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1. Introduction 
 

The development of global networking technology 
attracts attention of researchers and software developers 
to the problem of interaction of remote network nodes. 

In this context, the key problem that arises is the 
problem of minimizing the amount of data about the 
current session state of information exchange between 
client and server. Unfortunately, the use of stateless 
strategy [1], which is the least expensive, is impossible 
for most applications. Thus, there is the task of organiz-
ing information exchange, which allows “to forget” the 
full information about the session state from time to 
time. This behaviour on the server side is modelled by 
pre-automata, which were introduced in [2, 3]. 

This paper is concerned with defining an approach 
to the structural analysis of pre-automata, which has 
shown its effectiveness in solving problems of control-
flow analysis of computer programs [4]. 

These results were presented at the first interna-
tional seminar “Specification and Verification of Hybrid 
Systems” [5]. 
 

2. Preliminaries 
 

Let A  and B  be any sets, then  
(a) the set of all total maps from A  to B  is denoted by 

[ ]A B→ ; 

(b) the set of all partial maps from A  to B  is denoted 

by ( )A B→ ; 

(c) if ( )f A B∈ →  and a A∈  then the statement 

“ ( )f a  is not defined” is denoted by ( )f a = ∅ , and 

the statement “( )f a  is not defined” is denoted by 

( )f a ≠ ∅ . 

Let Σ  be a finite alphabet, then 
(a) the free semi-group generated by Σ  is denoted by 

+Σ ; 

(b) the free monoid generated by Σ  is denoted by ∗Σ ; 

(c) a subset P  of ∗Σ  is called a prefix code if for 

u, v ∗∈ Σ  from the conditions uv P∈  and u P∈  it 

follows v = ε ; 

(d) for a word w +∈ Σ  let us denote by ( )px w  the 

subset of +Σ  such that ( )u px w∈  if w uv= , 

u ≠ ε , and v ≠ ε . 
A lot of graph theory notions are used in the paper. 

But it is known, that in the field some authors use the 
same term with different meanings, and some authors 
use different terms to mean the same thing (compare [6, 
7, 8] for example). Therefore, we need to set some nota-
tion before stating our results. 

Definition 1. Let ( )V G  and ( )E G  are finite sets 

of vertices and edges respectively, iv  and tv  are maps 

from ( )E G  to ( )V G  then a digraph G  is a tuple 

( ) ( )( )V ,E , iv, tvG G   such that the following 

statement is true 

 
( )( )

( ) ( ) ( ) ( )( )
1 2

1 2 1 2 1 2

e ,e E
iv e iv e tv e tv e e e

∀ ∈
= ∧ = ⇒ =

G
 

For some digraph G  we shall say that an edge 

( )e E∈ G  connects the initial vertex ( ) ( )iv e V∈ G  

with the terminal vertex ( ) ( )tv e V∈ G . 

If ( ) 1iv e v=  and ( ) 2tv e v=  then we use the fol-

lowing notation: e
1 2v v→ . 

Definition 2. Let G  be a digraph. A walk in G  is 
an alternating sequence of vertices and edges 

0 1 1 n nv ,e , v , ,e , vα = …  beginning and ending with a 

vertex and such that ie
i 1 iv v− →  for all i 1, , n= … . 

In this case n  is called a length of the walk α . 



We can consider walks with length 0 and identify 
them with vertices. We shall use the notation v vε =  for 

such walks. 
For a walk 0 1 1 2 n nv ,e , v ,e , ,e , vα = …  we shall 

use the notation 

 1 2 ne e e
0 1 nv v vα = → → →… . 

Definition 3. Suppose α  and β  be walks in the 

digraph G  such that 

 1 2 me e e
0 1 mv v v

α α αα α αα = → → →… , 

 1 2 ne e e
n0 1v v v

β β ββ β ββ = → → →… , and m 0v vβα = , 

then the alternating sequence 

 
1 2 m 1

2 n

e e ee
0 1 m 0

e e
n1

v v v v

v v

βα α α

β β

βα α α

β β

γ = → → → = →

→ →

…

…

 

is a walk in the digraph G  which is called concatena-
tion of the walks α  and β . In this case the walk γ  is 

denoted by αβ . 
 

3. Finite State Pre-machines 
 

In this section a generalization of finite-state ma-
chines will be introduced. Corresponding class of ob-
jects is known [2] as the class of finite pre-automata or 
the class of finite-state pre-machines (in abbreviated 
form FSPM). 

Definition 4. A finite state pre-machine is the tri-

ple ( ), X,TΣ , where Σ  is a finite alphabet, X  is a 

finite set of states, ( )T X X∗∈ × Ζ → , and the follow-

ing conditions hold: 

(a) ( )T x, x∅ ≠ ε =  for any x X∈ ; 

(b) for any u, v ∗∈ Σ  and x X∈  from ( )T x, u ≠ ∅  

and ( )( )T T x,u , v ≠ ∅  it follows that 

 ( ) ( )( )T x,uv T T x,u , v∅ ≠ = ; 

(c) for any w +∈ Σ  and u, v +∈ Σ  such that w uv=  

and x X∈  from ( )T x, w ≠ ∅  and ( )T x, u ≠ ∅  it 

follows that 

 ( )( ) ( )T T x,u , v T x, w∅ ≠ = . 

To describe the behaviour of a pre-machine a no-
tion of a pre-machine's snapshot is needed. 

Definition 5. Let ( ),X,T= ΣM  be a finite state 

pre-machine, then an element ( )x, w X ∗∈ × Σ is called a 

snapshot if the following condition holds ( )T x,u = ∅  

where ( )u px wε ≠ ∈ . 

The set of all snapshots is denoted by ( )S M . 

For a finite state pre-machine ( ),X,T= ΣM  let us 

construct a total map ( ) ( )T ∈ × Σ →  S M S M  using 

the partial map T  by the formula 

 ( )( ) ( ) ( )
( )( ) ( )

x, wa , T x, wa
T x, w ,a

T x, wa , , T x, wa
 = ∅

=  ε ≠ ∅
 

As it is proved in [2], the triple ( )( ), ,TΣ S M  is an 

automaton. 
We can interpret a finite state pre-machine 

( ),X,T= ΣM  as a control device with a buffer that 

fires on the buffer contents changing and its response is 
determined by the current state and the buffer contents: 
1) elements of X  are interpreted as states of this de-

vice; 

2) each snapshot ( )x,w  describes the current state of 

the device and its buffer contents; 
3) elements of he alphabet Σ  describe external signals 

which the device receive; 

4) the map T  describes a device's snapshot changing 
as a response to a signal. 
Note that similar device can be used as a dis-

patcher of heterogeneous handling of flows of events 
[3]. 

The dynamics of the control device is described in 
Table 1. 

Table 1 
Interaction between 

a pre-machine and an environment 
An external 

influence 
A pre-machine response 

 1) Initialize a pre-machine: 
buffer
active _ state

initial _ state

← ε
←  

 2) Wait a signal 
3) The signal 

a∈ Σ  has 
been sent 

 

 4) Append a  into the pre-
machine's buffer: 

( )buffer buffer a←  

 5) If ( )T active _ state, buffer≠ ∅  

then 

( )
active _ state

T active _ state,buffer
buffer

←

← ε
 

 6) go to item 2) 

One can consider a map ( )T X X∈ × Σ →  as the 

map � ( )T X X∗ ∈ → Σ →  
 that is defined by the fol-

lowing formula 

 � ( ) ( ) ( )T x w T x, w= . 



Using this notation we redefine the class of pre-
machines. 

Definition 6. A finite state pre-machine is a triple 

�( ), X,TΣ , where Σ  is a finite alphabet, X  is a finite set 

of states, � ( )T X X∗ ∈ → Σ →  
, and for the triple the 

following conditions hold: 

(a) for any u, v ∗∈ Σ  and any x , x X′ ′′ ∈  from 

� ( ) ( )T x u x′ ′′∅ ≠ = $ and � ( ) ( )T x v′′ ≠ ∅  it follows 

that � ( ) ( ) � ( ) ( )T x uv T x v′ ′′∅ ≠ = ; 

(b) for any u, v ∗∈ Σ  and any x , x X′ ′′ ∈  from 

� ( ) ( )T x u x′ ′′∅ ≠ =  and � ( ) ( )T x uv′ ≠ ∅  it follows 

that � ( ) ( ) � ( ) ( )T x v T x uv′′ ′∅ ≠ = . 

It is evident, that Definitions 4 and Definition 6 are 
equivalent. 
 

4. Pre-machines and 
Prefix Marked Digraphs 

 

In this section relationships between the class of 
finite state pre-machines and some subclass of digraphs 
are studied. 

First let us define the subclass of digraphs men-
tioned above. 

Definition 7. A triple ( ), ,PΣ G  where Σ  is a finite 

alphabet, G  is a digraph, and ( )P E
+Σ ∈ →  

G 2  is 

called a prefix marked digraph (PMD) if the following 
conditions hold 

(a) ( )( ) ( )e E :iv e vP e∈ =G∪  is a prefix code for all 

( )v V∈ G ; 

(b) any ( )1 2e ,e E∈ G  such that ( ) ( )1 2iv e iv e=  and 

( ) ( )1 2P e P e ≠ ∅∩  are equal. 

Definition 8. Let ( ), ,PΣ G  be a PMD, w ∗∈ Σ , 

and 1 2 ne e e
0 1 nv v vα = → → →…  be a walk in 

G . 
The walk α  carries the word w  if there exits 

decomposition 1 nw w w= …  such that ( )i iw P e∈  for 

all i 1, , n= … . 

The next simple proposition is very important. 
Proposition 1. Suppose, that walks α  and β  have 

the same initial vertex and they carry the same word w  
then they are equal. 

Now we can construct for arbitrary PMD 

( ), ,PΣ G  some finite state pre-machine ( )†, ,PΣ =G  

( ) �( ), V ,TΣ G . 

Let us define �T  by the following way: 

1) define � ( ) ( )T v vε =  for all ( )v V∈ G ; 

2) � ( ) ( )T v w ≠ ∅  if there exists the walk α  such that 

it carries the word w  and its initial vertex is v  
(uniqueness of α  follows from Proposition 1); 

3) in this case terminal vertex v′  of the walk α  is 
uniquely determined by the vertex v  and the word 
w , so the following definition is correct: 

 � ( ) ( )T v w v′= . 

Proposition 2. The triple ( ) �( ), V ,TΣ G  is a finite 

state pre-machine. 
Let us describe the inverse construction: for an ar-

bitrary finite state pre-machine �( ),X,T= ΣM  construct 

some PMD �( ) ( )
†

, X,T , ,PΣ = Σ G . 

Let us define: 

1) ( )V X=G ; 

2) ( ) ( ){
( ) � ( ) ( )( )}

2
1 2

1 2

E x , x X |

w T x w x ;+

= ∈

∃ ∈ Σ ∅ ≠ =

G  

3) for ( ) ( )e x , x E′ ′′= ∈ G  determine ( )iv e x′=  and 

( )tv e x′′= ; 

4) ( ) � ( )( ) ( ) ( ){
( )( ) ( )( ) ( )( )}

P e w | T it e w tv e

u px w T it e w .

+= ∈ Σ ∅ ≠ = ∧

∀ ∈ = ∅

 

It is evident that the triple �( ) ( )
†

, X,T , ,PΣ = Σ G is 

a PMD. 
Note that one can easily prove that 

firstly, prefix marked graphs ( ), ,PΣ G  and 

( )( )††, , PΣ G  match up to notation; 

secondly, finite state pre-machines �( ), X,TΣ  and 

�( )
††

, X,T
 Σ 
 

 match up to notation. 

This results show that structures of PMDs and 
FSPMs are interdependent. 
 

5. Unextendable Sets of Vertices 
in Digraphs 

 

To study the structure of digraphs we consider 
some class of their vertices subsets. 

In this section we suppose that ( )V, E, it, vt=G  is 

some digraph. 
Definition 9. A subset A  of the set V  is an unex-

tendable set if the following condition holds 

 ( )( )( ) ( )( )( )-1 1 v  tv iv A \ A iv tv v A−∀ ∈ ⊄ . 



Proposition 3. Let ( )U G  be a family of all unex-

tendable subsets of V , then ( )U G  is a Moore family 

[9, p. 111, Definition]. 
As known [9, p. 111, Theorem 1], each Moore 

family is a family of closed subsets for some uniquely 
defined closure operator. 

Let us denote by [ ]Hull AG  the closure of a subset 

A  with respect to the closure operator corresponding to 

( )U G . We shall say that [ ]Hull AG  is the unex-

tendable hull of the set A . 

Definition 10. A map V VInf : →G 2 2  is called an 
inflation if it is defined by the formula 

 
[ ]

( )( ) ( )( ){ }1 1

Inf A A

v tv iv A \ A | iv tv v A .− −
=

∈ ⊂

G
∪

 

We claim that for any digraph its family of unex-
tendable sets can be described as the fixed-points set of 
the corresponding inflation. To show this we need some 
properties of inflations. 

Proposition 4. Let V VInf : →G 2 2  be the infla-
tion then the following properties hold: 

(a) [ ]Inf ∅ = ∅G ; 

(b) [ ]A Inf A⊂ G  for any A V⊂ ; 

(c) if 1 2A A V⊂ ⊂  then [ ] [ ]1 2Inf A Inf A⊂G G . 

Proposition 5. Suppose V VInf : →G 2 2  is the in-
flation, then any set A V⊂  of is unextendable if and 
only if it is a fixed point of the inflation. 

Corollary 1. For each A V⊂  there exists the least 
inflation fixed point such that it covers A . This fixed 
point equals to the unextendable hull of A . 
 

6. Calculation of Inflations and 
Unextendable Hulls 

 

The aim of this section is to consider methods to 
calculate the inflation and the unextendable hull for any 
subset of vertices for an arbitrary digraph. 

First let us describe the algorithm (see Algo-
rithm 1) to calculate the inflation of some subset of 
vertices. 

Algorithm 1. Calculating the inflation of a set 

Require: a directed graph G , and a subset A  of V  

Ensure: [ ]Inf AG  

 
W ← ∅ ; 
for e E∈  do 

if ( )iv e A∈  and ( )tv e A∉  then 

( ){ }W W tv e← ∪ ; 

end 
end 

/* The following condition has been true: */ 

/* ( )( )1W iv tv A \ A−=  */ 

for v W∈  do 
for e E∈  do 

if ( )tv e v=  and ( )iv e A∉  then 

{ }W W \ v← ; 

break 
end 

end 
end; 

/* The following condition has been true: /* 

/* ( )( ) ( )( ){ }1 1W v iv tv A \ A | tv iv v A− −= ∈ ⊂  */ 

return A W∪  

It is clear that the algorithm is correct. 
The next theorem is needed to calculate the unex-

tandable hull for any set. 
Theorem 1. Let L  be a finite lattice, z  be an ele-

ment of L , and T : →L L  be a map such that the fol-
lowing conditions hold 

(a) ( )x T x≤  for any x ∈ L ; 

(b) ( ) ( )T x T y≤  for any x, y∈ L  such that x y≤ , 

then the set ( ){ }zF x | z x x T x= ∈ ≤ ∧ =L  is not 

empty and contains its greatest lower bound. 
From the proof of Theorem 1 the next algorithm to 

calculate of the unextendable hull for any subset of 
vertices an be obtained. 

Algorithm 2. Calculating the unextendable hull of a set 

Require: a directed graph G , and a subset A  of V  

Ensure: [ ]Hull AG  

 

0W A← ; 

[ ]1 0W Inf W← G ; 

while 0 1W W≠  do 

0 1W W← ; 

[ ]1 0W Inf W← G  

end; 
return 0W  

 

7. Regions and Intervals 
 

In the section some class of vertices set in a di-
graph is introduced. The definition of the class is a gen-
eralization of the class of regions for a flow graph [10]. 
This class as a class of intervals was introduced in [4, 
p. 938]. In the paper we shall distinguish the class of 
regions and the class of maximal regions which we call 
intervals. 

In this section we suppose that ( )V, E, iv, tv=G  is 

some digraph. 



Definition 11. A subset A V⊂  is called a region 

in G  if { }A Hull v=   
G  for some v V∈ . 

In this case v  is called a header of a region A . 
The next proposition establishes the principal 

property of regions. 
Proposition 6. Let A  be a region in G  and e E∈  

such that ( )tv e A∈ , but ( )iv e A∉ , then ( )tv e  is the 

unique header of A . 
Definition 12. A region is called an interval if it 

can not be covered by other region. 
Corollary 2 (of Proposition 6). Let 1I  and 2I  be 

different intervals then their intersection is empty. 
One can obtain the following result by summariz-

ing the arguments adduced above. 
Theorem 2. The set of intervals for any digraph 

forms the partition of the set of its vertices. 
 

8. Derivative Finite State Pre-Machines 
and Hierarchic Decomposition 

 

In this section a procedure that provides pre-
machine states aggregating is described. We hope the 
procedure can be used for hierarchical specification of 
complex systems with behavior similar to the behavior 
described by Table 1. 

Let �( ),X,T= ΣM  be a FSPM and ( )† , ,P= ΣM G  

be the corresponding PMD. 
Consider the partition 1 nX I I= ∪…∪ , where 

1 nI , , I…  are intervals of the digraph †M . Denote by 

( )h I  a set of headers for a interval { }1 nI I , , I∈ … . 

Denote by ( )1X  the set { }1 nI , , I… . 

For 1 k, l n≤ ≤  a pair ( )k lI , I  is included into ( )1E  if 

there exists some walk 

 1 2 ne e e
0 1 nx x xα = → → →…  

such that 

1) ( )0 kx h I∈ ; 

2) 1 n 1 kx , , x I− ∈… ; 

3) n lx I∈ . 

If we define ( )( )k l kiv I , I I=  and ( )( )k l ltv I , I I=  then 

we obtain the digraph ( ) ( ) ( )( )1 1 1X ,E , iv, tv=G . 

Define a marking function ( ) ( )1 1P : E +→ Σ  by the next 
way: 

let’s include the word w  into ( ) ( )( )1
k lP I , I  if there 

exists a walk 1 2 ne e e
0 1 nx x xα = → → →…  

such that 
1) ( )0 kx h I∈ ; 

2) 1 n 1 kx , , x I− ∈… ; 

3) n lx I∈ ; 

4) α  carries w . 

Proposition 7. The triple ( ) ( )( )1 1, ,PΣ G  is a PMD. 

Definition 13. The finite state pre-machine 

( ) ( )( )†1 1, ,PΣ G  is called the derivative finite state pre-

machine for the FSPM M  and it is denoted by ( )1M . 
Using Definition 13 one can build the derivative 

series for any FSPM M : 

 ( ) ( ) ( )0 1 n, , , ,=M M M M… … , 

where 

 ( ) ( )( )( )1n 1 n , n 0,1,+ = =M M … . 

Taking into account that all sets of states are finite 
and quantity of elements in the sets decreases when 
position of series member increases one can conclude 
that the series terminates. 

The derivative series for FSPMs is similar to the 
derivative control flow graphs [4] and we hope that they 
can be used for structural analysis of finite states pre-
machines. 
 

9. One sample of hierarchic decomposition 
 

In this section the sample of hierarchical decompo-
sition is presented. We demonstrate that the derivatives 
series of the model pre-machine has only two members 
and the last member of it has three states. 

In the Fig. 1 the model of semantic events recog-
nizer is presented. 

In this context a semantic event is some sequence 
of elementary events (signals). Of course, not all such 
sequences are valid. So, the task of the specified soft-
ware component is to check validity of a sequence and 
to assign a relevant handler. Undoubtedly, we should 
not forget to handle errors and timeouts. It is suggested 
that at arbitrary time point the event “reset command 

Fig. 1. Semantic events recognizing 

Ready 

Listening 

Receiving 

Handle 
timeout 

timeout 

reset 

Error 
error 

on 

timeout 
signal signal 

Handle 
Event 

reset 

eventRecognized 

error 

Done 

success 



has been received” can be fired. 
In the Fig. 2 the derivative pre-machine is pre-

sented. One can see that its intervals are singletons. 
 

10. Conclusion 
 

Summarizing we can formulate the problems that 
arise in connection with an introduction to the concepts 
of the paper: 

firstly, to study the case when the last member of a 
derivative series has only one state. 

secondly, to describe intervals of a digraph in the 
terms of this digraph. 

thirdly, to study specific properties of the deriva-
tive series for a finite state machine. 

fourthly, to propose a method using a pre-
machine's derivative series for step-by-step refining of 
the pre-machine specification. 
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Ієрархічна декомпозиція перед-машин та її застосу-
вання до аналізу програмних систем 

Г.М. Жолткевич, І.Д. Перепелиця 
У статті розглянуто модель взаємодії програмної системи 
з навколишнім середовищем, яка дозволяє моделювати 
забування час від часу повного протоколу. Для цього як 
математичні моделі використані перед-машини. Показано, 
що перед-машини можуть бути повністю описані в термі-
нах деякого спеціального класу орграфів. Запропоновано 
підхід до аналізу структури перед-машин з точки зору їх 
похідного ряду, що дає метод ідентифікації ієрархічної 
структури. 
Ключові слова: машини зі скінченою множиною станів, 
префіксно-маркований орграф, регіон, інтервал, похідний 
орграф, похідний ряд, ієрархічна декомпозиція 
 

Иерархическая декомпозиция пред-машин и 
ее применение к анализу программных систем 

Г.Н. Жолткевич, И.Д. Перепелица 
В статье рассматривается модель взаимодействия про-
граммной системы с окружающей средой, которая позво-
ляет моделировать забывание время от времени полного 
протокола. Для этого в качестве математических моделей 
использованы пред-машины. Показано, что пред-машины 
могут быть полностью описаны в терминах некоторого 
специального класса орграфов. Предложен подход к ана-
лизу структуры пред-машин с точки зрения их производ-
ного ряда, что приводит к методу идентификации иерар-
хической структуры. 
Ключевые слова: машины с конечным множеством со-
стояний, префиксно-маркированный орграф, регион, 
интервал, производный орграф, производный ряд, иерар-
хическая декомпозиция 
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Fig. 2. Derivative pre-machine 


