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The linearized Vlasov equation is rewritten for charged particles in the two-dimensional axisymmetric plasma models using the
cylindrical coordinates. There is described a method of its solution by the Fourier expansions of the perturbed distribution functions
over the gyrophase angle in velocity space, conservation integrals of particle motion in the curvilinear magnetic field and smallness
of the magnetization parameters. Such an approach allows us to evaluate the main contributions of untrapped and trapped particles to
the transverse and longitudinal dielectric tensor components for electromagnetic waves in tokamaks, straight mirror-traps, laboratoty
dipole magnetospheric plasmas and inner part of the Earth's magnetosphere.
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YPABHEHUE BJIACOBA JJIS1 3BAMATHUYEHHBIX YACTHUII IIJIA3MbI B TIPOU3BOJIBHOM MATHUTHOM
MMOJIE
H.W. I'pumanos
Xapvroeckuii Hayuonanvhulil ynusepcumem um. B.H. Kapasuna
nn. Ceo6o0owi, 4, 61077, Xapvros, Ykpauna

[IpencraBneHo nuHeapu30BaHHOE ypaBHeHHE BracoBa B HMJIMHIPUYECKUX KOOPAMHATAaX IS 3apsDKEHHBIX 4YacTUI] B IBYMEpPHO-
HEOIHOPOJHBIX aKCHAIbHO-CUMMETPHYHBIX MOAENAX Iia3Mbl. OMHcaH METOA €ro PeIlIeHMs ISl MPONETHBIX M 3aNepThIX YacTHUI]
ucnonb3yst PDypbe-pasnokeHHe BO3MYIICHHBIX (YHKUMHA pacrmpefeeHHs 4YacTHIl IO YNNIy LHMKJIOTPOHHOrO BpalICHHS B
MPOCTPAHCTBE CKOPOCTEH, WHBAPHUAHTHI JBIKEHHS 4YacTHI B KPHUBOJIMHEHHOM MAarHNTHOM IION€ M MAaJIOCTh IIapamerpa
3aMarHUYCHHOCTH ITa3MBbl. TaKo# IMOJXOM MO3BOJISET BRIYUCIUTH OCHOBHOH BKJIaJ MPOJIETHBIX U 3aMEPTHIX JaCTHUI] B IIOTIEPEUHbIE 1
IPOJIOJIFHYIO KOMITOHEHTHI TEH30pa IUAIEKTPHIECKON MPOHUIAEMOCTH HJICKTPOMATHUTHBIX BOJH B TOKAMAaKax, IMIHHAPHIECKHX
NpOOKOTPOHAX, TaGOPATOPHOH AUTIONIAPHOI MarHUTOC(HEPHOH II1a3Me, OKOJI03eMHON MarHuTocdepe.

KJIIOYEBBIE CJIOBA: ypaBuenue BiacoBa, KuHeTHYecKas TeOpusl BOJH, TOKaMaK, IIIMHAPHYECKHH TPOOKOTPOH,
MarHuTocepHas mia3ma.

PIBHSIHHSI BJJACOBA JJI51 3BAMATHIYEHUX YACTHUHOK IIJIABMHA Y TOBIVIBHOMY MATHUTHOMY ITOJII
M.I. I'pumanos
Xapkiscokuii Hayionanvhuti ynisepcumem imeni B.H. Kapasina
nn. Ceoboou, 4, 61077, Xapkis, YVkpaina

HaBeneno miHeapm3oBaHe piBHAHHA BilacoBa B IMIIHAPWYHUX KOOpAWHATaX JUIl 3aps/UKEHHX YaCcTHHOK B JBOBHMIpHO-
HEOIHOPIHUX aKCiaIbHO-CHMETPHYHUX MOAENAX IuazMu. OmmcaHo MeToJ HOro po3B’s3Ky IS NMPOJITHHX 1 3allepTHX YaCTHHOK
Bukopucratoun Dyp’e-poskinan 30yKeHHX (QYHKLINH PO3MOAUTy YaCTUHOK MO KTy LHUKJIOTPOHHOTO OOEpTaHHS y IPOCTOpi
LIBUJIKOCTEH, IHBAPiaHTH PyXy YaCTUHOK B KPUBOJIHIITHOMY MarHiTHOMY IIOJIi Ta MaJIICTh MapaMeTpy 3aMarHivyHocTi miasmu. Takuit
MiAX11 T03BOJISIE PO3paxyBaTH OCHOBHHMI BHECOK IPOJIITHHUX 1 3alEPTHX YACTHHOK B IOMEPEYHi 1 MOJOBXKHIO KOMIIOHEHTH TEH30pa
JENEKTPUYHOI MPOHUKHOCTI ISl €NIEKTPOMATHITHUX XBWJIb B TOKaMakaX, IIIHIPAIHUX MPOOKOTPOHAX, TaOOPATOPHIN AUNOISAPHIN
MarHiTocepHiil m1a3Mi, HaBKOJIO3eMHil MarHiTocgepi.

KJIFOYOBI CJIOBA: piustHHS BiracoBa, KiHeTHYHa Teopis XBHIIb, TOKaMaK, [IIHAPHIHAIT IPOOKOTPOH, MarHiToc(hepHa Ima3ma.

Since plasma is an ensemble of charged particles (ions and electrons) its behavior can be described by the kinetic
equation for probability distribution functions, F,(z,r,v), of orkind particles in the six-dimensional phase (r,Vv)-

volume. In the general case, F, (7,r,Vv)is a function of seven variables: #-time, three variables in velocity space v, and

three variables in geometric space r. In plasma theory, the corresponding kinetic equation is known as the Vlasov
equation [1] or collisionless Boltzmann equation, where the generalized force acting the particles is defined as the self-
consistent Lorentz force. As a result, the linearized Vlasov equation for the perturbed distribution functions
[, (tr,v)=F, (t,r,v)-F,, (r,v)can be written as
Yoy vz, +ﬁ[vxh]%:—e—“(E+ VXHjaFﬂ.
ot M, ov M, v

Here F,,(r,v) is the steady-state (as well as equilibrium and non-equilibrium) distribution functions of particles with

(M

c

o

the mass M , and charge e, ; E and H are the perturbed electric and magnetic fields; H  is the modulus of an

equilibrium magnetic field H,; h=H ,/ H ; c is the speed of light; V=09/0dr .
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After solving Eq. (1), one can calculate the basic moments of plasma distribution functions such as the
perturbation of plasma density n(z,r) (as the zeroth moment of £ ):

e,ij,h

n(t,r) = Z jf(rr v)av )

the perturbed current density components, j(z,r) (as the ﬁrst moments of £ ):

e,iy,h .

j(tr) = Z jvf (t,r,v)dv, 3)

the plasma pressure transverse and along the Ho-ﬁeld lines (as the second moments of f ), heat conductivity

components and others.
It is well known, any wave process in magnetized plasmas can be described by solving the Maxwell's equations
for the perturbed (E,H)-components:

1 oH 10E 4r
[VXE]=———, [VxH]=——+—]j, )
c ot cdt ¢
where the Gaussian system of units has been used. The set of Egs. (4) will be complete if we know the relation between
j and (E,H)-fields. Usually this connection, for the harmonic oscillations proportional to exp(—it) , is defined by the

wave conductivity tensor ¢, : j, =0, E,, or by the dielectric tensor g, : €, =0, +4nioc, /@, where ¢, are the

Kronecker constants; i,k=1,2,3 indicate the vector projections, @ is the wave frequency. It means that before solving Egs.
(4) we should calculate the ¢, (or o, ) tensor components by solving Eq. (1) and using Eq. (3).

The main feature of magnetized plasmas is the fact that their dielectric tensor components have the different form
for different plasma models. This form depends substantially on the wave frequency @, the plasma parameters (density
N, temperature 7) and the geometry of an equilibrium magnetic field H ,(r). Presently, the linear wave theory is

developed very well for the plane waves in both the isotropic (when H ,=0) and anisotropic magnetized plasmas in the

straight magnetic field, see, e.g., Ref. [2] and the bibliography therein.

However, the approximation of plane waves is not suitable for such realistic plasma systems as the inner part of
the Earth's magnetosphere, laboratory dipole magnetosphere, straight mirror traps and tokamaks. All these plasmas can
be modeled as two-dimensional (2D) axisymmetric configurations with one minimum of a nonuniform equilibrium
magnetic field; where plasma particles should be split in the two populations of the so-called trapped and untrapped (or
passing, or circulating) particles. Accordingly, Eq. (1) can be resolved separately as a boundary value problem for each
particle group.

The main aim of this paper is to derive the kinetic equation in the convenient form for 2D magnetospheric, toroidal
and mirror-trapped plasma models in the collisionless limit. Of course, the initial Eq. (1) should be resolved separately
for each specific 2D plasma configuration using one set of coordinates or another. However, since the above mentioned
models are axisymmetric it is convenient to use the usual cylindrical coordinates for plasmas in the arbitrary three-

dimensional H ,-field.

THE LINEARIZED VLASOV EQUATION
Describing the axisymmetric plasma configurations (such as tokamaks, Earth’s radiation belts, laboratory dipole
magnetosphere, straight mirror traps etc) it is convenient to use the cylindrical coordinates (p, @, z), where the axis z is
coinciding with the main symmetry axis. In this case, the linearized Vlasov equation for perturbed distribution
functions, f, (¢,r,v)= f,(t,p,9,2,v,,v,,0), of charged particles (ions and electrons, & =e,i,,i,,...) can be rewritten

as

af Yy 5 Y
LA +7(Vh)Vf - {QC +E[2b(hV)n +h(bV)n—hnV)b+

2————————|r=—+cosoyv, (nV) [ +y n(hV)h+—2= |77 +
p p p J]do P

h h
+L{vin(nV)b +yh(hV)b +v} B _ v z—nﬂ ai} + sina{vL bV)f+
v, P p Joo

2 2 2 h¢bz 2 hzb¢ af
v | bOV)h === | Pf ——| v b®V)n + v h(hV)n -7 2= 402 =2 | Py
p p p

v, Jdo
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o G o]
P p
+h(nV)b+ 2 }af } sin2g {vl {n(bV)h+b(nV)h+%_ nyn. };f_ o
p Jo 2 >,
% {h(nV)n h(bV)b—ﬂ__} Jf }
P Jdo

< EHaF veoso| £, X0 Hopp y L g g |
v E)vi ¢ v, ¢ FE3

—igﬂ+sino{E oh _H, pp —i(E iy jaF }}

¢ do v, ¢ v, c tele}

where £ is the equilibrium (or steady-state) distribution function. The index o of the particle species is omitted, and
the additional definitions are

H
af VH af QC — e 0 .
T v v, Mc

In Eq. (5), for the vector values A ={E,H, V,J} , we use the normal A4,, binormal 4,, and parallel 45 projections

Vf=v,

(6)

relative to an equilibrium (three-dimensional in the general case) magnetic field H , (r):

A=4n+A4,b+ 4h, @)
so that
A =A4,=4n,+A4n,+An., A,=4,=A4b,+A4,b,+A4b., A =A4=A4h,+A4,h,+Ah., 8)
where n, b, h are the normal, binormal and parallel unit vectors relative to H
h=H,/H,, n=bxh, b=hXxn. 9

Moreover, in velocity space we use the polar coordinates (v, ,0) instead of (v,,Vv, ) by the transformation

vV, =V, C0SO, v, =V,8In0C, vy =Y. (10)

AXISYMMETRIC TWO-DIMENSIONAL TOKAMAKS
For axisymmetric tokamaks, Eq. (5) can be readily simplified under the conditions 1) H, is independent of ¢,

and ii) the normal component (perpendicular to the magnetic surface) of an equilibrium magnetic field is equal to zero,
i.e., when n-H, =0. The corresponding kinetic equations, their solutions and dielectric tensor evaluation for radio-

frequency waves in the toroidal plasmas with an arbitrary tokamak aspect ratio have been present in Refs. [3-5],
respectively, for circular, elliptic and D-shaped magnetic surfaces.

In particular, for axisymmetric tokamaks with circular magnetic surfaces, the cylindrical projections of an
equilibrium magnetic field (in the case when the Shafranov shift of the magnetic surfaces is neglected) have the forms:

H H,,(r
oa(r) , Ho¢ — 0¢( ) ) (11)
1+&cos@ 1+ &cos@
Here € =r/R, is the inverse tokamak aspect ratio; and quasi-toroidal coordinates (r,8,¢) have been used instead of

H, =0, Hyp =

the cylindrical ones (0,9,z) as

p=R,+rcosé, o=9, z=-rsind, (12)
where R, is the major radius of plasma torus; r is the radius of the considered magnetic surface; 8 and ¢ are the
poloidal and toroidal angles, respectively; H,, = H,,(r,7/2) and I-_IM =H,,(r,m/2) are the poloidal and toroidal

projections of an equilibrium magnetic field. After the such transformations, the linearized Vlasov equation (5) can be

rewritten in the form
al—QLai+ Vv, COSO af+h; 9% sin oVf ——- cosaaf +
ot do or or v, do

——h,cosoVf -

+h9v”+hvls1n0' of A th+h v c0sO of +h¢vH—hngsin0'X
260 v, tele

r R, +rcos@
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. h,
X al—cos@ hy COSO'Vf——v“SIM af +siné sman —Lcoso—— A =
¢ v, tele

v,

=-Z qaﬂﬂosa E, ai+—VF L o ok,
M| "oy v, ¢ v, c o0

H
WO no| B, S _Happ g My |0
¢ do v, ¢ v, ¢ FE3

Here the cyclotron frequency of plasma particles €2, is defined as usual by the modulus of H :

c

o e Tt a,

" Mc 1+£cos® l+ecosf’

(13)

(14)

MIRROR-TRAPPED PLASMAS
As regards to the magnitospheric plasma models, like as the inner part of the Earth’s magnetosphere [6] and the
Levitated Dipole eXperiment (LDX) plasma [7,8], and the straight mirror traps [9], Eq. (5) can be simplified
substantially under the condition when the H,,-component of H,, is equal to zero, H, 5= 0. In this case, the vectors

n, b, h have the following cylindrical projections:h=(%,,0,4,), n=(4_,0,—h,), b=(0, 1, 0), and Eq. (5) can be

reduced to
%) 0 oh, 0
f +v,h f v,h f 5 (—— ph, + A ij Q. f

ot Vifty ap (e aZ
oh, \
+cos0{vlhzgl_vlh al_"(ahz——pjlff}+
I

h
+sino V_J-al_L VHZ ai_a_p +v2h_z ai +
pog v, op 0z tp |do

h h
» 9N JVf+ sm20‘(,0a p+8iJ8i:

+2L cos20 pi— —+
2 op p 0oz op p 0z Joo

£ HaF+canai Hopp o L g M |9
ey v, ¢ v, c o0

H
——”aﬂﬂina E,—* oF _H, VF, L E, - “H oF,
¢ do v, ¢ v, ¢ FE3

(15)

Further, the perturbed distribution function should be expanded in a Fourier series over the polar (or gyrophase)
angle o in velocity space,

[, v)=f(t,p,0,2,v,v,,0 )=§fl (p,2,v,v, )exp(—iwt +ing —ilo) , (16)

accounting for that the problem is homogeneous in the time # and the angle ¢ ; therefore the perturbed values (including
the {E,H, ]} -components) are proportional to ~ exp(—iax + in@), where n is the integer. Due to this procedure, we
reduce the problem to solve the differential equations with respect to four partial derivatives for f, (p,z,v,v,)-

harmonics, whereas the initial equations (5), (13) and (15) were including the seven partial derivatives.
To evaluate the main contribution of plasma particles to the perturbed current density components it is enough to

find the f, -harmonics with /=0,%1. Of course, after substituting (16) to (13) and (15) we get a set of coupled
equations: i.e., the equation for f, contains the harmonics f,,, and f, ,. However, for magnetized plasmas this

coupling can be taken into account by the standard approximation using the small ‘magnetization’ parameter
r, /1, <<1, when the Larmor radius r, =~2TMc/(eH,) of charged particles is much less than the scale length /, of

nonuniformity of the plasma-wave parameters in the direction perpendicular to H . Thus, to evaluate the &, &, .,

&, &,,and &, dielectric tensor components, we should solve three equations for the first ( £, and f,,) harmonic of
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the perturbed distribution function. As a result, the 2D transverse and longitudinal current density components can be
calculated as

J=Jn=Jay iy T2 = =i[j(71) _j(l)]’ A7)
== 2 Je=2m ) e, J."Hd"u J‘ﬁ,a"ld"w (18)
o o —oo 0
where
Jo = z Jia =7 z e, J.dv” J‘fl,avide [=%1. (19)
o a o 0

The simplest solution of the Vlasov equations (13) and (15) can be realized by introducing the new variables
associated with the conservation integrals of the particle motion and the equation of the magnetic field lines for the

concrete H -field configuration. The conservation integrals (the motion invariants) are the same for any axisymmetric

magnetized plasmas: vH2 +v =const and v} /H,=const, as the conservation of particle energy and magnetic

v: H,_.
moment, respectively. Thus instead of (v,v, )-variables one can introduce the v =, /sz +v) and 4= -

v +vi H,

variables. By the parameter 4, all plasma particles (of any kind) can be separated on the two groups of the trapped and
untrapped particles. After this, the reduced Vlasov equations should be resolved separately for each group of particles to
evaluate their contributions to the 2D perturbed current density components and, respectively, to the corresponding
dielectric tensor elements.

CONCLUSION

In conclusion let us summarized the main results of the paper. In particular, there is derived, in the cylindrical
coordinates, the linearized Vlasov equation (5) for the perturbed distribution functions of plasma particles which are
confined in the arbitrary curvilinear magnetic field. It is shown that this equation is suitable to develop the kinetic wave
theory in the such 2D axisymmetric plasma configurations as tokamaks, straight mirror traps and inner part of the
planetary magnetospheres. The stationary magnetic fields in these models have one minimum in the equatorial plane.
As a result, the charged particles (electrons, protons, heavy ions) should be separated on the magnetically trapped and
untrapped particles. Such separation can be done by the parameter ¢ corresponding to a non-dimensional magnetic
moment, analyzing the conditions when the parallel velocity of plasma particles is equal to zero.

It should be noted, since we find the perturbed distribution functions of the trapped and untrapped particles in the
zero order of ‘magnetization’ parameters neglecting the drift effects, our dielectric characteristics in [3-6, 8, 9] are not
taking into account the finite “beta” and finite Larmor radius corrections, and the finite banana widths of the trapped
and untrapped particles. On the other hand, such an approach allows us to define the main contributions of the trapped
and untrapped particles to the transverse and longitudinal dielectric tensor components in the simplest analytical form
suitable to analyze the wave-particle interactions due to both the Cherenkov and fundamental (/==1) cyclotron
resonances, accounting for the transit time and bounce resonances of the untrapped and trapped particles, respectively.
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