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The linearized Vlasov equation is rewritten for charged particles in the two-dimensional axisymmetric plasma models using  the 

cylindrical coordinates. There is described a method of its solution by the Fourier expansions of the perturbed distribution functions

over the gyrophase angle in velocity space, conservation integrals of particle motion in the curvilinear magnetic field and smallness

of the magnetization parameters. Such an approach allows us to evaluate the main contributions of untrapped and trapped particles to 

the transverse and longitudinal dielectric tensor components for electromagnetic waves in tokamaks, straight mirror-traps, laboratoty

dipole magnetospheric plasmas and inner part of the Earth's magnetosphere. 

KEY WORDS: Vlasov equation, kinetic wave theory, tokamaks, mirror traps, magnitospheric plasmas.

. .

. . .

. , 4, 61077, ,

-

- .

-

,

.

,

, , .

: , , , ,

.

. .

. .

. , 4, 61077, ,

-

- . ’

’ -

, .

, ,

, .

: , , , , .

Since plasma is an ensemble of charged particles (ions and electrons) its behavior can be described by the kinetic 

equation for probability distribution functions, ( , , )F t
α

r v , of α-kind particles in the six-dimensional phase ( , )r v -

volume. In the general case, ( , , )F t
α

r v is a function of seven variables: t-time, three variables in velocity space v, and 

three variables in geometric space r. In plasma theory, the corresponding kinetic equation is known as the Vlasov 

equation [1] or collisionless Boltzmann equation, where the generalized force acting the particles is defined as the self-

consistent Lorentz force. As a result, the linearized Vlasov equation for the perturbed distribution functions 

0( , , ) ( , , )- ( , )f t F t F
α α α

=r v r v r v can be written as 

0 0( ) [ ]
f e H f e F

f
t M c M c

α α α α α

α

α α

∂ ∂ ∂×
+ ∇ + × = − +

∂ ∂ ∂

v H
v v h E

v v
.                                       (1) 

Here
0 ( , )F

α
r v  is the steady-state (as well as equilibrium and non-equilibrium) distribution functions of particles with 

the mass M
α

 and charge e
α

; E and H are the perturbed electric and magnetic fields; 0H  is the modulus of an 

equilibrium magnetic field 0H ; 0 0/ H=h H ; c is the speed of light; /∇ = ∂ ∂r .
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After solving Eq. (1), one can calculate the basic moments of plasma distribution functions such as the 

perturbation of plasma density ( , )n t r  (as the zeroth moment of fα ):

1 2, , ,...

( , ) ( , , )
e i i

n t f t dα
α

=
v

r r v v ,                              (2) 

the perturbed current density components, ( , )tj r  (as the first moments of fα ):

1 2, , ,...

( , ) ( , , )
e i i

t e f t dα α
α

=
v

j r v r v v ,                                                             (3) 

the plasma pressure transverse and along the 0H -field lines (as the second moments of fα ), heat conductivity 

components and others.

It is well known, any wave process in magnetized plasmas can be described by solving the Maxwell's equations 

for the perturbed (E,H)-components:

1
[ ]

c t

∂
∇ × = −

∂

H
E ,

1 4
[ ]

c t c

π∂
∇ × = +

∂

E
H j ,                                                (4) 

where the Gaussian system of units has been used. The set of Eqs. (4) will be complete if we know the relation between 

j and (E,H)-fields. Usually this connection, for the harmonic oscillations proportional to exp( i )tω− , is defined by the 

wave conductivity tensor 
ikσ :

i ik kj Eσ= , or by the dielectric tensor 
ikε : 4 i /ik ik ikε δ π σ ω= + , where 

ikδ  are the 

Kronecker constants; i,k=1,2,3 indicate the vector projections, ω is the wave frequency. It means that before solving Eqs. 

(4) we should calculate the 
ikε  (or 

ikσ ) tensor components by solving Eq. (1) and using Eq. (3). 

The main feature of magnetized plasmas is the fact that their dielectric tensor components have the different form 

for different plasma models. This form depends substantially on the wave frequency ω , the plasma parameters (density 

N,  temperature T)  and the geometry of an equilibrium magnetic field 0H (r). Presently, the linear wave theory is 

developed very well for the plane waves in both the isotropic  (when 0H =0) and anisotropic magnetized plasmas in the 

straight magnetic field, see, e.g., Ref. [2] and the bibliography therein.

However, the approximation of plane waves is not suitable for such realistic plasma systems as the inner part of 

the Earth's magnetosphere, laboratory dipole magnetosphere, straight mirror traps and tokamaks. All these plasmas can 

be modeled as two-dimensional (2D) axisymmetric configurations with one minimum of a nonuniform equilibrium 

magnetic field; where plasma particles should be split in the two populations of the so-called trapped and untrapped (or 

passing, or circulating) particles. Accordingly, Eq. (1) can be resolved separately as a boundary value problem for each 

particle group.

The main aim of this paper is to derive the kinetic equation in the convenient form for 2D magnetospheric, toroidal 

and mirror-trapped plasma models in the collisionless limit. Of course, the initial Eq. (1) should be resolved separately 

for each specific 2D plasma configuration using one set of coordinates or another. However, since the above mentioned 

models are axisymmetric it is convenient to use the usual cylindrical coordinates for plasmas in the arbitrary three-

dimensional 0H -field.

THE LINEARIZED VLASOV EQUATION 

Describing the axisymmetric plasma configurations (such as tokamaks, Earth’s radiation belts, laboratory dipole 

magnetosphere, straight mirror traps etc) it is convenient to use the cylindrical coordinates (ρ, φ, z), where the axis z is 

coinciding with the main symmetry axis. In this case, the linearized Vlasov equation for perturbed distribution 

functions,
||( , , ) ( , , , , , , )f t f t z v vα α ρ φ σ⊥=r v , of charged particles (ions and electrons, 

1 2, , ,...e i iα = )  can be rewritten 

as
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where 0F  is the equilibrium (or steady-state) distribution function. The index α  of the particle species is omitted, and 

the additional definitions are 

||

||

ˆ f f
Vf v v

v v
⊥

⊥

∂ ∂
= −

∂ ∂
, 0

c

eH

Mc
Ω = .                                                           (6) 

In Eq. (5), for the vector values { }=A E,H, v, j , we use the normal A1, binormal A2, and parallel A3 projections 

relative to an equilibrium (three-dimensional in the general case)  magnetic field 0H (r):

1 2 3A A A= + +A n b h ,                                                                          (7) 

so that 

1 n z zA A A n A n A nρ ρ φ φ≡ = + + , 2 b z zA A A b A b A bρ ρ φ φ≡ = + + , 3 || z zA A A h A h A hρ ρ φ φ≡ = + + ,          (8) 

where n, b, h are the normal, binormal and parallel unit vectors relative to 0H :

0 0/H=h H , = ×n b h , = ×b h n .                                                  (9) 

Moreover, in velocity space we use the polar coordinates ( ,v σ⊥ ) instead of ( 1 2,v v ) by the transformation 

1 cosv v σ⊥= , 2 sinv v σ⊥= , 3 ||v v= .                                                 (10) 

AXISYMMETRIC TWO-DIMENSIONAL TOKAMAKS 

For axisymmetric tokamaks, Eq. (5) can be readily simplified under the conditions   i) 0H  is independent of φ,

and  ii) the normal component (perpendicular to the magnetic surface) of an equilibrium magnetic field is equal to zero, 

i.e., when 
0 0⋅ =n H . The corresponding kinetic equations, their solutions and dielectric tensor evaluation for radio-

frequency waves in the toroidal plasmas with an arbitrary tokamak aspect ratio have been present in Refs. [3-5], 

respectively, for circular, elliptic and D-shaped magnetic surfaces. 

In particular, for axisymmetric tokamaks with circular magnetic surfaces, the cylindrical projections of an 

equilibrium magnetic field (in the case when the Shafranov shift of the magnetic surfaces is neglected) have the forms: 

0 0rH = , 0
0

( )

1 cos

H r
H θ

θ
ε θ

=
+

,
0

0

( )

1 cos

H r
H

φ

φ
ε θ

=
+

.                                        (11) 

Here 0/r Rε =  is the inverse tokamak aspect ratio; and quasi-toroidal coordinates ( , , )r θ φ  have been used instead of 

the cylindrical ones ( , , )zρ φ  as

0 cosR rρ θ= + , φ φ= , sinz r θ= − ,                                        (12) 

where 0R  is the major radius of plasma torus; r is the radius of the considered magnetic surface; θ  and φ  are the 

poloidal and toroidal angles, respectively; 0 0 ( , / 2)H H rθ θ π=  and 0 0 ( , / 2)H H rφ φ π=  are the poloidal and toroidal 

projections of an equilibrium magnetic field. After the such transformations, the linearized Vlasov equation (5) can be 

rewritten in the form 

||2 ˆcos sin cosc

vhf f f f
v h Vf

t r r h v
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   (13) 

Here the cyclotron frequency of plasma particles cΩ  is defined as usual by the modulus of 0H :

2 2

0 0 0

1 cos 1 cos

c
c

H He

Mc

φ θ

ε θ ε θ

+ Ω
Ω = =

+ +
.     (14) 

MIRROR-TRAPPED PLASMAS 

As regards to the magnitospheric plasma models, like as the inner part of the Earth’s magnetosphere [6] and the 

Levitated Dipole eXperiment (LDX) plasma [7,8], and the straight mirror traps [9], Eq. (5) can be simplified 

substantially under the condition when the 0H φ -component of 0H  is equal to zero, 0 0H φ = . In this case, the vectors 

n, b, h have the following cylindrical projections: ( ,0, )zh hρ=h , ( ,0, )zh hρ= −n , (0, 1, 0)=b , and Eq. (5) can be 

reduced to 

|| ||
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Further, the perturbed distribution function should be expanded in a Fourier series over the polar (or gyrophase) 

angle σ  in velocity space, 

|| ||( , , ) ( , , , , ,v ,  ) ( , , ,v  ) exp( )l

l

f t f t z v f z v i t in ilρ φ σ ρ ω φ σ
±∞

⊥ ⊥= = − + −r v  ,                   (16) 

accounting for that the problem is homogeneous in the time t and the angle φ ; therefore the perturbed values (including 

the { }E,H, j -components) are proportional to ~ exp( )i t inω φ− + , where n is the integer. Due to this procedure, we 

reduce the problem to solve the differential equations with respect to four partial derivatives for 
||( , , ,v )lf z vρ ⊥

-

harmonics, whereas the initial equations (5), (13) and (15) were including the seven partial derivatives. 

To evaluate the main contribution of plasma particles to the perturbed current density components it is enough to 

find the 
lf -harmonics with 0, 1l = ± . Of course, after substituting (16) to (13) and (15) we get a set of coupled 

equations: i.e., the equation for 
lf contains the harmonics 

1lf ±  and 
2lf ± . However, for magnetized plasmas this 

coupling can be taken into account by the standard approximation using the small ‘magnetization’ parameter 

/ 1r lλ ⊥ << , when the Larmor radius 
02 /( )r TM c eHλ = of charged particles is much less than the scale length l⊥  of 

nonuniformity of the plasma-wave parameters in the direction perpendicular to 0H . Thus, to evaluate the 
11ε ,

12ε  , 

21ε ,
22ε , and 

33ε dielectric tensor components, we should solve three equations for the first (
0f  and 

1f± ) harmonic of 
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the perturbed distribution function.  As a result, the 2D transverse and longitudinal current density components can be 

calculated as 

1 (1) ( 1)nj j j j −= = + , 2 ( 1) (1)[ ]bj j i j j−= = − ,                                         (17)

1 2 1 2, , ,.. , , ,..

3 || ||, || || 0,

0

2
e i i e i i

j j j e v dv f v dvα α α

α α

π
∞ ∞
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−∞

= = = ,                                                (18) 

where

1 2 1 2, , ,.. , , ,..
2

( ) ( ) || ,

0

e i i e i i

l l lj j e dv f v dvα α α

α α

π
∞ ∞

⊥ ⊥

−∞

= = , 1l = ±  .                                         (19)

The simplest solution of the Vlasov equations (13) and (15) can be realized by introducing the new variables 

associated with the conservation integrals of the particle motion and the equation of the magnetic field lines for the 

concrete 0H -field configuration. The conservation integrals (the motion invariants) are the same for any axisymmetric 

magnetized plasmas: 2 2

|| vv const⊥+ = and 2

0v / H const⊥ = , as the conservation of particle energy and magnetic 

moment, respectively. Thus instead of 
||( ,v )v ⊥

-variables one can introduce the 2 2

|| vv v ⊥= + and
2

0 min

2 2

|| 0

v

v

H

v H
µ ⊥

⊥

=
+

variables. By the parameter µ, all plasma particles (of any kind) can be separated on the two groups of the trapped and 

untrapped particles. After this, the reduced Vlasov equations should be resolved separately for each group of particles to 

evaluate their contributions to the 2D perturbed current density components and, respectively, to the corresponding 

dielectric tensor elements. 

CONCLUSION

In conclusion let us summarized the main results of the paper. In particular, there is derived, in the cylindrical 

coordinates, the linearized Vlasov equation (5) for the perturbed distribution functions of plasma particles which are 

confined in the arbitrary curvilinear magnetic field. It is shown that this equation is suitable to develop the kinetic wave 

theory in the such 2D axisymmetric plasma configurations as tokamaks, straight mirror traps and inner part of the 

planetary magnetospheres. The stationary magnetic fields in these models have one minimum in the equatorial plane. 

As a result, the charged particles (electrons, protons, heavy ions) should be separated on the magnetically trapped and 

untrapped particles. Such separation can be done by the parameter µ corresponding to a non-dimensional magnetic 

moment, analyzing the conditions when the parallel velocity of plasma particles is equal to zero. 

It should be noted, since we find the perturbed distribution functions of the trapped and untrapped particles in the 

zero order of ‘magnetization’ parameters neglecting the drift effects, our dielectric characteristics in [3-6, 8, 9] are not 

taking into account the finite “beta” and finite Larmor radius corrections, and the finite banana widths of the trapped 

and untrapped particles. On the other hand, such an approach allows us to define the main contributions of the trapped 

and untrapped particles to the transverse and longitudinal dielectric tensor components in the simplest analytical form 

suitable to analyze the wave-particle interactions due to both the Cherenkov and fundamental ( 1l = ± ) cyclotron 

resonances, accounting for the transit time and bounce resonances of the untrapped and trapped particles, respectively.
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