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ON A CONJECTURE OF YU. V. LINNIK
A M. VISHNYAKOVA, L V. OSTROVSEHL AND AL M, ULANOVSKII

ABSTRACT. A survey is given of work concerning Linnik's 1960 conjecture an
the growth of entice characteristic functions (Founer transforms) of probability
mensures, A prool of this conjecture 15 presenied that 15 substantially shorter
and more elementary than the known proofs. With the help of the same idea, ©
new Tacts are established about the growth of entire characteristic functions
will restrictions on the arguments of the zeros

1. Results connected with the Linnik conjecture

An entire function @: C — € is called an entire characteristic function (ECF)
if its restriction to M is a characteristic function in the sense common in prob-
ahility theory, i.e., if the representation

;a[:s:fp”“ﬂdm (1)
R

holds for z € B, where P is a probability measure on E. It can be shown ([1],
proof of Theorem 2.2.2) that if » is an ECF, then for all = € C the integral
in (1.1) converges absolutely, and hence the representation (1.1) is preserved.
Thus, an ECF can be defined to be a function representable for all z € € in
the form (1.1), where the integral converges absolutely. The latter means that
P decreases sufficiently rapidly at infinity. Therefore, ECF's are encountered
fairly often in probability theory; as examples we present the ECF's

exp{—y:—:?'ri- iz}, 7=0, Bk, and exp{ile’” - 1)}, A0,

corresponding to Gaussian and Poisson measures (in particular, to degenerate
measures). ~
It is known ([1], Chapter I1. §4) that the growth.of a nonconstant ECF ¢

satisfies only the single restriction

hm r! logMir, @) >0 (Mir.p)= ma;!;{jr;n,rfﬁ'li: D< 8 <2x}).

F—a i3]

Marcinkiewicz [2] observed that the situation changes essentially if the ECF has

“few” zeros. It was established in [2] that if an ECF ¢ has finite order p[g].
and the exponent of convergence of the zeros is strictly less than p[g]. then
plw] < 2. Asa corollary, a result was obtained in [2] that is now known as the
Marcinkiewicz theorem and has many applications in probability theory and
mathematical statistics (see, for example, [3]).
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MarcINkIEWICZ THEOREM. [fan ECF ¢ of finite order does not have zeros,
then it is the CF of a Gaussian measure, i.e., plz)=expi—yz-+ifiz}, v =0,
#eR,

By Hadamard’s theorem on representation of an entire function of finite
order, this assertion can be reformulated as follows. If an ECF ¢ has the form

wlzy=exp f(2), (12

where [ is a polvnomial, then f{z) = —»z" 4 iz, y=0, fei.

We present a proof of this fact. It is based on the following property of
ECF's, which follows directly from the validity of (1.1) forall z € C and is
called the “ridge property™:

@izl < @lilmz=y, zeC, (1.3
Erifiz)= u”:" +-oo4ay. a, #0, It follows from (1.2) and (1.3) that

Refa,z" + -+ ag) < fa,(iIm2)" + .-+ ayl, (1.4

0t
Let g, = |u,llf""" and z = re”, Ontherays ¢ = ¢, = (—a, + 2kn)/n,
k=0,...,n~1,the lefi-hand and right-hand sides of (1.4 are respectively

equal to |a, |r" + O™y and |a, |r"| sin Pl + O "), r — o, Therefore,

e, =n/2 (modx), k=0,1,..., n—=1,which Ls possible only for n < 2 and
in the case n = 2 it muu a]su happq:n that o, = n (mod 2r), ic, a, = =y,
y > 0. Since @(0) = 1, 11 can be assumed thm a, = 0. And since @(z) =
I*u:-ln")t"] —-i.'ll we%vﬁnmilhlhaia—:ﬁ el

It s not hard to see that the assumption of ﬁnlle arder in the Marcinkiewicz
theorem (which is equivalent to the assumption that the entire function / in
(1.2) 15 a polynomial) cannot be discarded. An elementary example 1s supplied
by the ECF of a Poisson measure: ¢(z) = exp{dle” = 1)}, 4 > 0. One can also
construet ([1], Russian p. 64, English p. 45) examples of ECF's without zeros
and of an arbitrary more rapid growth, In 1960 Linnik conjectured that there
15 no ECF without zeros having growth intermediate between the growth of the
ECF of a Gaussian measure and the growth of the ECF of a Poisson measure.
More precisely, this conjecture ([4], Chapter X111, 2) amounts to the assertion
that the assumplion of finiteness of order in the Marcinkiewicz theorem can
be replaced by the assumption that the entire funclion f in (1.2} satisfies the
condition

rlin% rt logMir, f1=0. i1.5)

Linnik’s conjecture was proved by one of the authors ([3]. [6]). The proof
was very complicated, however it gave an essentially more general result, This
proof was based on the fact, noticed as far back as 1914 by Wiman and Valiron,
that any entire function / behaves in a sufficiently small neighborhood A($)
of a point § of maximum modulus (i.e., a peint { where | f({)| = M1, 1))

“approximately”™ like a polynomial whaose degﬂ:e # = n({, f) increases un-
boundedly as { — oc. More precisely,

fi2)= (/0" A0 +wiz D)), (1.8)

where the remainder term w tendsto 0 for e AIJ). { — A
If the size of the neighborhood A({) in which (1.6) holds with a satisfac-
tory estimate for e is sufficiently large. then it is possible to carry through
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an argument close to the proof of the Marcinkiewicz theorem. To do this we
useé the consequence Re ({z) < | f{ilm z)| of the ndge property (this inequal-
ity was written in the form (1.4) in the case of the Marcinkiewicz theorem),

—_

setting in it z = z, = te'™ B, = (—arg f({)+ 2ka)/n, k € Z. By (1.6).
Re fiz;) = M([{]. [i{1 — lwizy, C)l). On the other hand, it is obvious that
|f(FImz, )l < M{|{|[sin(f, +arg()|, f). If the size of the neighborhood A({)
permits us to vary & within sufficiently broad himits (so that |sin(f, +arg J||
is essentially less than 1), then the relation

ML, 1 —w]) < M{|]|5in( 8, +argl)|, f)

turns oul o be impossible,

The main difficulty in the realization of this idea was the proof that (1.6} is
vilid with a satisfactory estimate of the remainder term @ in a neighborhood
A(L) of sufficiently large size—cssentially larger than in the classical results of
Wiman and Valiron. This proofl [6] is fairly cumbersome and is based on a
refinement of the method used for getting relations of the type (1.6) in the
article [7] of Macintyre.

The statement of the basic result in [6] 1s as follows,

THEOREM A |6). Let ¢ be an arbitrary nonconstant entire function, and f
an entire function satisfing condition (1.5). If @(x) = Q(f(z)) has the ridge
property, then [ s a polvnomial of degree ar most 2.

A subsequent improvement of the method described led to the following
resull.

Turorem B [8). The assertion of Theorem A remains in force if condition
(1.5) &6 replaced by the wegker condition

lim ™ log M(r, ) =0, {L.7)
The validity of Linnik’s conjecture follows from Theorem A for Q(z) =¢" !

by Theorem B, condition (1.5) can be replaced by (1.7).

Theorem A shows also that the assumption that ¢ 1s an ECF can be replaced
by the presence of the ridge property for ¢ . The entire functions ¢ with ¢{0) =
| having this property form ([1], Russian pp, 47-50, English pp. 31-34) a class
broader than the class of ECF's. They are called entire ridege functions (ERFS).
In what follows we shall consider ERF's instead of ECF's. Note that only the fact
that ¢ is an ERF was used in the above proof of the Marcinkiewicz theorem.
[t can be shown [9] that any ERF ¢ admuits a representation ¢ = ¢, /p, , where
@, and g, are ECF's, and ¢, docs not have zeros. This tact, fairly complicated
to prove, will not be needed helow.

The authors of the present article found & brief and elementary proof of the
Linnik conjecture, based on an idea not connected with those used in [3], [6],
and [8]. Unfortunately, we do not see the possibility of using this 1dea to prove
Theorem A. However, it does enable us to get a new result not contained in
Theorem A nor Theorem B. This result is stronger than the assertion that Lin-
nik's conjecture is valid, and is connecied with analogues of the Marcinkiewlcz
theorem for ERF's with restrictions on the arguments of the zeros.

The first such analogue was apparently abtained in [10], where the following
result was proved: If an ERF p of finite order has only real zeros. then plg]
< 2. The requircment that the zeros be real here replaces the requirements
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in the Marcinkiewicz results [2] that there be no zeros or that their exponent of
convergence be strictly less than g[¢]. In[11] the result of [10] was strengthened
as follows.

Tueorem C [11]. Suppose that an ERF ¢ of finite order does not have zeros
in the domain

G ={z: |argz —n/2| <ajuiz jargz+n/2| < a}, O<a<nr/

i

Then plpl < wia for D<a<n/4 and ple]l <2 for afd<a<n/l.

We get the result in [10] for o =a/2.

In ¢connection with the Linnik conjecture (and cendition (1.7) in Theorem B)
the question naturally arises as to whether the condition of finiteness of order
in Theorem C can be replaced by the condition

lim r "Noglog M(r. p) = 0. (1.8)
A positive answer was obtained in [12] in the case o = /2.

The main result in the present article is the following theorem,

Tueorem 1. Suppose that an ERF g satisfies condition (1.8) and does not
have zeros in G_. Then plp] < ~x.

An immediate consequence of Theorem 1 and Theorem C 15 a positive answer
to the indicated question for all o with D <a < 7/2:

TueOREM 2, The assertion of Theorem C remains in force If the condition of
finiteness of order 1s replaced by conditian (1.8).

If the ERF ¢ has the form ¢ = exp f . where [ satisfies condition (1.7), then
condition (1.8} holds, and plw] < sc by Theorem 1. Using the Marcinkiewicz
theorem, we conclude that ¢ is the CF of a Gaussian measure, 1.¢., the Linnik
conjecture 1s valid.

REmMarK 1. The question arises of the sharpness of the estimates for plgp]
given in Theorem C (and Theorem 2). The example of the CF of a Gaussian
measure shows that the estimate ple] < 2 (7/4 < o < 7/2) cannot be improved
even in the class of ECF's, which is smaller than the class of ERF's. [t was
observed in [11] that for 0 < o < =/4 there exists an ECF ¢ nol having

zeros in (7 and such that ple ] = 7(a), where 7(a) < m/a is defined as
Follows: yle) = af(2a) of #/6 < n < n/4; vla) is the root of the equation
cosyla+a/y) = —cosya Wing in (n/(2a), w/a} if 0 < a < /6. Note that

pla) = mfoe— 2/ n/ell +o(l)). o — 0. Recently Vishnyakova and Fryntov,
independently and using different methods, proved the estimate p{p] < plal,
(0 < e < m/4, under the conditions of Theorem C. Their papers will be printed
in the collection Aralvtic guestions in probability theory, published by Naukova
Dumka in Kiev. Obviously, it follows from their result and Theorem | that the
estimate p[p] < yia}. 0 <« < 7/4, remains in force also under the conditions
of Theorem 2.

42, Proof of Theorem 1

We list the needed propertics of ERF's @1 a) pliyv) =0 for vy € E; b) the
function logp(iy) is convex on K ¢) M(r. p) = max{e(ir), e(=ir)}. r>0.
Property a) follows immediately from (1.3), and property ) is obtained from
(1.3) with the help of the maximum modulus principle. To get property b} it
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suffices to observe that the function log|@{x + iv)| is harmonic in a neigbhbor-
hood of the imaginary axis, while {ﬁfﬂ,x‘}zlﬂg;'m < 0 on this axis in view of
(13,

We also use the following well-known fact.

TuroreM (Carathéodory inequality, [13], Chapter [, §6, Theorem 8). [f a
function g is analytic in the disk {{:|{| < 1} and satisfies there the condition
Regil) < 4 <=, then

Bl

14

I =¢]

Suppose that an ERF satishes the conditions of Theorem 1. It can be assumed
without loss of generality that o < 7/2. Denote by f the analytic branch of
log ¢ singled out by the condition f(0) = 0 on the domain & U {z: [z| < g}
(where & 1s sufficiently small). By the properties of ERF's noted above, we
have: a;) Im fliy) = 0 for y € R b;) the function [f(iy) is convex on
[&; and ¢} logM{r, ) = max{fiir), f(=ir}}, r > 0. Moreaver, it follows
directly from {1.3) that

lg(C)| < {4~Reg(0}+[g(0)], I§1 < 1. (2.1)

Re fiz) = fiirlmz), z€ @G Uiz |z) <e) {2.2)
From condition (1.8,

s

lim ' log{ f(zir)}" < 0. (2.3)

Theorem | will be proved if i1 is established that
Tim (logr) ' log{ fl=ir))" < 4. (2.4)
Pt
Assume that {2.4) does not hold. Tt will be assumed that
L 1 ]
rI:_r:g:iiu:mrl log flir) = +oo,
sinee the case
o - -
rllzirm;a rl log fi—ir) =4+
15 treated analogously. By property b, ), there is an #;, > 0 such that f{ir) is
positive and monotonically increasing for r > r,
Consider the rectangle
{zr£Imz< R, D£Rez<2nfa)
(see the figure), where the parameters are subject to the conditions
ref/ll —sina) <r< R<x, 2n/a = irsina. {2.5)

This rectangle is contained in G . therefore f is analytic in it. Denoting by [l
the rectangle’s boundary, traversed clockwise, we havedy the Cauchy theorem
that

—/' e’m:f{zj < 0. f E‘EI‘J:;E_F‘—LI} dz=10.
I I
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I
i

Separating out the imaginary parts, we gel
M
/ Lftiv) — Re fliy + 2rfa)ye™™ dy

: 2xia
— e " m e fix+irjdx—e “m [ e flx+iR)dx,
Jd0 J0 ,:2‘{,]

" -
f {fliy) =Re f(iy + 2x/a)}e """ dy

~Xari R siaxid
=¢ " '"lm e fix+irydx
0

- Axia i
o R Im/ .-:'3""1"_{1,1:—-:— iR)dx. (2.7
0

By the inequality (2.2), the integrand on the left-hand side of (2.6) is non-
negative, Therefore, it can onlyv decrease if in it e ™ is replaced by ¢ "7,
Denote by (2.6 bis} the ineguality obtained from [ 2.6) after this change. Adding

(2.6 bis) to (2.7} and then performing simple estimates on the right-hand side,
we have

Y

% - — ! —ar i . L —aR k:
[ Fliypie 7 Tdp e f [ fix 4 ir)|dx+e f Slix +iR)|dx.
0 0
r (2.8)
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To estimate the right-hand side of (2.8) we show that for y > r /(1 —sina)
max{|flx+iy)], 0=x < 1}]! sina} < 2/(2iy) (2.9)

Consider the function () = f{ysina + iy) on the disk {{: [{] < 1}.
As ¢ runs through this disk, the point z = {ysina + {y runs through the
disk {z: |z = iy| < ysina}l in G_ . Therefore, g is analytic for |{| < I.
By the properties of (', Reg({) < max{f{{ysinai + iy -1 = { < 1} =
flivt] + sina)) < f(2iy), Using the Carathéodory inequality (2.1). we get
cys s _ 21 : _ ;
| f{ysina + iv) < I—_l—\'llﬂ {F(2in) = fliv)} + f(iy):
Letting ¢ run through the interval 0
Using {2.9) and recalling that 27/
we get from (2.8) that

< ¢ <1l wearrive at (2.9).
a = yrsina < $Rsina in view of (2.5),

K
~3ay 4 it p
[ {flivie ™ P dy < 7:1{:- f(2ir) + e ** f(2iR)). (2.10)
L
It follows from condition {2.3) that there exists a sequence of values R [ +x

dlong which log f(2iR) = o(R). Letung R go to =0 along this sequence, we
get from (2,100 that

j flpie M dy < ?—c*_"’fﬂfrl. (2.11)
r
Since ) s increasing and positive,
' Yav /3 == _ 3 = 2 —br
./ flivie "™ dy = j'[nh‘rl[ e gy = —e " fl4ir),
p S Ja

therefore, by (2.11),
flair) < 6me™™ f(2ir).

The variables r and a are subject to the conditions (2.3), hence
diry < 6 i i (2R i (1 . . (212
fidir) < bne Sfl2ir), rz2ry /(1 —sina), {2.12)

Il is easy to see that if w{x) is a function nondecreasing and positive on
[x, oc) that satisfies the condition w(2x) = u(x)), ¥ — oc, then logu(x) =
logx), x — oc. Therefore, {2.4) follows from (2.12).

43. Generalization

A function @ analytic on the half-plane C_ = {z: Imz > 0} and continuous
in ©, UR is said to be an analytic characteristic finction (ACF) if its restriction
1o B is a characteristic function, 1.e.. (1.1) helds for z £ B. It can be shown
([1], proof of Theorem 2.2.3) that if ¢ is an ACF, then for all z € T_ the
integral in (1.1} converges absolutely, and the representation (1.1) remains in
force. Corresponding to ACF's are probability measures that are sufficiently
rapidly decreasing at minus infinity. Since ACF's are representable in C_ in
the form (1.1}, they have the ridge property in C_. Functions ¢ analvtic in
¢, and continuous in C, UR with ¢({0) = | that have this property are called
analyiic ridee functions (ARF's) they form a broader class ([1], Russian pp.
46-47, English pp. 31-32) than the class of ACF's. By analogy with the order
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of an entire function, the order of an ARF ¢ is defined 1o be the number
p.lp) = Tim (logr)” loglog M_(r. p)(M_(r. p)
= m:ix{lm_:_ll: z| < r, Imz =0}).
An analogue of the Marcinkiewicz theorem for ARF's was obtained in [14].

THeoreM D [14]), {f an ARF ¢ of finite order does nat have zeros in C |
then p [p]<3.

The simple example @(z) = exp{iz’} (this entire function has the ridge
property only on C | therefore, 1t is an ARF, but not an ERF!) proves that the
estimate for p [g] is sharp. As shown in [14], this estimate 15 sharp also in the
class of ACF's,

Theorem D can obviously be regarded also as a generalization of the result
in [10] cited above. An analogue of Theorem C was obtained in [1 1] for ARF's;

Tueorem C' [11]. Suppose that an ARF ¢ of finite order does not have zeros
in the domain G, NC, O<a<a/2 Then p [¢] < maxin/fo, 4)

It was established in [12] that the condition of finttencss of order in Theorem
2 ¢can be replaced by the conditions

lim v loglog M, (r, ¢) = 0. (3.1)
= Dnl
The question arises as 1o whether the same change can be made in Theorem (.
[t 15 easy 10 sec that any ARF @ has properties analogous to properties aj=c)
ol an ERF used in the proof of Theorem 1, namely; &) pliv) >0, v & R, ;
b") the function @(iy) is convex on &, ;and ¢') M_(r, p) = max{e(ir), I},
re B . Ifan ARF g does not have zeros in €, N T, and satisfies condition
{3.1), then, denoting by [ the analytic branch of logy distinguished by the
condition' f{}) =0 on G N CT_. we can repeat the arguments carried out in
the proof of Theorem |, and conclude that p_[¢] < ~ . This and Theorem C’
pive us the following fact

THEOREM 3. Suppose thar an ARF ¢ satisfies condition (3.1) and does not
have zeros in G NC, . Then p_|p]'< maxin/o, 4).

REmark 2. In the paper of Vishnyakova mentioned in Remark 1 a sharp
estimate for p_[p] 15 found under the conditions of Theorem C’. This estimate
has the form p_[¢] < 7 (e), where y (a) is defined for 0 < o < #/6 just as
i) is defined in Remark 1. and y (a) =3 for n/6 <a < x/2, Obviously, it
follows from this and Theorem 3 that the estimate g [¢] < 7, (x) remains in
force also under the ¢conditions of Theorem 3
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