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INTRODUCTION 

 

       During the last decade the microfluids (suspensions of microparticles with 

diameters d = 10–100 μm) and nanofluids (suspensions of nanoparticles with 

diameters d = 10–100 νm) have become important components of numerous devices 

designed for mixing and purification of the microscopic volumes of technical and 

biological fluids, biochemical analysis and medical diagnostics in the lab-on-a-chip 

flow systems, efficient nanofluid-based microcoolers/ heaters for micro/nano rotors, 

gears/ engines, and many other miniaturized devices [1–3] (Fig. 1).  
 

 
 

Fig. 1. Examples of micro/nanodevices 
 

       Micro and nanoscale objects are abounding in nature and technique. Typical 

nano-objects (Fig. 2) are atomic clusters, mineral and organic molecules, molecular 

agglomerates, particles and crystals, micro/nanofibers, liquid films and thin layers of 

the micro/nano scale dimensions. Nanosciences and nanotechnologies currently 

represent a rich field of ideas, experiments, theoretical considerations in materials 

sciences (nanomaterials), physics (nanophysics), fluids (nanofluidics), chemistry 

(nanochemistry), biology (nanobiology) and medicine (nanomedicine).  

       The physical phenomena at the micro/nanoscale are governed by conventional 

physical laws because the quantum are not dominating yet [1–3]. Nevertheless, there 

are differences in the behavior of the nano/micro and classical macrofluids due to the 

unique physical properties of micro/nanoparticles and their motion at the solid or soft 

walls. When we move from the macro- to micro- and nanoscale, the surface-to-

volume ratio S/V becomes higher and the surface forces and surface phenomena 

become more important than the bulk forces and the motions produced by them. As 

particles decreases in size, a greater amount of them could be located at the surfaces. 

For instance (Fig. 3), when the diameter of the particle is d0 = 0.5 nm typical for 

simple organic molecules, for the 2D(3D) spherical agglomerates with:  

− d = 30 nm – almost ~5 % (0.1 %) are at the 2D(3D) surface; 

− d = 10 nm – almost ~16 % (1 %) are at the 2D(3D) surface; 

− d = 3 nm – almost ~52 % (10 %) are at the 2D(3D) surface. 
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Fig. 2. Micro and nanoscale objects in nature and technique 

 
 

 
Fig. 3. Packing of micro/nanoparticles in 2D droplets 

 

      Therefore, at the nanoscale the S/V ratio becomes very high altering the 

mechanical, thermal and catalytic properties of materials, and promoting  tremendous 

increase in their surface reactivity, adhesion, and other surface phenomena. 

Mechanical properties of nanosystems are of interest in the nanomechanics research; 

diffusion and reactions at nanoscale with fast ion transport are studied by 

nanoionics; rheological properties of nanofluids and solid materials are studied by 

nanorheology; friction at the nanoscale is studied by nanotriboligy [4]; propagation 

and reflection of visual light – by nanooptics, etc. Solution of the theoretical 

problems at the micro/nanoscale needs development of specific mathematical 

formulations of such mechanical, thermal and multiphysical problems. 
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1. FUNDAMENTALS OF MICROFLUIDICS 

AND NANOFLUIDICS 

 

      Numerous experiments with flows of micro and nano fluids through the 

microtubes, ducts and channels revealed that the measured pressures, velocites, 

volumetric flows and shear rates do not correspond to those values computed from 

classical Poiseuille and Couette flow solutions in the corresponding geometry with 

classical no-slip boundary conditions (BC) [1–3; 5; 6]. The most essential differences 

had been found in the flow patterns, pressure drops, shear stress and flow resistivity 

by the bigger influence of the wall roughness at the micro and nano scales [5; 6]. 

Therefore, reformulation of the BC problem is needed for better understanding of the 

differences between the flows of macroscopic fluids and micro/nano fluids.   

      Applicability of the slip boundary conditions have already been studied for the 

Newtonian fluid flows [6], macroscopic liquid flows near biological surfaces and 

interfaces [7], walls with special slide coating [8], penetrable walls [9], in polymer 

melts [10], and in turbulent flows with boundary slip [11].  

      The first formulation of the nonlinear slip BC has been proposed by Navier in 

1873 in the form 

ˆ(Tn) v 0 on     ,                                         (1) 

      Nanofluids as suspensions where   is the boundary of the flow domain  , 

v  and T̂  are the fluid velocity and stress tensor, n  and   are normal and 

tangential unit vectors to the surface,  is the ‘friction’ coefficient. Validity of the 

Navier BC for the fluid flows through rigid microtubes has been shown in [12]. 

      Nanofluids as suspensions of nanoparticles and polymer molecules exhibit high 

thermal and electric conductivity, low specific heat, and unique electromagnetic 

properties due to high strength, thermal and electric conductivity of the nanoparticles 

and their magnetic properties [13]. Classical fluid dynamics and thermomechanical 

theories developed for the macroscopic systems are not fully applicable to the 

suspensions of nanoparticles as well as to uniform fluids at the micro and nano 

scales. Velocity slip, viscous dissipation, thermal creep and non-continuum effects 

like scattering at the wall, adhesion and changes in conformations must be taken into 

account [14–16] as well as electrokinetic phenomena [17]. For the solid nanoparticles 

in the concentrated (C > 5 %) nanofluids the shear-thickening behavior may also lead 

to the high pressure gradients for the steady fluid flow than those predicted by the 

Poiseuille law [18]. Gas microflows in MEMS and microfluidic devices can be used 

for extracting biological samples, cooling integrated circuits and active control over 

the aerodynamic forces [19; 20]. 

      The first experimental study conducted for the gas flow in the rectangular glass 

channels with hydraulic radius hD = 45.5–83.1 m  and silicon channels with 

hD = 55.8–72.4 m  of microminiature Joule–Thomson refrigerators revealed the 

friction coefficient about 10–30 % higher in silica channels and in 3–5 times high in 

glass channels than those predicted by the Moody chart for the friction factor against 
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the Reynolds number at different relative roughness h/ D , where   is the roughness 

height [21]. In the micro and nano channels due to the tremendous increase in the 

surface-to-volume ratio the relative roughness becomes the most influencing factor, 

which has to be taken into account in the BC via complex geometry of the wall with 

roughness, as well as complex interaction of the flow and nanoparticles with the wall. 

      Experimental study of the fluid flow (1-, 2-propanol and 1-, 3-pentanol) through 

silicon microchannels with hD = 5; 12; 25 m also demonstrated an increase in the 

friction coefficient by 5–30 % depending on the temperature within the limits 

T 0 85 С   compared to the classical computations on the Navier-Stokes equations 

with no-slip boundary conditions [22]. Water flow through rectangular stainless steel 

microchannels with hD = 133–367 m  and width to height ratios W/H = 0.333–1 

has been studied in [23]. The friction factors for both laminar and turbulent flows 

have been found deviated from the classical predictions, and the geometry factor 

W/H was found to have important effects on the flow. The laminar to turbulence 

transition occurred at the critical Reynolds numbers Re* = 200–700 depending on 

hD  and W/H. The value Re* becomes lower as the size of the microchannel 

decreases. Water flow through the stainless steel and fused silica circular microtubes 

with diameters D = 50–254 m  and / D = 0.69–3.5 % at Re = 100–2000 also 

exhibited higher friction than those predicted by the classical fluid dynamics [15]. 

The difference increased with the decreasing D and increasing Re values. The flow 

transition has been observed at Re* = 300-900 depending on the microtube diameter 

D = 50–150 m.  For the fluid flows in rectangular metallic channels with widths 

W = 150–600 m and heights  H = 22.7–26.3 m an approximate 20 % increase 

over the classical theory prediction in the friction factor at low H/W ratios has been 

revealed [24]. The water flow through trapezoidal silicon microchannels with  

hD = 51.3–168.9 m and / D = 1.76–2.85 % at Re < 1500 demonstrated the friction 

factor by 8–38 % higher than the classical theory prediction for laminar flows [25]. 

      A good review of literature published between 1983 and 2005 on the 

experimental studies of the friction coefficient and laminar to turbulence transition 

Re* values in the microchannels and tubes of different geometry and materials is 

given in [16]. It is shown when h/ D < 1 %, the classical computations for the 

corresponding Poiseuille and Couette laminar flows remain valid. A positive 

deviation of the friction factor from the conventional theory is observed due to the 

high roughness and compressibility effects. For instance, smaller friction factors 

detected in gas flows through fused silica microtubes with D = 10–20 m  are 

produced by rarefaction effect.  

      The results of the abovementioned experimental studies confirmed that the 

flow resistances are about 10–90 % higher than the theoretical values for the 

corresponding geometry and material parameters, and some of them even by 

350 % over the theoretical predictions [16; 21; 26]. 
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      Flows of the micro/nanofluids are governed by the Navier–Stokes equations [1–3]: 

eff
eff

d
div(v) 0

dt


  ,                                           (2) 

eff eff eff
v

(v )v p v f
t

   
 

      
 

,                           (3) 

2 2

i k ik k k
eff eff eff eff eff

k i k k

v v v vdT
c div( T)

dt x x 3 x x


   

      
        

      

,   (4) 

where v and p  – are the flow velocity and hydrostatic pressure; eff , eff , eff , 

effc  and eff  are the density, dynamic and second viscosity, heat conductivity and 

heat capacity of the fluid which are actually temperature dependent functions; f is 

the volume density of external forces; T is the temperature; ik  is the unit tensor. 

In the case of incompressible fluids eff  = const and the first term in (2) disappears; 

div(v) 0  and two last terms in (4) disappear.  

      The effective density of the micro/nanofluds can be introduced in a usual form 

accepted for mixtures [27] 

eff p bfC (1 C),                                              (5) 

where p  and bf  are densities of particles and basic fluid, C is concentration 

of particles.  

      The expressions for the effective heat conductivity keff and specific heat effc  

of the micro/nanofluids have been derived in the form [28] 

p bf bf p
eff bf Brownian

p bf bf p

4 B
Brownian bf bf

p

(k 2k ) 2C(k k )
k k k ,

(k 2k ) C(k k )

k T
k 5 10 C c f (T,C),

d
 

  
 

  

 

                  (6) 

p p bf bf
eff

p bf

c C c (1 C)
c

C (1 C)

 

 

 


 
,                                           (7) 

where p bfk ,k and p bfc ,c are heat conductivity and specific heat of the particles 

and base fluid, Bk  is the Boltzmann constant,    is the constant that depends on 

the temperature, material and concentration of the particles, f f (T,C)  is the 

function that has to be determined from experiments. 

      The heat capacity is well defined by the mixture models [27] 

eff p bfc c C c (1 C)   .                                          (8) 

      The viscosity of the micro/nanofluids as well as in the suspensions of 

macroscopic particles is a very complex value, and there are many different 

formulas for eff . Among the most popular ones are: 
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1) the non-constant so-called roughness viscosity eff (r)  [29] 

2

eff bf

Rer r
(r) A Re 1 exp

Re


 
 

  
   

  
,                              (9) 

where r is the radial coordinate, eff effRe v*d /  , eff effRe U /    , d is 

the characteristic diameter of the channel,  v* is the average flow velocity, U is the 

velocity at the top of the roughness element, A is the material-dependent constant;  

2) constant viscosity model [30] 

bf
eff 0.3 1.03

p f1 (d / d ) C




 



,                                         (10) 

where  
1/3

f bf A bfd 6M N   is the base fluid equivalent diameter, pd  is the 

diameter of the micro/nanoparticles, bfM  is the molecular weight of the base fluid,  

AN  is the Avogadro number;  

3) Kn-dependent viscosity [5] 

bf 0
eff

1

2
,

1 Kn tan( Kn )

 
 

  
 


,                                  (11) 

where 0.4  , 0 64 / 3 (1 4 / b)   , 1 4  , 1    [34]; 

4) general approximation for the concentrated suspensions 
2

eff bf 1 2(1 k C k C )    ,                                     (12) 

where, for instance, 1 2k 39.1, k 533.9   values for Al/water nanofluid [31]. 

      When the fluid flow is studied at the isothermal conditions, the BC for  (1)–(2) 

in the most general form are [1–6] 
2

2
w 1 2 2

v v
v v C Kn C Kn 0

n n


  
    

   

,                     (13) 

where wv  is the velocity of the moving wall, Kn / L  is the Knudsen number, 

  is the mean free path of the particles in the suspension, L is the characteristic 

length, 1C  and 2C are fluid-specific constants that must be determined from 

experiments with the fluid under consideration.  

      The layer produced by the particles scattered by the rough wall is called 

Knudsen layer. Its thickness was evaluated in the discrete hard sphere model and in 

the continuous model of a fluid accordingly as [5] 

B
2
p

k T

d p



 ,     

eff
eff2p


 


 . 

      From the theoretical considerations the coefficient 1C (2 ) /   , where  is 

the tangential momentum accommodation factor;  =1 for purely diffuse 

reflection and | | 1   for mixed reflection [14]. The term 1C Kn  in (13) is the 
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constant slip length of the particles at the rough wall due to diffusive reflection 

[19]. A good review on the experimental data of the coefficients 1,2C  for different 

micro/nanofluids is given in [5, p. 74]. Summarizing the table presented there, one 

can accept 1C [1;1.15] , 2C [0.5;1.31] for numerical computations. 

      There are also a series of modifications of (11) for specified fluids like [5] 

w
2 Kn v

v v 0
1 Kn f (Kn) n








  
   

   
,                         (14) 

where f (Kn) is an empirical parameter that must be determined from experiments, 

| f (Kn) | 1 , or for compressible fluids [35; 36] 

eff
w eff

eff

v v ln 0






 


 
   

 
.                             (15) 

      Molecular dynamics simulations revealed that the velocity slip at the wall 

decreases with increase of the ratio /   for both regular and stochastic roughness 

[32]. In the transition regime Kn 0.1  the constitutive laws for the stress tensor, 

heat flux vector and other parameters break down requiring higher-order correcting 

terms [33]. 

      Therefore the value /   can be considered as a criterion for the no-slip 

boundary conditions acceptance. When    the no-slip condition is satisfied, 

otherwise significant slip at the wall is present. As it was shown by comparative 

numerical simulations of the micro- and nanochannel flows in different geometries 

conducted by molecular dynamics simulations, numerical solutions of the 

Boltzmann equation as well as direct computations on the Navier-Stokes equations, 

the slip-flow approach is remarkably robust in the meaning that it is qualitatively 

accurate and physically relevant [19].  

      Therefore, three different cases can be distinguished [1–6]: 

1) Kn 0.01 : the no-slip BC v 0

 is satisfied; 

2) 0.01 Kn 0.1  : the first-order slip BC (11) with 2C =0 (microfluids); 

3) 0.1 Kn 1  : the second-order slip DC (11) with 2C 0  (nanofluids). 

       When the coupled heat and mass transfer equations (1)–(3) are studied, the 

Navier–Stokes and heat balance equations are solved with the modified second 

order boundary conditions in the form: 
2

w

w

2 v 3( 1) Kn Re T
v v Kn 0,

n 2 Ec

2 (2 ) Kn T
T T 0,

( 1) Pr n





 

  

 

 





    
    

   

  
   

  

                 (16) 

where T and Tw are the temperatures in the flow and at the wall,   is the tangential 

direction (coordinate),   is the energy accommodation coefficient, p VC / C   is 
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the ratio of the specific heats at constant pressure and volume of the suspension 

respectively, Re= eff effv*d /   is the Reynolds number, eff eff effPr c /   is 

the Prandtl number, 2
effEc (v*) / c T  is the Eckert number, T is the specified 

temperature difference in the domain; perfect energy exchange corresponds to 

1   when the energy of the reflected (scattered) particles matches the wall 

temperature (no temperature jump). 

      Thermal and tangential momentum accommodation coefficients have been 

measured for different typical gases and surfaces, and they were shown to be 

strongly dependent on the material and surface state [5]. Their values can be 

reduced by applying suitable surface preparation techniques. 

      The solutions of classical laminar pressure-driven (Poiseuille) and shear-driven 

(Couette) channel flows of incompressible Newtonian liquids have been 

generalized for the velocity slip BC, and the corresponding analytical solutions 

have been obtained and compared to the experimental data [5; 19; 37]. In this 

textbook the generalized solutions at the isothermal conditions are given and some 

more problems for individual tasks are proposed. Actual flows of suspensions of 

micro or/and nanoparticles are much more complex and the solutions of 

corresponding systems of equations have no analytical or semi-analytical solutions. 

In such cases the solutions must be found out by numerical computations in 

complex expansions, with finite difference method, finite element, discrete particle 

dynamics method, Lattice–Boltzmann method and other numerical schemes. In 

each case the corresponding analytical solution for checking and final validation of 

the numerical scheme is needed. All known analytical and semi-analytical  

solutions for the channel flows are considered in this textbook. 

 

2. COUETTE FLOWS IN TUBES AND CHANNELS 

 

2.1. Laminar flow between two parallel plates 

 
2.1.1. Classical fluids 

 

       The Couette flows are generated by moving wall(s) of the channel(s) without any 

pressure gradient applied. The simplest examples are flows between two parallel 

plates generated by the motion of one or both plates at different velocities (Fig. 4a); 

flows between two coaxial cylinders rotating with different angular velocity 

(Fig. 4b). In both cases the approximation is valid when the distance between the 

surfaces is relatively small, i. e. h L  (Fig. 4a), 2 1 1R R R  (Fig. 4b), where L 

is the length of the plates. 

      In the laminar flows the velocity vector has only one component, i. e. the flow is 

one-dimensional (1D). In the flow between the parallel plates one has 

x y zv (v ,v ,v ) (v,0,0)   in the Cartesian coordinate system combined with geometry 

according to Fig.4a. Let’s assume the flow is stationary and t 0    in (3). Let’s 
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also suggest the width of the plates W is large enough (W>>h) so one may assume 

z 0    in (1)–(2). The mass forces are absent and the flow is driven only by the 

motions of the plates with constant velocities 1V  and 2V . For distinctness let’s 

assume 1 2V V  (Fig.4a). Then the equation (2) gives  v / x 0   . Since v z 0    

also, it gives v v(y) . 
 

  
a b 

Fig. 4. Laminar flows between parallel plates (a) and coaxial cylinders (b) 
 

      It is easy the check that in this case the second term in the left-hand side of (3) 

will be 

x x

x y z y x

z

v v (y) 0

(v, )v v v v v v (y) 0 0
x y z x

v 0 0

     
         

                    
     

. 

      Then the projection of the vectorial equation (3) onto the axis 0y gives p / y 0    

that means p p(x)  because p z 0   . The projection of (3) onto the axis 0x gives 
2

2

dp(x) d v(y)

dx dy
 .                                            (17) 

      In (17) and following equations the subscripts ‘eff’ are omitted for brevity. In 

the left-hand side of (17) we have a function depending on x only, while in the 

right-hand side of (17) the function depends on y only, and the both functions are 

equal to each other at any time and in any point of space. It implies that both 

functions are constant. The condition 
dp(x)

k const
dx

   with the inlet and outlet 

BC 
x 0,L

p 0


  gives k 0 . Then integration of (17) gives  

1 2v(y) С С y  .                                            (18) 

      The BC (13) for classical fluids ( 1,2C 0 ) are 2 1v(0) V , v(h) V   that gives 

the solution (18) in the form [38] 

1 2

1

V V
v(y) V y

h


  .                                              (19) 

      Integration of (19) over the cross-sectional area gives the following expression 

for the volumetric flow rate   
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h

1 2

Couette

0

(V V )hW
Q W v(y)dy

2


  .                              (20) 

      The shear stress in the fluid is constant over the cross section 

1 2

Couette

V Vdv

dy h
  


   .                                     (21) 

      The velocity field is presented in Fig.4a, while the shear stress is constant.  

 
2.1.2. Micro/nanofluids 

 

      The flow is governed by the same equations (2)-(3) and the flow solution is 

given by (18). The BC (13) have the form  
2

2 1 1 2

2

1 2 2 2

v v
y 0 : v V

y y

v v
y h : v V

y y

 

 

 
   

 

 
   

 

,                                  (22) 

with different roughness parameters 1 11C Kn   and 2 12C Kn  , 2

1 21C Kn   

and 2

2 22C Kn   on two plates, for generalization purposes. The changed sign 

before 1  is because of the differences of the directions of the derivative v / y   

and the scatter of the particles.  

       Substitution of (18) into (22) gives the velocity distribution 

1 2 1 1 2 1 2

2 1 2 1

V h V V V V
v(y) y

h h

 

   

  
 

   
.                           (23) 

      When 1,2 0  , 1,2 0   the expression (23) is transformed into (19). 

       Integration of (23) over the cross section of the channel gives 
h 2

1 2 2 1 1 2

Couete slip

2 10

(V V )h 2h( V V )
Q W v(y)dy W

2(h )

 

 

  
 

  ,              (24) 

and the shear stress is 

1 2

Couete slip

2 1

V V

h
 

 


 

 
.                                     (25) 

      The difference between the flow rates 

2 1 1 2

Couete slip Couete

2 1

( )(V V )
Q Q Wh

2(h )

 

 

 
 

 
                          (26) 

could be negative or positive depending on the properties of the plates, namely 

Couete slip Couete 2 1

Couete slip Couete 2 1

Q Q 0, if ,

Q Q 0, if .

 

 

  

  
                                (27) 

      When 1 2V V , the relationships between CoueteQ  and Couete slipQ  are inverse to 

(27). The difference between the shear stresses 
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1 2 2 1

Couete slip Couete

2 1

(V V )( )
0

h(h )

  
 

 

 
  

 
                                (28) 

and the shear stress in the slip flow is always lower by the absolute value that the 

shear stress in the no-slip flow.  

      Therefore, by using the plates with different first order roughness coefficients  

1  and 
2  we can obtain the Couette flows with higher/lower volumetric rate at 

the same shear stress at the walls that can be beneficial for different microfluidic 

applications. Since the flow field is linear, the second derivatives in (13) have no 

influence of the flow parameters. It means, the Couette flow behaviour is the same 

for both microfluids and nanofluids. 

 

2.2. Laminar flow between two coaxial rotating cylinders 

 
2.2.1. Classical fluids 

 

      Two coaxial cylinders with axis 0z and radiuses 1R  and 2R  rotate with the 

angular velocity 1 and 2  (let’s assume 2 1  ) are considered (Fig.4b). The 

1D velocity vector is 
r zv (v ,v ,v ) (0,v,0)  . The flow is steady ( t 0   ) and 

the length of the cylinders is big enough such as z 0   . The flow is 

axisymmetric and v / 0   . Then from (2) we have v v(r) . Substitution into 

the second term in the left-hand side of  eq. (3) gives 

r

r z

z

v 0
v v

(v, )v v v v v (r) 0
r r z r

v 0

 
 

 

   
       

                
   

. 

      Projection of (3) onto the axis 0r gives the same condition for the pressure drop 

( dp(x) / dx 0 ) and the projection onto the axis 0  gives the ordinary differential 

equation 

2

1 v(r) v(r)
r 0

r r r r

  
  

  
.                                   (29) 

      Solution of (29) is 

1 2

1
v C r C

r
  .                                              (30) 

      The coefficients 1,2C can be found from the no-slip BC 1 1 1v(R ) R  , 

2 2 2v(R ) R   and the final expression is [38] 

2 2 2 2

2 2 1 1 2 1 1 2

2 2 2 2

2 1 2 1

R R ( )R R 1
v(r) r

rR R R R

   
 

 
.                            (31) 

      Integration of (31) over the cross section of the channel gives the flow rate 

 2 2 2 2 2 2

Couette 2 2 1 1 2 2 1 1 2 1 1 22 2

2 1

2 W
Q ( R R )(R R R R ) 3( )R R

3(R R )


       


,     (32) 
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and the shear stress is 
2 2 2 2

2 2 1 1 2 1 1 2

Couette eff 2 2 2 2 2

2 1 2 1

R R ( )R R 1
| |

R R R R r
 

    
  

  
.                   (33) 

      In the non-dimensional form (31)-(33) can be written as 
2 2

2 2

R 1 ( 1)R 1
v ( )

R 1 R 1

   
   

  
.                                  (34) 

 2 2 2

2

2 ( R 1)(R R 1) 3( 1)R
Q

3(R 1)

     



,                           (35) 

2 2

2 2 2

R 1 ( 1)R 1
| |

R 1 R 1


  
 

  
,                                   (36) 

where 
1 1v v / R  , 1r / R , 2 1/ 1    , 2 1R R / R 1  , 2

1 1Q Q / ( R W)  , 

eff 1/    . 

      The dependencies (34)–(36) are presented in Fig. 5a–c for some values of   

and R.  
 

 

 
 

a b c 

Fig. 5. Non-dimensional dependencies v ( ) (a), Q (R) (b), ( )  (c) 

for the no-slip flow at different values  =1.1; 2; 5 – curves 1,2,3 accordingly 

 
2.2.2. Micro/nanofluids 

 

      The flow is governed by the same equations (2)-(3) and the flow solution is 

given by (30). The BC (13) have the form  
2

1 1 1 1 1 2

2

2 2 2 2 2 2

v v
r R : v R ,

r r

v v
r R : v R .

r r

 

 

 
    

 

 
    

 

 

 

2

1 1 1 1 1 2

2

2 2 2 2 2 2

v v
r R : v R ,

r r

v v
r R : v R .

r r

 

 

 
    

 

 
    

 
    (37) 

      Substitution of (30) into (37) gives the velocity distribution 
4 4

slip 2 2 1 1 1 2

Couette 3 3

2 2 2 1 1 1 1 2

3 4 4 3

2 1 2 1 1 1 1 2 2 2

3 3

2 2 2 1 1 1 1 2

R A R A
v (r) r

R (R )A R (R )A

R R (R ) R R (R ) 1
,

rR (R )A R (R )A

 

 

 

 
 

  

   


  

                          (38) 

where 
2

1,2 1.2 1,2 1,2 1,2A R R    .  
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       Integration of (38) over the cross section of the channel gives the flow rate 





slip 4 42 1
Couette 2 2 1 1 1 23 3

2 2 2 1 1 1 1 2

2 2 3 4 4 3

2 1 2 1 2 1 2 1 1 1 1 2 2 2

2 W(R R )
Q ( R A R A )

3(R (R )A R (R )A )

(R R R R ) 3( R R (R ) R R (R )) .



 

 


   

  

       

      (39) 

      The shear stress in the flow is  

4 4
slip 2 2 1 1 1 2

effCouette 3 3
2 2 2 1 1 1 1 2

3 4 4 3
2 1 2 1 1 1 1 2 2 2

3 3 2
2 2 2 1 1 1 1 2

R A R A
(r)

R (R )A R (R )A

R R (R ) R R (R ) 1
.

R (R )A R (R )A r

 
 

 

   

 

 
 

   

  
 

   

                  (40) 

      In the non-dimensional form (38)-(40) can be re-written as 
4

31 2 1 2

3 3

2 1 1 2 2 1 1 2

R A A R(1 ) (R ) 1
v (r) R ,

R (R )A (1 )A R (R )A (1 )A

 

   

     
 

     
    (41) 

 4 2 4 3

1 2 1 2

3

2 1 1 2

2(R 1) ( R A A )(R R 1) 3( R (1 ) R (R ))
Q

3(R (R )A (1 )A )

 

 

         


  
,       (42) 

4 4 3
1 2 1 2

3 3 2
2 1 1 2 2 1 1 2

R A A R (1 ) R (R ) 1
(r)

R (R )A (1 )A R (R )A (1 )A

   


   

   
 

      
,       (43) 

where 1 1 1A 1     , 2

2 2 2A R R    , 1,2 1,2 1/ R  , 2

1,2 1,2 1/ R  . 

      The dependencies (41)-(43) for some values 1,2  and 1,2 , and for the same 

values of   and R  as were used in Fig.5a–c are presented in Fig. 6a–c.  
 

  
 

a b c 

Fig. 6. Non-dimensional dependencies v ( ) (a), Q (R) (b),  

( )  (c) for the slip flow at 1 1.5  , 2 1.3  , 1 0.5  ,  

2 0.3  and different values  =1.1; 2; 5 – curves 1,2,3 accordingly 
 

Individual task 1: Using (34)–(36) and (41)–(43) estimate the ranges for the 

roughness parameters 1,2 , 1,2 when the flow rate could be increased and the shear 
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stress could be decreased in the micro/nanoflows in comparison to the classical fluids, 

in the same way like it was done in (26)–(28) for the Couette flow between two 

parallel plates. 
 

3. LAMINAR FLOW IN AN INCLINED DUCT 
 

3.1. Classical fluids 
 

 

      Laminar xv (v ,0,0)  flow of an incompressible Newtonian fluid in a rectangular 

cuvette  x [0,L] y [0,h] z [0,W]     , h/W<<1 inclined to the horizon by the 

angle   (Fig. 7) is considered. The flow is 

governed by the force of gravity. The system 

of coordinates is connected with bottom of the 

cuvette.  

      The incompressibility condition (2) gives 

again xv v(y) . Check that in this case 

(v, )v 0  . The projection of the momentum 

equation (3) onto the axis 0y is 
2

2

d v
gsin 0

dy
    .            (44) 

       Intergation of (44) with the velocity no-slip BC and the bottom and the free 

surface kinematic BC at the open surface of the  cuvette 

y 0
y h

dv(y)
v(y) 0, 0

dy


  .                                 (45) 

gives the velocity profile, flow rate and shear stress distributions respectively 

incl
eff

3
incl

eff

incl b

gsin
v (y) y(2h y),

2

W gsin
Q h ,

3

y
gsin (h y) 1 ,

h

 



 



   

 



 
     

 

                             (46) 

where b ghsin    is the shear stress at the bottom of the duct. The velocity and 

shear stress profiles and plotted in Fig. 3. 
 

3.2. Micro/nanofluids 
 

      Integration of the same equation (44) with the velocity slip BC (13) at the 

bottom and free surface kinematic BC (45) gives:  

 

 
 

Fig. 7. Schema of the laminar  

flow in an inclined duct 
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 slip
incl

eff

2
slip
incl

eff

slip
bincl

gsin
v (y) 2( h ) y(2h y) ,

2

W gsin h
Q h( h ),

3

y
1 ,

h

 
 



 
 



 

   

  

 
  

 

                       (47) 

where ,   are the roughness coefficients at the bottom.  

      Note that in this flow the velocity profile and flow rate in the nanofluids and 

microfluids will be different because the coefficient   is present in their expressions 

(47), while the distributions of shear  stresses are the same in both cases. 

      Comparing (47) and (46), one may conclude that 

 

slip
incl

slip
inclincl

slip
inclincl

eff

slip
inclincl

gsin
v (0) ( h ) 0,

g sin
v (h) v (h) h 0,

W gsin
Q Q h( h ) 0,

 
 



 
 



 
 



 

  

   

   



                      (48) 

for positive ,   values. Since the negative   coefficients have also been 

reported [5], the comparative results are valid for the cases with h 0   .  

 

4. POISEUILLE FLOWS IN TUBES AND CHANNELS 

 

4.1. Laminar flow between two parallel plates 

 
4.1.1. Classical fluids 

 

      Poiseuille flows are governed by 

the  pressure drop p p p     applied 

between the inlet 
x 0

p p


 and outlet 

x L
p p


  of the channel. In the 

considered case the channel is built by two 

parallel plates (Fig. 8) of dimensions L W 

with a small distance h min{L,W}  

between them.  

 

 
 

Fig. 8. Poiseuille flow between 

 the parallel plates 
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       The same conclusions can be derived from (2)–(3), namely: 

1) xv v(y) ; 

2) p p(x) , 
dp p

const
dx L


   . 

      Integrating the projection of the momentum equation onto the axis 0x 
2

eff 2

d v p

Ldy



                                                      (49) 

one can obtain 

2

2 1

p
v(y) C C y y

2 L


    .                                          (50) 

       The constants 1,2C can be found from the velocity no-slip at the wall and 

symmetric profile at the axis BCs. Finally  

 
2

2 2

paral

ph p
v (y) h y , p(x) p x.

2 L L

 
                         (51) 

      Integration of the velocity over the cross-section of the channel gives the 

volumetric flow rate 
3

paral
2 pWh

Q
3 L




 .                                           (52) 

      Then the hydraulic resistivity of the channel Z p / Q  is 

3

paral
2Wh

Z
3 L

 .                                                (53) 

      The shear stress distribution is 

w
paral y

h


  ,                                                   (54) 

where w ph / L  is the wall shear stress at both plates. 

 
4.1.2. Micro/nanofluids 

 

      Solution (50) of the same equation (49) at the velocity slip BC (13) with 

different slip coefficients at the upper and lower plates at the walls gives the 

parabolic velocity profile in the form 
22

slip 1 2 2 1 1 2 1 2 1 2
paral

1 2

2
1 2 1 2

1 2

h( 2 ) h ( )p h
v (y)

L 2 2h ( )

h( ) y
y ,

2h ( ) 2

      
  

  

  
  

  

         

  

   

 

    (55) 
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2
slip 1 2
paral

1 2

1 2 1 2 1 2 2 1

1 2

2h (h )2 phW
Q

3 L 2h ( )

3h( 2 ) 3( )
,

2h ( )

  
 

  

   
 

  

 

  

       

 

                       (56) 

slip 1 2
paral 2

1 2 1 2 1 2 1 2 2 1

2h ( )3 L
Z

2hW 2h (h ) 3h( 2 ) 3( )

 


      

 

         
,          (57) 

slip w 1 2 1 2
paral

1 2

h( )
y

h 2h ( )

   
  

  

    


 
.                               (58) 

      The relationships (55), (56) for the simplified case 1 2  , 1 2   of two 

plates with the same roughness have been presented in [5]. The general case has 

been studied in [4]. 

      Comparative study of (55) and (51), (56) and (52), (58) and (54) revealed the 

following differences in the velocity profiles 





slip
paral 1 2 2 1paral

1 2

2
1 2 1 2 1 2 1 2 1 2

p
v (y) v (y)

L(2h ( ))

h( 2 ) h ( ) ( h( ))y ,

   
 

        


   

  

         

         (59) 

volumetric flow rates 

2
slip 2 1

paralparal
1 2

1 2 1 2 1 2 2 1

1 2

h ( 3 )2 phW
Q Q

3 L 2h ( )

3h( 2 ) 3( )
,

2h ( )

 
  

  

   
 

  

 

  

       

 

                         (60) 

and shear stress 

slip w 1 2 1 2
paralparal

1 2

( h( ))

h(2h ( ))

  
 

 

    
 

 
.                           (61) 

Individual task: Analyze the expressions (59)-(61) and determine the conditions 

on the coefficients 1 2,  , 1 2,   which provide higher flow rate and lower shear 

stress due to the velocity slip at the walls. Build the plots for (51)–(54) similar to 

the ones presented in Fig. 5a–c, and the plots (59)–(61) (Fig. 6a–c) and compare 

them. Derive conclusions on physical behavior of the flows with no-slip, first order 

slip (microfluids) and second order slip (nanofluids) BC. 
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4.2. Laminar flow through a circular tube 

 
4.2.1. Classical fluids 

 

      The pressure-driven ( p p p    ) axisymmetric ( 0   ) laminar flow 

r xv (v ,v ,v ) (0,0,v)   through the tube of radius R and length L along its axis 0x 

(Fig. 9a) is considered. Cylindrical system of coordinates is associated with the tube.  
 

  
a b 

Fig. 9. Pressure-driven laminar flow through a circular tube (a)  

with parabolic velocity and linear shear stress profiles (b) 
 

      The incompressibility condition gives again xv v(r) . Check that (v ) v =0 

in this case. Projection of the steady flow momentum equations (3) in the 

cylindrical coordinates on the axis 0r gives p / r 0   , i. e. p p(x) . From the 

inlet and outlet pressure values one can obtain the same dependence (51) with 

linear pressure distribution. 

      Projection of the momentum equation onto the axis 0x gives 

1 d dv(r) p
r

r dr dr L

 
 

 
 .                                            (62) 

      Integration of (62) with no-slip BC at the wall and symmetry of the velocity 

profile at the axis 

r R
v 0


 , 

r 0

dv
0,

dr 

                                             (63) 

gives the following solution on the parabolic velocity profile, volumetric flow rate, 

hydraulic resistivity of the tube and shear stress (Fig. 9b): 

2

circ max 2

r
v v 1

R

 
  

 
 

,                                            (64) 

4
circ

eff

p
Q R

8 L






,                                            (65) 

eff
circ 4

8 L
Z

R





,                                                (66) 

circ wall
r

,
R

                                                 (67) 

where  2
max effv pR / (4 L)   , wall pR / 2L   . 



22 

4.2.2. Micro/nanofluids 

 

      Integration of (62) with BC (13) gives the following repressions for the 

velocity, flow rate, hydraulic resistivity and shear stress 

22
slip
circ 2

pR r R
v (r) 1 2 ,

4 L R R

  
       

  


                           (68) 

 slip 2 2
circ

p
Q R R 4( R) ,

8 L
  


  


                                (69) 

 
slip
circ 2 2

8 L
Z ,

R R 4( R)


 

 

  
                                     (70) 

slip
circcirc

.                                                    (71) 

where ,   are the slip coefficients for the circular wall.  

      The relationships (68), (69), (71) are derived and analyzed in [5]. The 

corresponding differences in the flow parameters are: 

slip
circcirc

p( R)
v (r) v (r)

2 L


 

  


,                                   (72) 

2
slip

circcirc

p R ( R)
Q Q

2 L


 

   


,                                    (73) 

slip
circ circ 2 2

8 L 4( R)
Z Z

R (R 4( R))


 

 

   

  
.                              (74) 

      Therefore, the slip flows through the circular tubes always have higher 

volumetric flow rates at the same pressure drop, i.e. lower hydraulic resistivity that 

in the no-slip flows.  

 

4.3. Laminar flow in the annulus between two coaxial tubes 

 
4.3.1. Classical fluids 

 

 

 
      The same laminar r xv (v ,v ,v ) (0,0,v)   

pressure-driven steady ( t 0   ) axisym-

metric ( 0   ) flow through the annulus 

between the concentric tubes with long axis 

0x and radiuses 1R  and 2R is considered 

(Fig. 10).  

 
 

Fig. 10. Schema of the Poiseuille  

flow between coaxial cylinders with 

velocity and shear stress profiles 
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      The incompressibility condition gives v v(r) ; the non-linear term in (3) is 

absent ( (v )v 0  ). The pressure has the same linear distribution (51). Solution 

of (62) with no-slip BC at both walls 

r R1
v 0


 , 

r R2
v 0


                                             (75) 

is 
2 2

21
annul

eff 1

PR 1 r
v (r) 1 r ln

4 L ln( ) R

   
        




,  (76) 

4 2 2
41

annul
eff

pR ( 1)
Q 1

8 L ln( )

  
    

  




,   (77) 

 
eff

annul 4 2 2 2
1

8 Lln( )
Z

R ln( )( 1) ( 1) ( 1)




       




,  (78) 

2 2
1

annul

PR 11
2r

4L ln( ) r

  
  

  


 ,   (79) 

where 2 1R / R 1.   

      The velocity (76) is maximal and the shear stress (79) is zero  

2 2 2
21

annul max annul

PR 1 1
v v 1 ln , 0,

4 L 2ln ln






     
       

     

 

when 
2

1
1

r r* R
2ln

 
 


 (Fig.10).  

 
4.3.2. Micro/nanofluids 

 

      When the flow is subjected to the slip BC (13) with different slip coefficients at 

the inner and outer walls, the integration of (62) with BC (13) at both walls with 

different slip coefficients will be: 

 




2
slip 21

1 1 2 2 2annul

2 2
1 1 2 2 1

PR
v (r ) (1 2 2 )( ln ) ( 2 2 )

4 LA

(ln )( 1 2( )) ln( r ) r ,


    



    

        

         

       (80) 



  

4
slip 21

1 1 2 2 2annul

2 2
1 1 2 2 1

2 2 4

pR
Q 2((1 2 2 )( ln ) ( 2 2 )

8 LA

(1 ))( 1) ( 1 2( ))
2

2 ln 1 ( 1) ,


    



    

        


           

      

             (81) 
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slip 2
1 2 2 1annul

P
( 1 2( )) 2r ,

4LA r


    

 
        

 
                 (82) 

where 1 2A ln( )      , 1r r / R . 

      In this case, 
slip
annulv  reaches its maximum at  

2
** 1 2 2 1

1
1 2

1 2( )
r r R

2(ln( ) / )

   

 

     
 

   
, and ** *r r  or ** *r r  depending 

on the slip coefficients 1,2 , 1,2  and radii 1,2R . Like in the circular tubes, one 

can obtain 
slip

annulannulQ Q  by a proper choice of the walls’ parameters 

1 2 1 2, , ,     depending on the radii 1 2R ,R . In [5] the solution (80)–(82) is 

presented in the simplified form at 1 2   and 1 2  . 

Individual task: Analyze the expressions (80)–(82) and determine the conditions 

on the coefficients 1,2 , 1,2  which provide higher flow rate and lower shear 

stress due to the velocity slip at the walls. Build the plots for    (80)–(82) in 

comparison to the plots for (76)–(79) and analyze them. Derive conclusions on 

physical behavior of the flows with no-slip, first order slip ( 1 10, 0   , 

microfluids) and second order slip ( 1 10, 0   , nanofluids) BC. 

 

4.4. Laminar flow through a tube with elliptic cross-section 

 
4.4.1. Classical fluids 

 

      Let us consider similar pressure-driven laminar flow through the tube with axis 

0z and elliptic cross-section  
2 2

2 2

x y
1

a b
       (83) 

with semi-major axis a and b. The velocity no-slip BC will be satisfied if one will 

search for the solution of (2), (3) in the form  

2 2

elliptic 2 2

x y
v (x,y) A 1

a b

 
   

 
 

,   A = const.  (84) 

      Substitution of (84) into (62) gives for the constant A the following expression 
2 2

2 2
eff

p a b
A .

2 L a b







   (85) 

       As it is clear from (84), elliptic maxx,y 0
A v V


  .  

Integration of (84), (85) over the elliptic cross-section give the volumetric flow rate 

in the form 
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3 3

elliptic 2 2
eff

a b p
Q

4 L(a b )

 





.   (86) 

       As one can see from comparison of (64) and (84), when a b R  , the 

formulae (64) and (84) coincide. The same is valid for the formulae (65) and (86).  

       The viscous (shear) stress tensor  

i k
ik

k i

v v1

2 x x


  
  

  
                                              (87) 

has 4 non-zero components 

2

xz zx 2 2

p b x

L a b


  


 and 

2

yz zy 2 2

p a y

L a b


  


                    (88) 

with maximal shear stress values at the walls 

2

xz zx 2 2

p ab
max{ , }

L a b


  


, 

2

yz zy 2 2

p a b
max{ , }

L a b


  


  (89) 

and  
2 2

z 2 2

p a b
max | |

L a b


 


.                                            (90) 

       When a b R  , (88)-(90) coincide with (67). 

 
4.4.2. Micro/nanofluids 

 

       Since in the case of the conventional and micro/nanofluids the solutions (64) and 

(68) differ by a constant, the velocity slip solutions of (2)–(3) for the elliptic tubes 

can also be found in the  form (84) with the differences by constants in the form 
22

slip 32
1elliptic 2 2

y Ax A
v (x,y) A 1

a b

 
   

 
 

,   A1,2,3 = const.            (91) 

       Then substitution of (91) into (62) gives the velocity field 

2 2
slip

maxelliptic 2 2

x 2( a ) y 2( b )
v (x, y) V 1

a b

       
   

 
 

.              (92) 

       When a b R  , (92) coincides with (68). Integration of (92) over the elliptic 

cross-section gives the volumetric flow rate 

slip
ellipticelliptic 2 2

a b
Q Q 1

a b

     
   

 
.                         (93) 

       When a b R  , (93) coincides with the expression (69) for the circular flow 

with velocity slip.  
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       In this case the shear stress field keeps the same non-zero coefficients (89)–

(90) because the corresponding differences in the velocities are constants that 

disappear in the differentials (87).  

Individual task: Analyze the expressions (92)–(93) in comparison to (84), (86) 

and determine the conditions on the coefficients 1 , 1  which provide higher flow 

rate and lower shear stress due to the velocity slip at the walls, i.e. the lower 

hydraulic ressitivities of the elliptic channels with the velocisy slip BC in 

comparison to the velocity no-slop BC. Build the plots for (92)–(93) in comparison 

to the plots for (84)–(86) and analyze them. Derive your conclusions on physical 

behavior of the flows with no-slip, first order slip (microfluids, 1 10, 0)    and 

second order slip (nanofluids, 1 10, 0)    BC. 

 

4.5. Laminar flow through a tube with equilateral triangle cross-section 

 
4.5.1. Classical fluids 

 

       Let us consider the case when the prismatic channel has the cross-section as an 

equilateral triangle with the axis 0x and the sides y 0  (base of the channel), 

y a 3 / 2 3z  (left and right sides), and with the longitudinal axis 0z. The same 

trick as one used in the solution (84) in comparison to the solution (64) can be used 

here to obtain zero velocity at the three sides of the triangle, namely  

a 3 a 3
v (y,z) Ay y 3z y 3z

2 2


  
      

  
, A = const.            (94) 

       Substitution of (94) into (3) gives 

eff

p
A

2 3 La


 ,   

2

2

eff

p y a 3
v(y,z) y 3z

22 3 La

   
    
   

,              (95) 

while the pressure distribution still corresponds 

to (51). 

       An example of the velocity distribution (95) 

is given in Fig. 11. 

       Integration of (94) over the triangle cross-

section gives the volumetric flow rate  
4

eff

a 3 p
Q

320 L


 .                      (96) 

Individual task: Using (87) and (94), compute 

the shear stress  

2 2
xz xy                          (97) 

distribution in the flow and at the three walls.  
 

 
 

Fig. 11. Contours of the fluid 

velocity profile across the triangle 

cross section of the channel.  

The darker regions correspond  

to higher velocities 
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4.5.2. Micro/nanofluids 

 

Individual task: Find out the solution slipv (y,z) for the flow velocity in the triangle 

channel with slip BC. In the most general case the three walls of the channel have 

different sets of the roughness parameters 1 1,  , 2 2,  , 3 3,  . Try the same 

approach that had been used for the elliptic tubes, i. e. substitute the expression 

slip

1 2 3

a 3 a 3
v (y,z) A(y A ) y 3z A y 3z A

2 2


  
         

  
 (98) 

into the Navier-Stokes equations (3) and find out the expressions for 1 3A  . 

       Compute the volumetric flow rate  
y a 3a 3

232
slip slip

0 0

Q 2 dy v dz



    .    (99) 

       Compute the values of the shear stress vectors 

slip 2 2
xz xy                                                 (100) 

in the flow and at the walls. 

       Determine the conditions on the coefficients 1 2 3, ,   , 1 2 3, ,    which 

provide higher flow rate and lower shear stress due to the velocity slip at the walls, 

i.e. the lower hydraulic resistivity of the triangle channel with the velocisy slip BC 

in comparison to the velocity no-slip BC. Build the plots for (98) – (100) in 

comparison to the plots for (95) – (97) and analyze them. Derive your conclusions 

on physical behavior of the flows with no-slip, first order slip (microfluids, 

1 3 1 30, 0)     and second order slip (nanofluids, 1 3 1 30, 0)     BC. 

 

4.6. Laminar flow through a tube with rectangle cross-section 

 
4.6.1. Classical fluids 

 

       Let us consider the laminar flow through a channel with the axis 0x and 

rectangle cross section [ , ]z h h  , [ , ]y h h    where   is the aspect ratio 

(width to height ratio) of the channel. Then the solution of (3) can be found as 

Fourier expansions in 
2 1

cos
n

z
h


 

 
 

 that satisfies the no-slip BC. Substitution in 

(2),(3) gives the flow distribution 

2

3 3

0

2 1
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4 ( 1) 2 12
( , ) 1 cos

2 1(2 1)
ch

2

n

neff

n y

ph nh
v y z z

nL n h






 






  
              
    

 .       (101) 



28 

       An example of the velocity distribution (101) across a rectangle cross section 

is given in Fig. 12a. Integration of (101) over the rectangle cross section gives the 

flow rate 
4

5 5

0

16 1024 1 2 1
th

4 3 (2 1) 2neff

ph n
Q

L n


 

 





  
   

   
 .             (102) 

       The non-zero components of the shear stress tensor (87) are 

eff
xz zx

n

2 2
n 0

v

2 z

2n 1 y
ch

4 ph ( 1) 2n 12 h
1 sin z ,

2n 1 hL (2n 1) ch
2


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
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


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
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2


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


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

 
         
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 


        (104) 

       The values of the shear stress vectors  
2 2 1/2
xy xz( )       (105) 

computed on (101), (105) are presented in Fig. 12a,b. 
 

 
a                                                                  b 

Fig. 12. Velocity (a) and shear stress (b) distributions across  

the channel with rectangular cross section 

 
4.6.2. Micro/nanofluids 

 

Individual task: Find out the solution slipv (y,z) for the flow velocity in the 

rectangle channel with slip BC. In the most general case the four walls of the 

channel have different sets of the roughness parameters 1 1,  , 2 2,  , 3 3,  , 
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4 4,  .Try the same approach that had been used for the elliptic and triangle 

tubes, i. e. substitute the expression 

2

1 23 3

0

2 1
ch

4 ( 1) 2 12
( , ) 1 cos

2 1(2 1)
ch

2

n
slip

neff

n y

ph nh
v y z A z A

nL n h






 






  
                   
    

      (106) 

into the Navier-Stokes equations (3) and find out the expressions for 1,2A . 

       Compute the volumetric flow rate by integration of (106) over the rectangle 

cross section of the channel. Compute the shear stress distribution n the channel 

and over its walls.  

       Determine the conditions on the coefficients 1 2 3 4, , ,    , 1 2 3 4, , ,     

which provide higher flow rate and lower shear stress due to the velocity slip at the 

walls, i. e. the lower hydraulic resistivity of the rectangle channels with the 

velocity slip BC in comparison to the velocity no-slop BC. Build the plots based 

on (106) in comparison to the plots for (101), (102), (105) and analyze them. 

Derive your conclusions on physical behavior of the flows with no-slip, first 

order slip (microfluids 1 4 1 40, 0    ) and second order slip (nanofluids, 

1 4 1 40, 0    ) BC. 
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