt-body wakes, certain regions are absolutely
unstable while others are convectively unstablee Th
upstream addition of acoustic or electric feedbeak

a .

change a convectively unstable flow to an absojutel
unstable one and self-excited flow oscillations tzuns

%e generated. In any case, identifying the charaafte

flow instability facilitates its effective controlj.e.
suppressing or amplifying the perturbation as ndede
The instability is considered to be absolute if ¢hisra
pinch point in the Fourier contours that preverits t
temporal amplification rate from being reduced ddwn
zero. If there are no pinch points, the instability
convective. In other words, observing a pinch paint
the unstable zone of the Fourier plane is a nepeasa
sufficient condition for the presence of an absmolut
instability.
An the case of an absolute instability, the mode
propagates upstream as well as downstream and often
has a very small (or even zero) group velocity in
C(Eomparison with the velocity of the mean flow. The
coalescence of two modes coming from two halves of
the wave number plane, forming the pinch point of
Fourier contour, may be detected by inspectionhef t
dispersion relation. The existence of a pinch pdsnt
equivalent to the existence of a saddle point & th
dispersion relation in the complex wave number @lan
B?rmed by two modes coming from two halves of that
plane. Kupfer et al. 1987, have shown that such a
saddle point is equivalent to a cusp point in theglex
frequency plane, i.e. in the Laplace contours. Kuet
al. 1987 provide fuller account of the procedurdioed
here.
In practice, a criterion that allows the segregatio
between absolute and convective instabilities may b
expressed in terms of the complex wave number, k= k
| k; and the complex frequency number, s=ks, | = (-
1)1’2, through the examination of the dispersion refatio
D(k,s)=0. First, the system is unstable (ks> 0O for at
least one real k and stable otherwise. In order to
distinguish between the two kinds of instabilitiege
onsider Laplace contour L with very largethen the
ourier contour are computed via the dispersion
equation. Thus, the set of branché&€ n the upper half
of the complex k-plane as well as the set of braadh
©)in the lower half of the same plane are obtained by
varying s for large and fixed s which, of course,
requires computing the spatial eigenvalues for sall
belonging to L. Decreasing keads to the displacement
of those set of branchesand K®in the complex k-
plane. The existence of absolute instability is adee
by a saddle point (a pinch point in the Fouriertoan)
in the complex k-plane formed by two branches, one
belongs to the set*® and the other belongs to the set
k®. Letk and § be the complex wave number and
the complex frequency for which a pinch point oscur
At this point the dispersion relation has doubletso
Therefore,
D ({k},{s}h)= 0, dD(k,s)/dk=0at k=ky, ands = g
As long as the preceding equations are satisfied,fo
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0 , the instability is absolute. The boundary of cdln®
instability is the locus of the roots of the presetequation
when g=0. Namely,

D ({k}.{s})=0, dD(k,s)/dk=0,andk=kg,

s=%, =0

flow, the absolute instability exists for certaialwes of
the parameters of the system. It appear as if the
flexibility of the structure conveying the flow ireases
the number of degrees of freedom of the systens thu

When the double roots cross the boundary of absolytermitting certain unstable modes to interact amthfa

instability while the equation D ¢}s))= 0 alone is satisfied more powerful instability,
the system becomes convectively unstablelowever, those degrees of freedom offered by the

for s > 0,
otherwise it becomes stable.

Absolute | nstability in Flows Over Compliant Walls

In boundary layer flows Gad-el-Hak et al. (1984)l #&ad-
el-Hak (1986) experimentally investigated the dife
instabilities occurring over a compliant surfaceeiacting
with a boundary layer flow. The conditions for theset of
these

i.e. absolute instalilit

system may be chosen in order to force the santersys
to be in a state far from absolute instability. dther
words, careful choice of the system's parameteimy m
prevent the onset of absolute instability, as Jo#
shown in the following section.

Results

instabilities were documented and their wavihe system under consideration herein consis@ of

amplitude, length and phase speed were measured asi thick-wall circular tube of inner radius R filleglith a

novel non-intrusive probe.

These authors observed that an elastic or a vistaesnlid
subjected to the forces of a turbulent boundarerag
susceptible to forming two types of waves distisbed by

Newtonian fluid. The tube wall is composed of thcee
axial, viscoelastic layers of different densities,
thicknesses, and rheological coefficients. Generall
each layer is anisotropic and rheological coeffitseof

their wave speeds. One of those two waves, statite layers are different. We assume that the tudettze
divergence, has a slow propagation speed and ter, ot steady flow inside it are in dynamic equilibrium. €Th

flutter, has a fast propagation one. In retrospetias been
found that those two modes form a common futuréhef
mechanism involving a fluid-structure interactiof.first

tube is assumed to be sufficiently long to allaw
uniform and steady velocity field parallel to thdsaof
the tube. The temporal and the eigenvalues of the

step toward the comprehension of the dynamic of theystem are computed. Figure 1 shows the trajeabry

modes observed experimentally has been offeredSen

the two coalescing modes when the Laplace contour is

and Arora (1988) where they found that a powerfubwered. The figure shows that the two modes coalesc

instability termed transitional could be formed liye

when the amplification rate approaches zero bufbrbe

coalescence of a solid-based unstable mode andich fl reaching zero indication by the way that the inifitsb

based unstable mode. However, the absolute or conee
nature of any of those instabilities were not Gikedii at this

point of time.
The existence of an absolute instability over a d@np
flat-plate in laminar

analytically by Yeo et al. (1996; 1999). In thedadses,

Blasius boundary layer is used as a base flowt Aswell

known, a Blasius boundary layer developing oveigalr
wall is subjected only to convective instability hias been
understood that the absolute nature of the indtatidund

by Yeo et al. (1999) is due to the interaction lestw the
flow and the compliant wall. Later, Yeo et al. (20ave
shown that the slow waves, termed static-divergearmes,
observed when a turbulent boundary layer flowsra
compliant wall represents an absolute instabilignd that

is absolute. Figure 2 shows the amplification rate
versus the viscosities of the one of the layer avkiile

viscosity of the others are maintained constante Th
figure show too the amplification rate when the

flow has been demonstratediscosities of all the layers are changed by thmesa

amount.

Effect of the viscosities of the layers on the ibgity

and on the absolute instability of the system mashin
figure 2; for the following system parameters. Titnger
radius of the tube R is the unity of distance, Régs
number equal 10, ratio of elastic forces to
hydrodynamics forces equal 10, the thickness of the
three layers respectively from inside to the owtsid

the duct read ;h= 0.08, h = 0.14, h= 0.1, Poisson
coefficient equal 0.4, wave number k=2.5. We ribte

the fast waves, termed flutter, represent a coieect viscosities of the three layers from inside of thbe

instability. This analysis offers a more preqgidg/sical
picture of the growth and development of the fast slow
modes developing over a compliant surface.

A model-based on three-dimensional linear elagtici

equations to describe the wall motion and pertishabf
the exact Navier--Stokes equations for the fluidiomohas

been suggested by Hamadiche (2002). He has stimawn

both absolute and convective instabilities in then of

axisymmetric waves may occur in a viscoelastic tub

conveying fluid flow. In his model, the tube isheted to
an exterior rigid wall, therefore it is prohibiteiiom
collapsing by the no-displacement condition impoaethe
tethering surface. When the outer surface of thaptiant
tube is free from constraint, the tube may collajpseer the
action of the transmural pressure and the systesonbes

much more vulnerable to absolute and convecti

instabilities, as it has been shown by Hamadiclie Gad-
el-Hak (2004).
unstable modes are non-axisymmetric. In all casdgn
the wall is non-rigid and is allowed to interactthwithe

These authors found that the altsol

toward the outside, respectively, v,, vz . We note the
viscosity of an arbitrary layerv, . The label of the
curves are as follow: curve labelled vg,(v,, v3)=(v,

r\)r, v;), curve labelled x,M, Vo, V3)=(v,, 0, 0), curve

labelled *,  @1,v,,v3)=(0v, ,0), and curve labelled
“box”,  (v1, Vo, v3)=(0, 0, v, ). (b) Amplification rate

at the cusp point versus the viscosities of tigerks all
ther conditions are the same as part (a). tiusd that

the system could be stabilised and the absolute
instability could be eliminated by increasing the
viscosity of the second layer, curve labelled *hiles
increasing the viscosities of the three layers ttogreby

the same amount do not stabilise the system.
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