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Abstract 
 

A 1000-tube virtual model of human systemic arterial tree that includes the database on geometry of the arterial vasculatures, the 
software for computation and visualization of the blood flow and pulse wave propagation, diagnostic analysis of the pulse wave 
parameters and planning the cardiovascular surgery is elaborated. Blood flow in each tube is modeled as a sum of the Windkessel and 
pulsatile components. Pulse wave propagation and reflection at the bifurcations are considered as 2d waves in the fluid filled thick 
wall viscoelastic tubes. The results of the numerical computations of the pressure and flow wave evolution along aorta, simulations 
of the blood vessel occlusion, stenosis, aneurism and addition some collateral pathways as a model of arterial and venous grafts are 
presented. 
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1. Introduction 

Blood flow and pressure distribution, wave propagation 
and reflection in the blood vessel systems are important 
determinants of human hemodynamic. Important diagnostic 
information on blood circulation in the systemic arteries and on 
microcirculation in the inner organs can be obtained from the 
pressure P(t) and flow U(t) curves measured  non-invasively   
by  ultrasound  technique or MRT. Data mining methods and 
biomechanical interpretation of the parameters are important for 
early diagnostics of different pathology.  

The blood flow along the vasculature can be described 
by 1D [6-8] or 2D models [9-11] of the fluid flows in 
distensible tubes. The flow and wall equations are considered in 
each tube and the flow and pressure continuity equations are 
applied in each bifurcation to close the system [12]. The 1D 
model is presented by a hyperbolic equation and can be solved 
by  the method of characteristics [13], which has been 
developed for the complex branching system of distensible 
tubes [14] and the corresponding numerical code has been 
elaborated and tested in the 55-tube model of human systemic 
circulation and some other simpler systems [15-17].  Basing on 
the realistic model of the vasculature different circulatory 
pathologies like hypertension, atherosclerosis, thrombosis, 
hyperlipidemia, stenosis, aneurism, microcirculatory disorders 
etc, can be modelled as high/low wall rigidity, 
occlusion/dilation of separate tubes, variations in the blood 
viscosity, reflection conditions at the terminuses and other 
model parameters [18]. 

2. Materials and Methods 

Individual geometry of the inraorgan vasculatures has been 
studied on plastic casts of the inner organs and muscles. The 
lengths, diameters and branching angles of the arterial segments 
have been measured on five sets taken from corpses of young 
healthy people dead in accidents [1]. The parameters of the 
large extraorgan (systemic) arteries have been measured by 
post-mortem examination of the five corpses. Besides, the 
detailed ultrasound measurements on ten healthy individuals 
have been carried out. Geometry of the vasculatures has been 

described as a graph following topology of the vasculatures. As 
a result a dataset including 920-1150 arterial segments of the 
systemic arteries depending on individual geometry have been 
obtained. A comparative study of the datasets revealed that 880 
segments were common for the five corpses and others are 
different. The “minimal” model containing 880 segments with 
lengths and diameters averaged over the five datasets and a 
“maximal” model containing all the segments presented in at 
least one corpse have been built. The terminal tubes in the 
models have been terminated by the models of the intraorgan 
and intramuscle vasculatures. Each of the terminal models 
included some 900-9000 tubes. The obtained virtual 
physiological human model allows numerical computations and 
modelling of different normal sates and pathologies. 

The very first model of human systemic arterial tree based 
on the parameters of 55 large arteries terminated by Windkessel 
(lumped parameter) models has been obtained on corpses [2]. 
Later the dataset has been completed by some more arteries. 
The model presented here is the most complete and detailed at 
present.  

3. Regularities in design of the arterial systems 

Statistical analysis of the measurement data revealed some 
obvious regularity in construction of the blood vessel systems. 
In the bifurcations the parent (j=0) and daughter (j=1,2) vessels 
have been considered. The following parameters have been 
computed: 

- branching asymmetry    2121 ,max/,min jjjjj dddd ;  

- branching coefficient   202221 )/()()( jjjj dddK  ; 

- Murray’s optimality coefficient   303231 )/()()( jjjj ddd  ;  

- hydraulic conductivity  4/)(128 jjj
h
j dLdY   ; 

- wave input admittance ,   jfj
in
j cdY  4/2

where   and  are viscosity and density of blood,  is the 

pulse wave velocity,  and  are lengths and diameters of 

the vessels.  
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The dependences  and  corresponding 

to the Murray law [3] have been found in the systemic arterial 
tree as well as in the intraorgan vasculatures. The dependences 

 have been found for all the datasets, where 

 for the database measured 

on the corpses and  

)( 0min dd

915.0; 2 R

756.0

)( 0max dd

 0max dd 

;883.0  99.0

 , 05.1 ,  - for the 

database measured on the alive individuals. The difference is 
connected with maximal dilated state of the cadaveric blood 
vessels. Different families of vessel bifurcations (with K>1, 
K~1, K<1) as well as bifurcation asymmetries 
(

902.02 R

1,1,1   ) have been found. The large extraorgan 

arteries are closer to optimal ones ( 3 ) providing the blood 

delivery at total minimal energy costs (Murray law) and zero 
wave reflection (optimal waveguide) than the small arteries. 

The relationships are different for the inner organs 
and muscles. Using the obtained regularities a mathematical 
algorithm allowing reconstruction of an individual vasculature 
basing on the parameters of the feeding artery of an inner 
organ/muscle has been elaborated [4]. 

dL

4. Mathematical Model 

Blood flow in each tube is modeled as a sum of the 
Windkessel and wave components [5]. The Windkessel pressure 

 and flow rate  are determined by the lumped 

parameter model  

)(tpW )(tQW
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dt

d
k inWWW  ,    (1) WWW pYQ 

where  is the wall compliance, is the tube conductivity, 

 is the inflow rate. For the network of tubes the 

equations (1) are considered for each tube taking into account 
the pressure and flow rate continuity conditions  at the tube 
bifurcations. 
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Axisymmetric pulse wave propagation in the fluid-filled 
tubes is studied on the incompressible Navier-Stokes equations 
for the fluid and incompressible viscoelastic solid for the wall 
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where ,  are fluid velocity and pressure, 

,
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(uu   , , , G, s êp 2,1  are solid displacement, 

density, pressure, strain rate tensor, shear modulus and 
relaxation parameters.  The boundary conditions include 
velocity and stress continuity conditions at the fluid0solid 
interface, zero displacement or zero stress at the outer surface of 
the tube, flow and pressure continuity conditions at the tube 
bifurcations [6].  
      Solution of the linearized problem (2) has been found as a 
superposition of the incident and reflected waves 
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where  iii PP  is the wave reflection coefficient,  and 

 are amplitudes of the incident and reflected waves.  
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5. Numerical results and discussions 

Computations on the five measured cadaveric models as 
well as on the minimal 880-tube and maximal 1250-tube models 
have been carried out using (1) and (2). The 
solutions ),()(),( iiWii xtptpxtP    and 

),()),(5.0()(),( 2
ixiixiiWii xtvxtudtQxtQ    

have been computed for each tube. The wave reflection 
coefficients i  have been computed using the data measured on 

the intraorgan and intramuscle vasculatures. Depending on 
geometry and terminal conditions (microcirculation) both 
positive 0 and negative 0  reflection conditions have 
been found and used for computations. 
      For all the studied systemic trees a realistic pressure and 
flow rate waves travelling along aorta [7] have been obtained. 
The flow waves computed in the middle cross-sections of 
different large arteries have been compared to the flow curves 
measured with Doppler ultrasound device on ten healthy 
volunteers and a very good correspondence have been found.  
       Modelling of stenosis/aneurism by decreasing/increasing of 
diameters of some arteries; modelling of the bypass surgery by 
addition of tubes in the system; modelling of the intraorgan 
pathology by variation the resistivity and compliance of the 

vasculature resulting in changes in  and  have been 

carried out. It was shown any mismatch in the hydraulic and 
wave conductivity produces additional reflected waves. 
Decomposition of the waves into the incident and a series of 
reflected waves allows estimation of the time delay between the 
wave fronts. Multiplying the time delay by the wave speed one 
can compute the distance to the reflection site and determine the 
pathology. Analysis of the pressure-flow curves , phase 

curves ,  and intensities  of 

the incident and reflected waves give very important 
information for medical diagnostics of cardiovascular and 
microcirculatory pathology. Basing on the computational results 
some novel integral parameters for differential clinical 
diagnostics are proposed. The model can be used for testing the 
treatment and planning the surgery and rehabilitation. 
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