
УДК 004.414.23.042

I.D. Perepelytsya, G.M. Zholtkevych

V.N. Karazin Kharkiv National University, Kharkiv

HIERARCHIC DECOMPOSITION OF PRE-MACHINES
AS MODELS OF SOFTWARE SYSTEM COMPONENTS

Abstract. In this paper we consider a model of system interaction with the environment, which allows us to

forget its full protocol from time to time. Mathematical models of such interactions are pre-machines. We showed
that the machines can be completely described in terms of some special class of digraphs. An approach to analyzing
the structure of pre-machines in terms of their derivatives series is offered.

Keywords: finite state pre-machine, prefix marked digraph, region, interval, derivative digraph, derivatives series,
hierarchic decomposition

1. Introduction

The development of global networking technology
attracts attention of researchers and software developers
to the problem of interaction of remote network nodes.

In this context, the key problem that arises is the
problem of minimizing the amount of data about the
current session state of information exchange between
client and server. Unfortunately, the use of stateless
strategy [1], which is the least expensive, is impossible
for most applications. Thus, there is the task of organiz-
ing information exchange, which allows “to forget” the
full information about the session state from time to
time. This behaviour on the server side is modelled by
pre-automata, which were introduced in [2, 3].

This paper is concerned with defining an approach
to the structural analysis of pre-automata, which has
shown its effectiveness in solving problems of control-
flow analysis of computer programs [4].

These results were presented at the first interna-
tional seminar “Specification and Verification of Hybrid
Systems” [5].

2. Preliminaries

Let A and B be any sets, then
(a) the set of all total maps from A to B is denoted by

[]A B→ ;

(b) the set of all partial maps from A to B is denoted

by ()A B→ ;

(c) if ()f A B∈ → and a A∈ then the statement

“ ()f a is not defined” is denoted by ()f a = ∅ , and

the statement “()f a is not defined” is denoted by

()f a ≠ ∅ .

Let Σ be a finite alphabet, then
(a) the free semi-group generated by Σ is denoted by

+Σ ;

(b) the free monoid generated by Σ is denoted by ∗Σ ;

(c) a subset P of ∗Σ is called a prefix code if for

u, v ∗∈ Σ from the conditions uv P∈ and u P∈ it

follows v = ε ;

(d) for a word w +∈ Σ let us denote by ()px w the

subset of +Σ such that ()u px w∈ if w uv= ,

u ≠ ε , and v ≠ ε .
A lot of graph theory notions are used in the paper.

But it is known, that in the field some authors use the
same term with different meanings, and some authors
use different terms to mean the same thing (compare [6,
7, 8] for example). Therefore, we need to set some nota-
tion before stating our results.

Definition 1. Let ()V G and ()E G are finite sets

of vertices and edges respectively, iv and tv are maps

from ()E G to ()V G then a digraph G is a tuple

() ()()V ,E , iv, tvG G such that the following

statement is true

()()

() () () ()()
1 2

1 2 1 2 1 2

e ,e E
iv e iv e tv e tv e e e

∀ ∈
= ∧ = ⇒ =

G

For some digraph G we shall say that an edge

()e E∈ G connects the initial vertex () ()iv e V∈ G

with the terminal vertex () ()tv e V∈ G .

If () 1iv e v= and () 2tv e v= then we use the fol-

lowing notation: e
1 2v v→ .

Definition 2. Let G be a digraph. A walk in G is
an alternating sequence of vertices and edges

0 1 1 n nv ,e , v , ,e , vα = … beginning and ending with a

vertex and such that ie
i 1 iv v− → for all i 1, , n= … .

In this case n is called a length of the walk α .

We can consider walks with length 0 and identify
them with vertices. We shall use the notation v vε = for

such walks.
For a walk 0 1 1 2 n nv ,e , v ,e , ,e , vα = … we shall

use the notation

 1 2 ne e e
0 1 nv v vα = → → →… .

Definition 3. Suppose α and β be walks in the

digraph G such that

 1 2 me e e
0 1 mv v v

α α αα α αα = → → →… ,

 1 2 ne e e
n0 1v v v

β β ββ β ββ = → → →… , and m 0v vβα = ,

then the alternating sequence

1 2 m 1

2 n

e e ee
0 1 m 0

e e
n1

v v v v

v v

βα α α

β β

βα α α

β β

γ = → → → = →

→ →

…

…

is a walk in the digraph G which is called concatena-
tion of the walks α and β . In this case the walk γ is

denoted by αβ .

3. Finite State Pre-machines

In this section a generalization of finite-state ma-
chines will be introduced. Corresponding class of ob-
jects is known [2] as the class of finite pre-automata or
the class of finite-state pre-machines (in abbreviated
form FSPM).

Definition 4. A finite state pre-machine is the tri-

ple (), X,TΣ , where Σ is a finite alphabet, X is a

finite set of states, ()T X X∗∈ × Ζ → , and the follow-

ing conditions hold:

(a) ()T x, x∅ ≠ ε = for any x X∈ ;

(b) for any u, v ∗∈ Σ and x X∈ from ()T x, u ≠ ∅

and ()()T T x,u , v ≠ ∅ it follows that

 () ()()T x,uv T T x,u , v∅ ≠ = ;

(c) for any w +∈ Σ and u, v +∈ Σ such that w uv=

and x X∈ from ()T x, w ≠ ∅ and ()T x, u ≠ ∅ it

follows that

 ()() ()T T x,u , v T x, w∅ ≠ = .

To describe the behaviour of a pre-machine a no-
tion of a pre-machine's snapshot is needed.

Definition 5. Let (),X,T= ΣM be a finite state

pre-machine, then an element ()x, w X ∗∈ × Σ is called a

snapshot if the following condition holds ()T x,u = ∅

where ()u px wε ≠ ∈ .

The set of all snapshots is denoted by ()S M .

For a finite state pre-machine (),X,T= ΣM let us

construct a total map () ()T ∈ × Σ →  S M S M using

the partial map T by the formula

 ()() () ()
()() ()

x, wa , T x, wa
T x, w ,a

T x, wa , , T x, wa
 = ∅

=  ε ≠ ∅

As it is proved in [2], the triple ()(), ,TΣ S M is an

automaton.
We can interpret a finite state pre-machine

(),X,T= ΣM as a control device with a buffer that

fires on the buffer contents changing and its response is
determined by the current state and the buffer contents:
1) elements of X are interpreted as states of this de-

vice;

2) each snapshot ()x,w describes the current state of

the device and its buffer contents;
3) elements of he alphabet Σ describe external signals

which the device receive;

4) the map T describes a device's snapshot changing
as a response to a signal.
Note that similar device can be used as a dis-

patcher of heterogeneous handling of flows of events
[3].

The dynamics of the control device is described in
Table 1.

Table 1
Interaction between

a pre-machine and an environment
An external

influence
A pre-machine response

 1) Initialize a pre-machine:
buffer
active _ state

initial _ state

← ε
←

 2) Wait a signal
3) The signal

a∈ Σ has
been sent

 4) Append a into the pre-
machine's buffer:

()buffer buffer a←

 5) If ()T active _ state, buffer≠ ∅

then

()
active _ state

T active _ state,buffer
buffer

←

← ε

 6) go to item 2)

One can consider a map ()T X X∈ × Σ → as the

map � ()T X X∗ ∈ → Σ →  
 that is defined by the fol-

lowing formula

 � () () ()T x w T x, w= .

Using this notation we redefine the class of pre-
machines.

Definition 6. A finite state pre-machine is a triple

�(), X,TΣ , where Σ is a finite alphabet, X is a finite set

of states, � ()T X X∗ ∈ → Σ →  
, and for the triple the

following conditions hold:

(a) for any u, v ∗∈ Σ and any x , x X′ ′′ ∈ from

� () ()T x u x′ ′′∅ ≠ = $ and � () ()T x v′′ ≠ ∅ it follows

that � () () � () ()T x uv T x v′ ′′∅ ≠ = ;

(b) for any u, v ∗∈ Σ and any x , x X′ ′′ ∈ from

� () ()T x u x′ ′′∅ ≠ = and � () ()T x uv′ ≠ ∅ it follows

that � () () � () ()T x v T x uv′′ ′∅ ≠ = .

It is evident, that Definitions 4 and Definition 6 are
equivalent.

4. Pre-machines and
Prefix Marked Digraphs

In this section relationships between the class of
finite state pre-machines and some subclass of digraphs
are studied.

First let us define the subclass of digraphs men-
tioned above.

Definition 7. A triple (), ,PΣ G where Σ is a finite

alphabet, G is a digraph, and ()P E
+Σ ∈ →  

G 2 is

called a prefix marked digraph (PMD) if the following
conditions hold

(a) ()() ()e E :iv e vP e∈ =G∪ is a prefix code for all

()v V∈ G ;

(b) any ()1 2e ,e E∈ G such that () ()1 2iv e iv e= and

() ()1 2P e P e ≠ ∅∩ are equal.

Definition 8. Let (), ,PΣ G be a PMD, w ∗∈ Σ ,

and 1 2 ne e e
0 1 nv v vα = → → →… be a walk in

G .
The walk α carries the word w if there exits

decomposition 1 nw w w= … such that ()i iw P e∈ for

all i 1, , n= … .

The next simple proposition is very important.
Proposition 1. Suppose, that walks α and β have

the same initial vertex and they carry the same word w
then they are equal.

Now we can construct for arbitrary PMD

(), ,PΣ G some finite state pre-machine ()†, ,PΣ =G

() �(), V ,TΣ G .

Let us define �T by the following way:

1) define � () ()T v vε = for all ()v V∈ G ;

2) � () ()T v w ≠ ∅ if there exists the walk α such that

it carries the word w and its initial vertex is v
(uniqueness of α follows from Proposition 1);

3) in this case terminal vertex v′ of the walk α is
uniquely determined by the vertex v and the word
w , so the following definition is correct:

 � () ()T v w v′= .

Proposition 2. The triple () �(), V ,TΣ G is a finite

state pre-machine.
Let us describe the inverse construction: for an ar-

bitrary finite state pre-machine �(),X,T= ΣM construct

some PMD �() ()
†

, X,T , ,PΣ = Σ G .

Let us define:

1) ()V X=G ;

2) () (){
() � () ()()}

2
1 2

1 2

E x , x X |

w T x w x ;+

= ∈

∃ ∈ Σ ∅ ≠ =

G

3) for () ()e x , x E′ ′′= ∈ G determine ()iv e x′= and

()tv e x′′= ;

4) () � ()() () (){
()() ()() ()()}

P e w | T it e w tv e

u px w T it e w .

+= ∈ Σ ∅ ≠ = ∧

∀ ∈ = ∅

It is evident that the triple �() ()
†

, X,T , ,PΣ = Σ G is

a PMD.
Note that one can easily prove that

firstly, prefix marked graphs (), ,PΣ G and

()()††, , PΣ G match up to notation;

secondly, finite state pre-machines �(), X,TΣ and

�()
††

, X,T
 Σ 
 

 match up to notation.

This results show that structures of PMDs and
FSPMs are interdependent.

5. Unextendable Sets of Vertices
in Digraphs

To study the structure of digraphs we consider
some class of their vertices subsets.

In this section we suppose that ()V, E, it, vt=G is

some digraph.
Definition 9. A subset A of the set V is an unex-

tendable set if the following condition holds

 ()()() ()()()-1 1 v tv iv A \ A iv tv v A−∀ ∈ ⊄ .

Proposition 3. Let ()U G be a family of all unex-

tendable subsets of V , then ()U G is a Moore family

[9, p. 111, Definition].
As known [9, p. 111, Theorem 1], each Moore

family is a family of closed subsets for some uniquely
defined closure operator.

Let us denote by []Hull AG the closure of a subset

A with respect to the closure operator corresponding to

()U G . We shall say that []Hull AG is the unex-

tendable hull of the set A .

Definition 10. A map V VInf : →G 2 2 is called an
inflation if it is defined by the formula

[]

()() ()(){ }1 1

Inf A A

v tv iv A \ A | iv tv v A .− −
=

∈ ⊂

G
∪

We claim that for any digraph its family of unex-
tendable sets can be described as the fixed-points set of
the corresponding inflation. To show this we need some
properties of inflations.

Proposition 4. Let V VInf : →G 2 2 be the infla-
tion then the following properties hold:

(a) []Inf ∅ = ∅G ;

(b) []A Inf A⊂ G for any A V⊂ ;

(c) if 1 2A A V⊂ ⊂ then [] []1 2Inf A Inf A⊂G G .

Proposition 5. Suppose V VInf : →G 2 2 is the in-
flation, then any set A V⊂ of is unextendable if and
only if it is a fixed point of the inflation.

Corollary 1. For each A V⊂ there exists the least
inflation fixed point such that it covers A . This fixed
point equals to the unextendable hull of A .

6. Calculation of Inflations and
Unextendable Hulls

The aim of this section is to consider methods to
calculate the inflation and the unextendable hull for any
subset of vertices for an arbitrary digraph.

First let us describe the algorithm (see Algo-
rithm 1) to calculate the inflation of some subset of
vertices.

Algorithm 1. Calculating the inflation of a set

Require: a directed graph G , and a subset A of V

Ensure: []Inf AG

W ← ∅ ;
for e E∈ do

if ()iv e A∈ and ()tv e A∉ then

(){ }W W tv e← ∪ ;

end
end

/* The following condition has been true: */

/* ()()1W iv tv A \ A−= */

for v W∈ do
for e E∈ do

if ()tv e v= and ()iv e A∉ then

{ }W W \ v← ;

break
end

end
end;

/* The following condition has been true: /*

/* ()() ()(){ }1 1W v iv tv A \ A | tv iv v A− −= ∈ ⊂ */

return A W∪

It is clear that the algorithm is correct.
The next theorem is needed to calculate the unex-

tandable hull for any set.
Theorem 1. Let L be a finite lattice, z be an ele-

ment of L , and T : →L L be a map such that the fol-
lowing conditions hold

(a) ()x T x≤ for any x ∈ L ;

(b) () ()T x T y≤ for any x, y∈ L such that x y≤ ,

then the set (){ }zF x | z x x T x= ∈ ≤ ∧ =L is not

empty and contains its greatest lower bound.
From the proof of Theorem 1 the next algorithm to

calculate of the unextendable hull for any subset of
vertices an be obtained.

Algorithm 2. Calculating the unextendable hull of a set

Require: a directed graph G , and a subset A of V

Ensure: []Hull AG

0W A← ;

[]1 0W Inf W← G ;

while 0 1W W≠ do

0 1W W← ;

[]1 0W Inf W← G

end;
return 0W

7. Regions and Intervals

In the section some class of vertices set in a di-
graph is introduced. The definition of the class is a gen-
eralization of the class of regions for a flow graph [10].
This class as a class of intervals was introduced in [4,
p. 938]. In the paper we shall distinguish the class of
regions and the class of maximal regions which we call
intervals.

In this section we suppose that ()V, E, iv, tv=G is

some digraph.

Definition 11. A subset A V⊂ is called a region

in G if { }A Hull v=   
G for some v V∈ .

In this case v is called a header of a region A .
The next proposition establishes the principal

property of regions.
Proposition 6. Let A be a region in G and e E∈

such that ()tv e A∈ , but ()iv e A∉ , then ()tv e is the

unique header of A .
Definition 12. A region is called an interval if it

can not be covered by other region.
Corollary 2 (of Proposition 6). Let 1I and 2I be

different intervals then their intersection is empty.
One can obtain the following result by summariz-

ing the arguments adduced above.
Theorem 2. The set of intervals for any digraph

forms the partition of the set of its vertices.

8. Derivative Finite State Pre-Machines
and Hierarchic Decomposition

In this section a procedure that provides pre-
machine states aggregating is described. We hope the
procedure can be used for hierarchical specification of
complex systems with behavior similar to the behavior
described by Table 1.

Let �(),X,T= ΣM be a FSPM and ()† , ,P= ΣM G

be the corresponding PMD.
Consider the partition 1 nX I I= ∪…∪ , where

1 nI , , I… are intervals of the digraph †M . Denote by

()h I a set of headers for a interval { }1 nI I , , I∈ … .

Denote by ()1X the set { }1 nI , , I… .

For 1 k, l n≤ ≤ a pair ()k lI , I is included into ()1E if

there exists some walk

 1 2 ne e e
0 1 nx x xα = → → →…

such that

1) ()0 kx h I∈ ;

2) 1 n 1 kx , , x I− ∈… ;

3) n lx I∈ .

If we define ()()k l kiv I , I I= and ()()k l ltv I , I I= then

we obtain the digraph () () ()()1 1 1X ,E , iv, tv=G .

Define a marking function () ()1 1P : E +→ Σ by the next
way:

let’s include the word w into () ()()1
k lP I , I if there

exists a walk 1 2 ne e e
0 1 nx x xα = → → →…

such that
1) ()0 kx h I∈ ;

2) 1 n 1 kx , , x I− ∈… ;

3) n lx I∈ ;

4) α carries w .

Proposition 7. The triple () ()()1 1, ,PΣ G is a PMD.

Definition 13. The finite state pre-machine

() ()()†1 1, ,PΣ G is called the derivative finite state pre-

machine for the FSPM M and it is denoted by ()1M .
Using Definition 13 one can build the derivative

series for any FSPM M :

 () () ()0 1 n, , , ,=M M M M… … ,

where

 () ()()()1n 1 n , n 0,1,+ = =M M … .

Taking into account that all sets of states are finite
and quantity of elements in the sets decreases when
position of series member increases one can conclude
that the series terminates.

The derivative series for FSPMs is similar to the
derivative control flow graphs [4] and we hope that they
can be used for structural analysis of finite states pre-
machines.

9. One sample of hierarchic decomposition

In this section the sample of hierarchical decompo-
sition is presented. We demonstrate that the derivatives
series of the model pre-machine has only two members
and the last member of it has three states.

In the Fig. 1 the model of semantic events recog-
nizer is presented.

In this context a semantic event is some sequence
of elementary events (signals). Of course, not all such
sequences are valid. So, the task of the specified soft-
ware component is to check validity of a sequence and
to assign a relevant handler. Undoubtedly, we should
not forget to handle errors and timeouts. It is suggested
that at arbitrary time point the event “reset command

Fig. 1. Semantic events recognizing

Ready

Listening

Receiving

Handle
timeout

timeout

reset

Error
error

on

timeout
signal signal

Handle
Event

reset

eventRecognized

error

Done

success

has been received” can be fired.
In the Fig. 2 the derivative pre-machine is pre-

sented. One can see that its intervals are singletons.

10. Conclusion

Summarizing we can formulate the problems that
arise in connection with an introduction to the concepts
of the paper:

firstly, to study the case when the last member of a
derivative series has only one state.

secondly, to describe intervals of a digraph in the
terms of this digraph.

thirdly, to study specific properties of the deriva-
tive series for a finite state machine.

fourthly, to propose a method using a pre-
machine's derivative series for step-by-step refining of
the pre-machine specification.

Bibliography

1. Fowler M. Patterns of Enterprise Application Architecture /
M. Fowler. – Boston: Pearson Education, 2003. –
2. Dokuchaev M. Partial actions and automata / M. Doku-
chaev, B. Novikov, G. Zholtkevych. – Algebra and Discrete
Mathematics. − 2011. – V. 11, No 2. – P. 51 – 63.
3. Novikov B. Pre-automata as Mathematical Models of Event
Flows Recognisers / B. Novikov, I. Perepelytsya, G. Zholt-
kevych // V. Ermolayev et al. (eds.) Proc. 7-th Int. Conf. IC-
TERI 2011, Kherson, Ukraine, May 4-7, 2011. – CEUR-
WS.org/Vol-716, ISSN 1613-0073, 2011. – P. 41 – 50.
4. A.V. Aho. The Theory of Parsing, Translation, and Compil-
ing, Volume 2: Compiling / A.V. Aho, J.D. Ullman // Series in
Automatic Computation. – Englewood Cliffs, NJ: Prentice-
Hall, Inc, 1973. –
5. Novikov B. Derivatives Series of Finite State Pre-Machines
/ B. Novikov, I. Perepelytsya, G. Zholtkevych // Specification
and Verification of Hybrid Systems. – Proc 1st Int. Seminar,
Kyiv, Ukraine, October 10 – 12, 2011. – T. Shevchenko Nat.
Univ. in Kyiv, Paul Sabatier Univ. Toulouse, State Found for
Fund. Res. Ukraine, 2011. - P. 40 - 50.

6. Bollobas B. Modern Graph Theory / B. Bollobas // Gradu-
ate Text in Mathematics. – New York: Springer Science +
Business Media, Inc, 1998. –
7. Bondy A. Graph Theory / A. Bondy, U.S.R. Murt // Gradu-
ate Text in Mathematics. – Berlin Heidelberg New York:
Springer, 2008. –
8. Diestel R. Graph Theory, 3rd ed. / R. Diestel // Graduate
Text in Mathematics. – Berlin Heidelberg New York: Springer,
2006. –
9. Birkhoff G. Lattice Theory, 3rd ed. / G. Birkhoff // Collo-
quium Publications. – Providence, RI: Amer Mathematical
Soc, 1995. –
10. Aho, A.V. Compilers: Principles, Technique, and Tools,
2nd ed. / A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman. – Boston,
MA: Pearson Education, Inc, 2007. –

Рецензент: д-р техн.. наук, проф. М.В. Ткачук, На-
ціональний технічний університет «Харківський політех-
нічний інститут», Харків

Автор: ЖОЛТКЕВИЧ Григорій Миколайович
Харківський національний університет імені В.Н. Кара-
зіна, Харків, доктор технічних наук, професор, декан
механіко-математичного факультету, завідувач кафедри
теоретичної та прикладної інформатики.
Роб. тел. – 707-53-25, E-mail: g.zholtkevych@gmail.com

Автор: ПЕРЕПЕЛИЦЯ Іван Дмитрович
Харківський національний університет імені В.Н. Кара-
зіна, Харків, аспірант кафедри теоретичної та приклад-
ної інформатики.
Роб. тел. – 707-55-35, E-mail: ivanperepelytsya@gmail.com

Ієрархічна декомпозиція перед-машин та її застосу-
вання до аналізу програмних систем

Г.М. Жолткевич, І.Д. Перепелиця
У статті розглянуто модель взаємодії програмної системи
з навколишнім середовищем, яка дозволяє моделювати
забування час від часу повного протоколу. Для цього як
математичні моделі використані перед-машини. Показано,
що перед-машини можуть бути повністю описані в термі-
нах деякого спеціального класу орграфів. Запропоновано
підхід до аналізу структури перед-машин з точки зору їх
похідного ряду, що дає метод ідентифікації ієрархічної
структури.
Ключові слова: машини зі скінченою множиною станів,
префіксно-маркований орграф, регіон, інтервал, похідний
орграф, похідний ряд, ієрархічна декомпозиція

Иерархическая декомпозиция пред-машин и
ее применение к анализу программных систем

Г.Н. Жолткевич, И.Д. Перепелица
В статье рассматривается модель взаимодействия про-
граммной системы с окружающей средой, которая позво-
ляет моделировать забывание время от времени полного
протокола. Для этого в качестве математических моделей
использованы пред-машины. Показано, что пред-машины
могут быть полностью описаны в терминах некоторого
специального класса орграфов. Предложен подход к ана-
лизу структуры пред-машин с точки зрения их производ-
ного ряда, что приводит к методу идентификации иерар-
хической структуры.
Ключевые слова: машины с конечным множеством со-
стояний, префиксно-маркированный орграф, регион,
интервал, производный орграф, производный ряд, иерар-
хическая декомпозиция

Ready

Listening

Receiving

Handle
timeout

timeout

reset

Error

error

on

timeout

signal

signal

Handle
Event

reset

eventRecognized

error

Done

success

Fig. 2. Derivative pre-machine

