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Abstract. The stability of the steady flow of a viscous 
liquid through a thick-wall, three-layer, viscoelastic tube 
with different rheological parameters for each layer is 
studied.  It is shown that the system can be in both absolute 
and convective unstable states. It is shown that the absolute 
instability of the system can be converted into a convective 
instability, and in some cases the system can even be 
stabilized with an appropriate choice of the rheological 
parameters.  It is found that an anisotropic tube composed 
of layers possessing distinct rheological values can 
completely eliminate all absolute instability modes. The 
present model can be applied to blood vessels that are 
composed of three viscoelastic layers with distinct 
rheological properties and to  distensible tubes conveying 
fluids in different technical  devices. 
Introduction 
Different phenomena due to fluid-structure interaction can 
be observed when fluid moves over a deformable surface in 
heat and mass exchangers or through the tubes and channels 
of different man-made devices and natural beds. For 
example, a laminar flow that is ordinarily stable at given a 
low Reynolds number if the surface is rigid can become 
unstable with respect to small disturbances if the surface is 
compliant, as it has been shown by Hamadiche and Gad-el-
Hak (2002).  Hamadiche and Gad-el-Hak (2004) carried out 
an extensive analysis to classify the nature of the instability 
in soft duct flow where they found the instability to be 
absolute in nature. Hamadiche, M., Kizilova, N. and Gad-
el-Hak, M. (2008) considered the flow of a viscous liquid 
through a thick-wall, three-layer viscoelastic tube with 
different rheological parameters for each layer and analysed 
the fluid structure system stability.  Influence of the 
material parameters of the layers  (thickness, density, 
viscosity, Young modules and Poisson ratio) and the 
Reynolds number on the spatial and temporal amplification 
rate of the most unstable mode has been  investigated. The 
importance of transition between absolute and convective 
instabilities and the possibility of eliminating the absolute 
instability are elucidated. 
Spatio--Temporal Instability 
The flow is said to be absolutely unstable, if there is at least 
one growing mode having zero group velocity. This means 
that the local system response to an initial impulse grows in 
time. Absolute instabilities can occur when a mechanism 
exists for upstream disturbance propagation, as for example 
in the separated flow over a backward-facing step where the 
flow recirculation provides such mechanism. In this case, 
some of the growing disturbances may travel upstream and 
continually disrupt the flow even after the initial 
disturbance is neutralized. Flow oscillations in this case are 
self-excited.  Therefore, absolute instabilities are generally 

more dangerous and more difficult to control, 
consequently, it has to be suppressed as much as 
possible. In some flows, for example two-dimensional 
blunt-body wakes, certain regions are absolutely 
unstable while others are convectively unstable. The 
upstream addition of acoustic or electric feedback can 
change a convectively unstable flow to an absolutely 
unstable one and self-excited flow oscillations can thus 
be generated. In any case, identifying the character of 
flow instability facilitates its effective control, i.e. 
suppressing or amplifying the perturbation as needed. 
The instability is considered to be absolute if there is a 
pinch point in the Fourier contours that prevents the 
temporal amplification rate from being reduced down to 
zero. If there are no pinch points, the instability is 
convective. In other words, observing a pinch point in 
the unstable zone of the Fourier plane is a necessary and 
sufficient condition for the presence of an absolute 
instability. 
In the case of an absolute instability, the mode 
propagates upstream as well as downstream and often 
has a very small (or even zero) group velocity in 
comparison with the velocity of the mean flow. The 
coalescence of two modes coming from two halves of 
the wave number plane, forming the pinch point of 
Fourier contour, may be detected by inspection of the 
dispersion relation. The existence of a pinch point is 
equivalent to the existence of a saddle point of the 
dispersion relation in the complex wave number plane 
formed by two modes coming from two halves of that 
plane. Kupfer et al. 1987,   have shown that such a 
saddle point is equivalent to a cusp point in the complex 
frequency plane, i.e. in the Laplace contours. Kupfer et 
al. 1987 provide fuller account of the procedure outlined 
here. 
In practice, a criterion that allows the segregation 
between absolute and convective instabilities may be 
expressed in terms of the complex wave number, k= kr + 
I ki, and the complex frequency number, s=sr + I si, I = (-
1)1/2, through the examination of the dispersion relation 
D(k,s)=0. First, the system is unstable if sr(k) > 0 for at 
least one real k and stable otherwise. In order to 
distinguish between the two kinds of instabilities, we 
consider Laplace contour L with very large sr, then the 
Fourier contour are computed via the dispersion 
equation. Thus, the set of branches k+(s) in the upper half 
of the complex k-plane as well as the set of branches k-
(s) in the lower half of the same plane are obtained by 
varying si for large and fixed sr, which, of course, 
requires computing the spatial eigenvalues for all s 
belonging to L. Decreasing sr leads to the displacement 
of those set of branches  k+(s) and  k-(s) in the complex k-
plane. The existence of absolute instability is revealed 
by a saddle point (a pinch point in the Fourier contour)  
in the complex k-plane formed by two branches, one 
belongs to the set  k+(s)  and the other belongs to the set 
k-(s).   Let k0 and s0  be the complex wave number and 
the complex frequency for which a pinch point occurs. 
At this point the dispersion relation has double roots. 
Therefore, 
D ({k},{s})= 0, dD(k,s)/dk=0  at k=k0, and s = s0 

As long as the preceding equations are satisfied for s0r > 
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0 , the instability is absolute. The boundary of absolute 
instability is the locus of the roots of the precedent equation 
when  s0r = 0.   Namely, 
D ({k},{s})= 0, dD(k,s)/dk=0, and k=k0, s = s0 ,   s0r = 0 
When the double roots cross the boundary of absolute 
instability while the equation D (k0,s0)= 0  alone is satisfied 
for  s0r  > 0,  the system becomes convectively unstable, 
otherwise it becomes stable. 
Absolute Instability in Flows Over Compliant Walls 
In boundary layer flows Gad-el-Hak et al. (1984) and Gad-
el-Hak (1986) experimentally investigated the different 
instabilities occurring over a compliant surface interacting 
with a boundary layer flow.  The conditions for the onset of 
these instabilities were documented and their wave 
amplitude, length and phase speed were measured using a 
novel non-intrusive probe. 
These authors observed that an elastic or a viscoelastic solid 
subjected to the forces of a turbulent boundary layer is 
susceptible to forming two types of waves distinguished by 
their wave speeds. One of those two waves, static 
divergence, has a slow propagation speed and the other, 
flutter, has a fast propagation one. In retrospect, it has been 
found that those two modes form a common future of the 
mechanism involving a fluid-structure interaction. A first 
step toward the comprehension of the dynamic of the 
modes observed experimentally has been offered by  Sen 
and Arora (1988) where they found that a powerful 
instability termed transitional could be formed by the 
coalescence of a solid-based unstable mode and a fluid-
based unstable mode. However, the absolute or convective 
nature of any of those instabilities were not clarified at this 
point of time. 
The existence of an absolute instability over a compliant 
flat-plate in laminar flow has been demonstrated 
analytically by Yeo et al. (1996; 1999). In these studies, 
Blasius boundary layer is used as a base flow. As it is well 
known, a Blasius boundary layer developing over a rigid 
wall is subjected only to convective instability, it has been 
understood that the absolute nature of the instability found 
by Yeo et al. (1999) is due to the interaction between the 
flow and the compliant wall. Later, Yeo et al.  (2001) have 
shown that the slow waves, termed static-divergence waves,  
observed when a   turbulent boundary layer flows over a 
compliant wall represents an absolute instability,  and that  
the fast waves, termed flutter, represent a convective 
instability.   This analysis offers a  more precise physical 
picture of the growth and development of the fast and slow 
modes developing over a  compliant surface. 
A model-based on three-dimensional linear elasticity 
equations to describe the wall motion and perturbation of 
the exact Navier--Stokes equations for the fluid motion has 
been suggested by Hamadiche (2002).  He has  shown that 
both absolute  and convective instabilities in the form of 
axisymmetric waves may occur in a viscoelastic tube 
conveying fluid flow. In his model, the tube is tethered to 
an exterior rigid wall, therefore it is prohibited from 
collapsing by the no-displacement condition imposed at the 
tethering surface. When the outer surface of the compliant 
tube is free from constraint, the tube may collapse under the 
action of the transmural pressure and the system becomes 
much more vulnerable to absolute and convective 
instabilities, as it has been shown by Hamadiche and Gad-
el-Hak (2004).  These authors found that the absolute 
unstable modes are non-axisymmetric. In all cases, when 
the wall is non-rigid and is allowed to interact with the 

flow, the absolute instability exists for certain values of 
the parameters of the system. It appear as if the 
flexibility of the structure conveying the flow increases 
the number of degrees of freedom of the system, thus 
permitting certain unstable modes to interact and form a 
more powerful instability, i.e. absolute instability. 
However, those degrees of freedom offered by the 
system may be chosen in order to force the same system 
to be in a state far from absolute instability. In other 
words, careful choice of the system's parameters  may 
prevent the onset of absolute instability, as  will be 
shown in the following section. 
Results 
The  system under consideration herein  consists of a 
thick-wall circular tube of  inner radius R filled with a 
Newtonian fluid. The tube wall is composed of three co-
axial, viscoelastic layers of different densities, 
thicknesses, and rheological coefficients. Generally 
each layer is anisotropic and rheological coefficients of 
the layers are different. We assume that the tube and the 
steady flow inside it are in dynamic equilibrium. The 
tube is assumed to be sufficiently  long  to allow a 
uniform and steady velocity field parallel to the axis of 
the tube. The temporal and the eigenvalues of the 
system are computed. Figure 1 shows the trajectory of 
the two coalescing modes when the Laplace contour is 
lowered. The figure shows that the two modes coalesce 
when the amplification rate approaches zero but  before 
reaching zero indication by the way that the instability 
is absolute.  Figure 2 shows the amplification rate 
versus the viscosities of the one of the layer while the 
viscosity of the others are maintained constant. The 
figure show too the amplification rate when the 
viscosities of all the layers are changed by the same 
amount. 
Effect of the viscosities of the layers on the instability 
and on the absolute instability of the system is shown in 
figure 2; for the following system parameters. The inner 
radius of the tube R is the unity of distance, Reynolds 
number equal 10,  ratio of elastic forces to 
hydrodynamics forces equal 10, the thickness of the 
three layers respectively from inside to the outside of 
the duct read h1 = 0.08, h2 = 0.14, h3= 0.1, Poisson 
coefficient  equal 0.4, wave number k=2.5. We note the 
viscosities of the three layers from inside of the tube 
toward the outside, respectively, ν1, ν2, ν3  . We note the 
viscosity of an arbitrary layer  νr  . The label of the 
curves are as follow: curve labelled +, (ν1, ν2, ν3)=(νr, 
νr, νr), curve labelled x, (ν1, ν2, ν3)=(νr, 0, 0), curve 
labelled *,  (ν1,ν2,ν3)=(0,νr ,0), and curve labelled 
“box”,    (ν1, ν2, ν3)=(0, 0,  νr ).   (b)  Amplification rate 
at the cusp point versus the viscosities  of the layers, all 
other conditions  are the same as part (a). It is found that 
the system could be stabilised and the absolute 
instability could be eliminated  by increasing the 
viscosity of the second layer, curve labelled *,  while 
increasing the viscosities of the three layers together by 
the same amount do not stabilise the system. 
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