YK 004.414.23.042

|.D. Perepelytsya, G.M. Zholtkevych

V.N. Karazin Kharkiv National University, Kharkiv

HIERARCHIC DECOMPOSITION OF PRE-MACHINES
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Abstract. In this paper we consider a model of system imtéma with the environment, which allows us to
forget its full protocol from time to time. Mathetical models of such interactions are pre-machinde. showed
that the machines can be completely describedrims®f some special class of digraphs. An apprdaamnalyzing
the structure of pre-machines in terms of theirvigives series is offered.
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1. Introduction (b) the free monoid generated Ry is denoted b)ED;

) (c) a subsetP of s is called a prefix code if for
The development of global networking technology

attracts attention of researchers and softwareloleses
to the problem of interaction of remote network esd follows v=¢;

In this context, the key problem that arises is thgy) for a word wO=" let us denote bypx(w) the
problem of minimizing the amount of data about the
current session state of information exchange tewe  Subset of =* such thatuOpx(w) if w=uv,
client and server. Unfortunately, the use of sts®l uze,andvze.

strategy [1], which is the least expensive, is isglole A lot of graph theory notions are used in the paper
for most applications. Thus, there is the taskrghoiz-  But it is known, that in the field some authors tise
ing information exchange, which allows “to forgétle  same term with different meanings, and some authors
full information about the session state from titee yse different terms to mean the same thing (comjare
time. This behaviour on the server side is modeligd 7, 8] for example). Therefore, we need to set snaia-
pre-automata, which were introduced in [2, 3]. tion before stating our results.
This paper is concerned with defining an approach  pefinition 1. Let V(G) and E(G) are finite sets
to the structural analysis of pre-automata, whics h
shown its effectiveness in solving problems of calnt
flow analysis of computer programs [4]. from E(G) to V(G) then adigraph G is a tuple
These results were presented at the first imemTV(G),E(G),iv, tv)
tional seminar “Specification and Verification of/btid

u,vld > from the conditionsuv P and udP it

of vertices and edges respectively, and tv are maps

such that the following

Systems” [5]. statement is true
o (Cey. 0 EG))
2. Preliminaries (iv(er) =iv(e) Otv(@) = tf &) = q= o)

Let A and B be any sets, then For some digraphG we shall say that an edge
(@) the set of all total maps frorA to B is denoted by o E(G) connects thanitial vertex iv (e)DV(G)

A - Bf;

[ I _ _ with theterminal vertex tv(e) 0 V(G).
(b) the set of all partial maps froA to B is denoted _

by (A - B); If iv(e)=v; and tv(e) = v, then we use the fol-

(c) if fO(A -B) and adA then the statement lowing notation:v, 0% v,.

“g (a) is not defined” is denoted bfy(a) =0 and Definition 2.Let G be a digraph. Avalk in G is
an alternating sequence of vertices and edges

the statement f'(a) is not defined” is denoted by =Vg,€,Vi,.. &\, beginning and ending with a
’ ’ ey 1 YN
f(a)z0.
Let Z be a finite alphabet, then
(a) the free semi-group generated Byis denoted by
3

vertex and such that;y 0% v; forall i=1,...,n.
In this casen is called dength of the walka .



We can consider walks with length 0 and identify

them with vertices. We shall use the notatn=v for
such walks.
For a walk a =vg,e,v,&,.. ,§ ,\ we shall
use the notation
a=vo OB v, 0% . 0f_v,.
Definition 3. Supposea and 3 be walks in the
digraphG such that

a
a=vg D%av‘l"mﬁ_...ﬂﬁm»vﬂq,

B=\E Dﬁ_,vf Dé_....Dﬁ_)vE, andvd =B,
then the alternating sequence
D é—)

y=vg Dﬁ_»vf Dé—)...DﬁE
vfmﬁq..ﬂﬁ_.vﬁ

is a walk in the digraptG which is calledconcatena-
tion of the walksa and 3. In this case the wally is

denoted byuf3 .

Ve =vh

3. Finite State Pre-machines

In this section a generalization of finite-state-ma

For a finite state pre-machird = (Z,X,T) let us
construct a total mapr O[S(M)x% - S(M)] using

the partial mapr by the formula
?((X’W),a):{x,wa), T(x,wg =0

T(x,wa) £), T(x,wq # [
As it is proved in [2], the tripIe(Z,S(M ) ,'_I') is an

automaton.
We can interpret a finite state pre-machine

M =(Z,X,T) as a control device with a buffer that

fires on the buffer contents changing and its raspas
determined by the current state and the buffereraat

1) elements ofX are interpreted as states of this de-
vice;

2) each snapsho(tx,w) describes the current state of
the device and its buffer contents;

3) elements of he alphab&t describe external signals
which the device receive;

4) the mapf describes a device's snapshot changing

as a response to a signal.
Note that similar device can be used as a dis-
patcher of heterogeneous handling of flows of ewvent

chines will be introduced. Corresponding class lof o [3]-

jects is known [2] as the class of finite pre-austenor
the class of finite-state pre-machines (in abbtedia
form FSPM).

Definition 4. A finite state pre-machine is the tri-

ple (£, X,T), where = is a finite alphabetX is a
finite set of states;T D(X xz ., X) , and the follow-

ing conditions hold:
(@) O#T(x,e)=x foranyxOX;

(b) for any u,vOz"” and xOX from T(x,u)#0
and T(T(x,u),v)# 0 it follows that
0 #T(x,uv)=T(T(x,u),v);
(c) for any wO=* and u,vOZ* such thatw =uv
and xOX from T(x,w)z0 and T(x,u)z0 it

follows that
0 ¢T(T(x,u) ,v) = T(x,w).

To describe the behaviour of a pre-machine a no-

tion of a pre-machine's snapshot is needed.
Definition 5. Let M =(Z,X,T) be a finite state

pre-machine, then an elemet,w) 0 X x ="is called a
snapshot if the following condition holdsT (x,u) =0
wheree # u px(w).

The set of all snapshots is denoted3{i ) .

The dynamics of the control device is described in
Table 1.
Table 1
Interaction between
a pre-machine and an environment
An external
influence

A pre-machineresponse

1) Initialize a pre-machine:
buffer — €
active _state—

initial _ state

2) Wait a signal

3) The
allx
been sent

signal
has

4) Append a into
machine's buffer:

buffer — (buffer) a

5) If T(active_state, buffgrz O

then

active _ state—
T (active _ state, buffe
buffer — ¢

6) go to item 2)

the pre-

One can consider a mapOd(XxZ - X) as the
map 'T'D[X - (ZD - X)J that is defined by the fol-

lowing formula



Using this notation we redefine the class of pre-

machines.

Definition 6. A finite state pre-machine is a triple 1

(Z, X,'T') , whereZX is a finite alphabetX is a finite set

of states, T D[X - (ZD - X)J and for the triple the

following conditions hold:

(a) for any u,vOz" and any x',x"0OX from
0#T(x)(u)=x"$and T(x")(v)£0 it follows
that 0 # T (x') (uv) = T(x")(v);

(b) for any u,vOs" and any x,x"0OX from
0#T(x')(u)=x" and T(x')(uv)#0 it follows
that 0 # T (x")(v) =T (x') (uv) .

It is evident, that Definitions 4 and Definitiorae
equivalent.

4. Pre-machines and
Prefix Marked Digraphs

In this section relationships between the class of

finite state pre-machines and some subclass oéjpligr
are studied.

First let us define the subclass of digraphs men-

tioned above.
Definition 7. A triple (£,G,P) whereX is a finite

alphabet,G is a digraph, andDD{E(G) - Zzﬂ is
called aprefix marked digraph (PMD) if the following
conditions hold
(a) UeDE(G):iv(e)= P8 is a prefix code for all
vOV(G);
(b) any e;,6,0 §G) such thativ(e;) =iv(e,) and
P(e)N A g)# 0 are equal.
Definition 8. Let (2,G,P) be a PMD,w0z",

and a =vg D@—.le BB .0 ﬁr—»vn be a walk in
G.

The walk a carries the word w if there exits
decompositionw = w;...w,, such thatw; OP(g) for
alli=1,...,n.

The next simple proposition is very important.

Proposition 1.Suppose, that walke and 3 have

the same initial vertex and they carry the samedwer
then they are equal.
Now we can construct for

(£,G,P) some finite state pre—machin@:,G,P)Jr =

(z.v(6).7).

arbitrary PMD

Let us defineT by the following way:
define 'T'(v)(s) =v forall vOV(G);

2) 'T'(v)(w) # 0 if there exists the walkx such that
it carries the wordw and its initial vertex isv
(uniqueness ofi follows from Proposition 1);

in this case terminal vertex' of the walk a is
uniquely determined by the vertex and the word

w , so the following definition is correct:
'T'(v)(w) =v'.

3)

Proposition 2.The triple (Z,V(G),'Ar) is a finite

state pre-machine.
Let us describe the inverse construction: for an ar

bitrary finite state pre-machinil =(Z,X,'f) construct

some PMD(%, x,?)T =(.G,P).
Let us define:
1) V(G)=X;
2) E(G)={(x1,x2)DX2|
(EWDZ")(D ¢'T'(x1)(w)=x2)};
for e=(x,X')O0E(G) determineiv(e)=x" and
tv(e)=x';
9 P(9={wis” =T i(d)(w= (30
(DuDpx(w))(T(it(e))(w)=D)} .

. . . ~\t .
It is evident that the trlple(Z,X,T) =(=,G,P)is

3)

a PMD.
Note that one can easily prove that

firstly, —prefix marked graphs (%£,G,P) and

+
((Z,G, P)T) match up to notation;

secondly, finite state pre—machine(sZ,X,'T’) and

t
~\t
((Z,X,T) j match up to notation.

This results show that structures of PMDs and
FSPMs are interdependent.

5. Unextendable Sets of Vertices
in Digraphs
To study the structure of digraphs we consider
some class of their vertices subsets.
In this section we suppose that=(V, E, it, vt) is
some digraph.

Definition 9. A subsetA of the setV is anunex-
tendable set if the following condition holds

(0vD (vt (a))va) v (v 2 )) 0A).



Proposition 3Let U(G) be a family of all unex- /* The following condition has been true: */

% — -1 %
tendable subsets of , then U(G) is a Moore family / W=iv (tV (A))\A /
[9, p. 111, Definition]. for vOW do

As known [9, p. 111, Theorem 1], each Moore for el E do
family is a family of closed subsets for some ueigu if tv(e)=vand iv(e)OA then
defined closure operator. W W\{V} ;
Let us denote byHull®[A] the closure of a subset break
A with respect to the closure operator correspontting q end
U(G). We shall say thatHull®[A] is the unex- end.en
tendable hull of the setA . [* The following condition has been true: [*

Definition 10.A map Inf®:2Y - 2" is called an
inflation if it is defined by the formula

I* W={vDiv(tv'1(A))\A|tv(iv'l(v))DA} */
return AUW

Inf®[A]=A U
{thv(iv_l(A))\A liv (tv_l(v )) DA}.
We claim that for any digraph its family of unex-
tendable sets can be described as the fixed-pséntsf

the corresponding inflation. To show this we neeths
properties of inflations.

Proposition 4.Let Inf®:2Y _ 2¥ be the infla-
tion then the following properties hold:

(@) Inf¢[0]=0;
(b) AOINfC[A] foranyA DV ;
(c) if AyOA, OV theninf®[Ay]OInf [A ,].

It is clear that the algorithm is correct.

The next theorem is needed to calculate the unex-
tandable hull for any set.

Theorem 1let L be a finite lattice,z be an ele-
ment of L, and T:L - L be a map such that the fol-
lowing conditions hold

(@) x<T(x) foranyxOL;
(b) T(x)<T(y) foranyx,yOL suchthatx<y,

then the setF, ={xOL |z< xOx=T(x)} is not

empty and contains its greatest lower bound.

From the proof of Theorem 1 the next algorithm to
calculate of the unextendable hull for any subset o
vertices an be obtained.

Proposition 5Suppose|nfG 2V 5 2V s the in-
flation, then any setA OV of is unextendable if and

Algorithm 2. Calculating the unextendable hull of a set

only if it is a fixed point of the inflation.

Corollary 1.For eachA OV there exists the least
inflation fixed point such that it covera . This fixed
point equals to the unextendable hullAf

6. Calculation of Inflations and
Unextendable Hulls

The aim of this section is to consider methods to

calculate the inflation and the unextendable hadlany
subset of vertices for an arbitrary digraph.

First let us describe the algorithm (see Algo-

Require: a directed grapl@ , and a subsef of V
Ensure: Hull® [A]

Wy « A;
W, < Inf® [Wo];
while Wy #W; do
Wo « Wi;
W, < Inf® W]
end;
return Wy

rithm 1) to calculate the inflation of some subsét
vertices.

Algorithm 1. Calculating the inflation of a set
Require: a directed grapl@ , and a subsef of V

Ensure: InfC [A]

W - 0O;
for ed E do
if iv(e)JA and tv(e)OA then
W« WU{tv(e)};
end
end

7. Regionsand Intervals

In the section some class of vertices set in a di-
graph is introduced. The definition of the clasa igen-
eralization of the class of regions for a flow drdf0].
This class as a class of intervals was introducef,i
p. 938]. In the paper we shall distinguish the <la
regions and the class of maximal regions which ale c
intervals.

In this section we suppose that=(V, E,iv, tv) is
some digraph.



Definition 11. A subsetA OV is called aregion  3)
in G if A=Hull®[{v}] for somevDV .

In this casev is called eheader of a regionA .

The next proposition establishes the principal
property of regions.

Proposition 6Let A be aregioninG andel E
such thattv(e)O A, but iv(e) DA, thentv(e) is the
unique header oA .

Definition 12. A region is called atnterval if it
can not be covered by other region.

Xn O || X
4) o carriesw .

Proposition 7The triple(Z,G(l) , P(l)) is a PMD.
Definition 13. The finite state pre-machine

¥
(Z,G(l) , P(l)) is called thederivative finite state pre-

machine for the FSPMM and it is denoted b (1).
Using Definition 13 one can build thderivative
series for any FSPMM :

Corollary 2 (of Proposition 6)Let I; and I, be M =M(o),M(1),...,M(n),...,
different intervals then their intersection is eynpt where

One can obtain the following result by summariz- w1+ _ [y (0 (1) fso1
ing the arguments adduced above. - ' T

Theorem 2.The set of intervals for any digraph
forms the partition of the set of its vertices.

Taking into account that all sets of states ari¢efin
and quantity of elements in the sets decreases when
position of series member increases one can coaclud
that the series terminates.

The derivative series for FSPMs is similar to the

In this section a procedure that provides prederivative control flow graphs [4] and we hope ttiaty
machine states aggregating is described. We hape than be used for structural analysis of finite statee-
procedure can be used for hierarchical specifinatib machines.
complex systems with behavior similar to the bebiavi

8. Derivative Finite State Pre-M achines
and Hierarchic Decomposition

described by Table 1.
Let M =(5,X,T) be a FSPM ant " =(5,G, )

be the corresponding PMD.
Consider the partitionX =1, U...Ul,, where

l4,....1, are intervals of the digrapMT. Denote by
h(1) a set of headers for a intervial{l, ..., I} -

Denote byX® the sef{ly,..., 1} .

For 1< k,I<n a pair (Iy,1;) is included intoE® if
there exists some walk

a=xoO0B-x, 08 . 08_x,
such that

1) xoOh(ly);
2)  XppeeosXpo1 Oy
3) x,01.

If we define iv (I, 1))) =1 and tv((1y. 1)) =1, then
we obtain the digraplﬁs(l) = (X(l), E(]) iV, tv) .

Define a marking functiorP(l) :E(l) ~ =" by the next
way:

let's include the wordw into P ((1. 1)) if there
exists a walk a=xg D%_.xlD B...0 ﬁr_)xn
such that

1) xoOh(ly);

2)  XgpeeosXpo1 Oy

9. One sample of hierarchic decomposition

In this section the sample of hierarchical decompo-
sition is presented. We demonstrate that the déaresa
series of the model pre-machine has only two mesber
and the last member of it has three states.

In the Fig. 1 the model of semantic events recog-
nizer is presented.

In this context a semantic event is some sequence
of elementary events (signals). Of course, notsadh
sequences are valid. So, the task of the specsfidd
ware component is to check validity of a sequermat a
to assign a relevant handler. Undoubtedly, we shoul
not forget to handle errors and timeouts. It isgasged
that at arbitrary time point the event “reset comctha

reset reset
——| Ready
on
i _ ti meout Handl e
o\ Li st enl_ ng .—>
si gnal si gnal
$ t1 meout
® <—| Recei vi ng |-> @]—
N error
event Recogni zed
Handl e error
,‘\ Event
success
Done

Fig. 1. Semantic events recognizing



N
o ]

—> Ready
on

ti

Li steni ng

Slm A

ti meout
$

Recel Vi ng
event Recogni zed

~

Error

A

| gnal

:

Handl e error

Event

success
Done

J

Fig. 2. Derivative pre-machine

has been received” can be fired.
In the Fig. 2 the derivative pre-machine is pre
sented. One can see that its intervals are simgeto

10. Conclusion
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Summarizing we can formulate the problems that Iepapxiuna gexommosnuisi nepea-mammun Ta ii 3acTocy-

arise in connection with an introduction to the cepts
of the paper:

firstly, to study the case when the last membex of

derivative series has only one state.

BaHHSI /10 aHAJI3y IPOrpaMHHX CHCTEM
I''M. Xonrkesuy, [.J1. [lepenenuus
VY crarTi po3mIISIHYTO MOJETH B3a€EMOJIIi MPOrPaMHOI CHCTEMH
3 HaBKOJWMIIHIM CEPEHOBHIIEM, SKa J03BOJISIE MOJCIIOBATH
3a0yBaHHS yac BiA yacy HMOBHOTI'O MPOTOKONy. s 1bOro sk

secondly, to describe intervals of a digraph in th@aremarnuni mozeni BukopucTani nepea-mamuuy. [okasano,

terms of this digraph.

thirdly, to study specific properties of the deriva

tive series for a finite state machine.

fourthly,
machine's derivative series for step-by-step nefjnbf
the pre-machine specification.
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IO HepeA-MallnHA MOXYTh OYTH MOBHICTIO OMKCaHi B TepMi-
Hax JEsIKOT0 CIHeLiaJbHOro Kiacy oprpadis. 3alporoHOBaHO
MiAXiZ O aHANi3y CTPYKTYypH Hepe-MalliH 3 TOYKH 30py iX
MOXITHOTO psiAy, IO Ja€ MeTox imeHTHdikamii iepapxiqHoi

to propose a method using a preerpykrypu.

KirouoBi c10Ba: MamuHU 31 CKIHYEHOIO MHOKHHOIO CTaHIB,
npedikcHO-MapKoBaHuit oprpad, perioH, iHTepBal, MOXiIHUI
oprpad, HOXiAHHI psijl, iEpapXiuHa AEKOMITO3HILIsS

Hepapxuyeckasi 1eKOMIO3MINSA NPeJ-MANIMH H
ee MPUMeHeHHe K AaHAIN3Y IPOrPaMMHBIX CHCTEM
I'.H. XKonrkesuu, U.[. Ilepenenuna

B cratbe paccmarpuBaeTcsi MOJENb B3aUMOJIEHCTBHS IPO-
IrPaMMHOM CHCTEMBI C OKpYXKarollel cpeloi, KoTopas M03BO-
JSIET MOZENUPOBATH 3a0bIBAaHHE BPEMsI OT BPEMEHH ITOJIHOTO
IpOTOKOJA. [ 3TOro B KauyecTBE MaTeMaTUYECKUX MOJeIeH
HCIIONIBb30BaHbl IpeA-MamuHbl. [loka3aHo, 4TO nmpeA-MalluHbL
MOTYT OBITh IMOJHOCTBIO ONHCAHBI B TEPMUHAX HEKOTOPOTO
crieruanpHoro kiacca oprpados. Ilpemnoxen moaxon k aHa-
JIM3Y CTPYKTYpBI MPEJ-MAIIMH C TOUYKH 3PEHHS UX MPOU3BOJI-
HOTO PAZia, YTO NPUBOJIHUT K METOAY MICHTU(HUKALMU Hepap-
XHYECKOH CTPYKTYpBL.
KiroueBble ¢j10Ba: MallMHbBl ¢ KOHEYHBIM MHOXKECTBOM CO-
CTOSIHMH, Tpe(UKCHO-MapKUPOBAHHBIH oprpad, perHoH,
HHTEpBaJ, IPOU3BOIHEIH oprpad, MPOU3BOIHEIN Psl, Uepap-
XHUYecKas AeKOMITO3HIHS



