98
EAsT EUROPEAN JOURNAL OF PHYSICS
East Eur. J. Phys. 2. 98-104 (2021) DOI:10.26565/2312-4334-2021-2-06

PACS: 03.65.5q

SEMICLASSIC MODELS OF THE DISSIPATIVE REGIME OF INSTABILITY
AND SUPERRADIATION OF A QUANTUM RADIATOR SYSTEM

Volodymyr M. Kuklin*, ““Valentin T. Lazurik, "*'Eugen V. Poklonskiy
V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Svobody Sq. 4, Kharkiv, Ukraine, 61022
*Corresponding Author: kuklinvmI@gmail.com
Received March 2, 2021; revised April 4, 2021; accepted April 10, 2021

The paper discusses the similarity between dissipative generation and superradiance regimes for systems of excited quantum emitters
placed in an open cavity. In the case of the existence of a resonator field due to reflections from the ends of the system, a dissipative
generation regime is usually realized. In this case, the decrement of oscillations in the waveguide in the absence of radiators turns out
to be greater than the increment of the arising instability of the system of radiators placed in the resonator. When describing this mode,
the influence of the emitters on each other and the sum of their own fields is neglected. The resonator field forces the oscillators to emit
or absorb quanta synchronously with it, depending on the local value of the population inversion. Lasing takes on a weakly oscillatory
character due to an asynchronous change in the population inversion of the system of emitting dipoles (nutations), which have a ground
and excited energy levels. To describe the process, the equations of the semiclassical theory based on the use of the density matrix are
quite sufficient. In the case when there is no resonator or waveguide field, taking into account the eigenfields of the oscillators becomes
essential. To simulate the superradiance process, large emitting particles are used, to describe which one should use the equations for
the density matrix. It is shown that the interaction of quantum emitters in this case is due to electromagnetic fields under conditions
when the overlap of their wave functions is insignificant. Equations are obtained that allow considering the process of interaction of
emitters. When the emitters interact, an integral field is formed in the resonator, an increase in the intensity of which leads to
synchronization of the emitters. It is shown that the characteristic times of the development of the process, as well as the attainable
amplitudes of the excited fields for dissipative regimes of generation and regimes of superradiance of emitters filling an open resonator,
are comparable.
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In the well-known work [1] R. Dicke, considering the interaction of oscillators or emitters, which are actually
combined into one quasiparticle, discovered the possibility of their coherent radiation. Moreover, in the quantum case,
we can talk not about the phase synchronization of the oscillators, as in the classical consideration, but only about an
increase in the probability of radiation, which actually leads to the same result. The overlap of their wave functions leads
to an increase in the probability of spontaneous emission of this quasiparticle in comparison with the probability of
emission of individual oscillators or emitters' [2].

If the oscillators or emitters are separated in space, the overlap of their wave functions becomes imperceptible?. The
interaction of quantum emitters in this case is due to electromagnetic fields. In this case, the Rabi frequency determines
the oscillatory nature of the change in the population inversion of the system of emitting dipoles (nutations), which have
a ground and excited energy levels. The probabilities of stimulated emission and absorption of field quanta are also
determined by the Rabi frequency [3].

In open systems, when the reflection of waves from the boundaries of the system is weakened, dissipative generation
modes and superradiance modes can be realized [2, 4-8].

A resonator or waveguide field, the intensity of which is sufficiently high in the case of low energy losses, is formed
due to reflections from the ends of the system. In this case, the influence of emitters on each other can often be neglected.
The field of the resonator or waveguide forces some of the oscillators to emit and absorb quanta synchronously with it,
providing a significant coherence [9]. This stimulated emission usually exceeds the sum of incoherent emitters
eigenfields; therefore, taking them into account in such a regime of instability development is often insignificant.

In the superradiance mode, a resonator or waveguide field may not be present in the system of oscillators, since
these modes are realized in open systems with weak reflection of the excited oscillations from the ends of the system. In
a quantum system, at large values of the number of excited oscillators and their tight localization, spontaneous emission
at a high density of emitters remains, as a rule, extremely insignificant in relation to the radiation induced.

Usually, in the absence of a resonator or waveguide field, the total field of such spontaneous electromagnetic
emission very large number of particles of the active substance (which emit only one quantum in a rather arbitrary chaotic
manner) is inversely proportional to their number and not able to synchronize them. However, with the use of an initiating
external field capable of synchronizing the emitters, the superradiance regime may well be realized. If the number of
emitters is small, the levels of the total spontaneous electromagnetic radiation may be sufficient to form an integral field
that synchronizes the emitters, as shown below. In open systems, with a sufficiently high level of radiation from the ends

1 That is, the coherence of radiation of a bunch of particles, the size of which is much smaller than the wavelength, is found both in the quantum
description of this phenomenon and in the classical one.
2 The velocity distribution of free electrons in semiconductors is indicative in this sense [9].
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of the system, both a dissipative excitation mode of a waveguide or resonator field by non-interacting with each other
emitters, and a superradiance mode of the system, when there is no waveguide field, and each emitter participates in
creating a sufficiently intense integral field, are possible.

The aim of this work is to consider the features of dissipative generation regimes and superradiance regimes for
systems of excited quantum emitters placed in an open resonator.

This is first of all comparison of the characteristic times of these processes, as well as the attainable amplitudes of
the excited fields. The similarity of the superradiance regimes and dissipative regimes of generation of quantum oscillators
is shown in this case.

DESCRIPTION OF GENERATION PROCESSES BY A SYSTEM OF QUANTUM EMITTERS
Thus, it is rational to consider the behavior of emitters in a quantum-mechanical way, and the field - in the classical
representation. Below, we will consider the behavior of quantum emitters, the wave functions of which do not overlap
and their interaction is determined only by the electromagnetic field. In this case, a semiclassical description model based
on the use of a density matrix is applicable. Neglecting relaxation processes, the equations for the components of the
density matrix can be written in the form

d 2i
E(paa = Pw) = _;[dbapab —d P lE, (D

d . i
Zpah +la)ah ab — _E(paa _pbb)dabE ] (2)

where the electric field is represented in the form E + E* = A(¢)-exp{—iwt} + A*(¢)-exp{iwt} , and the rapidly changing

—i@,t

polarization of one emitter has the formd,, p,, +d,, p,, . From p, = p e = p,,e " let us determine slowly
changing quantities for the polarization of the emitter p =d,, - p,, and d ,p,, =d*, p*, = p *also write down the

system of equations for the inversion of one emitter iz = (p,, — p,,) and p :

d 2i _ — 2 _ —
E(paa _pbb) = _;[dbapabA*_dubpbaA] = _?[pA*_p *A] > (3)

d _ i
Ep:_g(paa_pbb)|dba ‘2 4. 4

Using these representations, one can obtain equations for the semiclassical model. In the one-dimensional case, which we
restrict ourselves to, for perturbations of the electric field £ , polarization P , and population inversion slowly varying
with time £/ , describing the excitation of electromagnetic oscillations in a two-level active medium, whose equations can

be represented as (see, for example, [11, 12])

2 2 2
N e A (5)
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— iy — P=—2_ uF 6
8[2 7/12 at @ h /’l s ()
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where the frequency @ of the transition between the levels corresponds to the frequency of the field, we neglect the
relaxation of the inversion due to external causes, & is the decrement of absorption of the field in the medium, d , is
the matrix element of the dipole moment (more precisely, its projection onto the direction of the electric field),
u=n-(p, —p,) the difference in populations per unit volume, 0, and P, the relative populations of levels in absence of

a field, 7, is the width of the spectral line, 7 is the density of the dipoles of the active medium.

Here, the linewidth is inversely proportional to the lifetime of the states, which is due to relaxation processes. The
fields are represented as £ =[E(¢)-exp{—iwt}+ E*(¢)-exp{iot}]and P =[P(t)-exp{—iwt}+ P*(¢)-expliot}].
Wherein < E* >=2| E(¢)|° . The number of field quanta is then equal < E* > /4zhw =2 | E | /4zxhw = N . For slow
varying amplitudes, the equations
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L =ZEOP*(0)-E*(OPW), (10)
o
here we additionally took into account the line width };, .
From equation (6), by simple transformations, we find
ON i
— 420N =—-[P()E*(t)-P*(t)E(1)], (11)
ot h
where you can get the conservation law
ON 0
S iasN+ £~ (12)
ot 20t

DISSIPATIVE GENERATION MODE
We are interested in the case of a large level of radiation losses (®>1) in a resonator filled with an active substance.
We believe that the emitters do not interact with each other, but exchange energy only with the integral field of the

resonator. The increment of such dissipative instability is equal y = }73 /8, >>y,,, that is, it significantly exceeds the

natural line width, where the role of the nondissipative increment 7, =€,/ \/5 is actually taken over by the Rabi
frequency Q, =2|d,, [|E, |/, where< E > *=2|E, [’=[4rhwu,]"* . The equations that describe the radiation

process of a quantum source (occupying a region b the size of the radiation wavelength) take the form

oM

—=-N 13
37 , (13)
ON
CE-MN, (14)
or

whereM = u/ 1y, N = 4(5; /}75) “(N/p,), N=<E>" /4zhw - is the number of quanta,
o, = (_[C <E>? /4m)dS / j (< E >? /4r)-dV = c/ b is the effective decrement of the resonator field in the
s v

absence of an active medium, b is the size of the resonator. Along the length of the system b , as in [13,14], we arrange
the sectors

. J
Nj(f=0)=2-N(T=O)-Sm2{27r§+a}, (15)
moreover
1 S
N(@) =< N,(7) (16)
S A
Equations (13) - (14) for the sectors are:
oM, N
=-N,, 17
or / 17
ON,
62'/ =M;-N;, (18)
moreover
1 M
M(r) =<2 M, (7). (19)
j=1

Parameters: N(z =0) =1/3600, M(r =0)=M (zr =0)=1, S=100.
Figures 1 and 2 show the time dependence of the average number of quanta N and inversion M.
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Figure 1. Time dependence of the average number of quanta N. Figure 2. Time dependence of the mean inversion M.

Figure 3 shows the distribution of the inversion over the sectors Mj at different times: at the time of growth
(t=4.5), maximum (t = 6.55) and decrease (t = 10) of the number of quanta (see Fig. 1).
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Figure 3. Distribution of inversion by sectors M; at different points in time

SUPER RADIATION MODE
Previously, we considered the interaction of emitters with the field of a waveguide or resonator, and the emitters did
not directly affect each other. In the same section, we will consider the interaction of emitters only with each other in the
absence of an external resonator field. This interaction mode, with emerging self-synchronization of field generation
sources, can be considered a superradiance mode. The equation for the field of an individual radiator is

0’E  ,0°E s — o
—c =drw” -p-e"”" O6(z 20
6t2 6Z2 p ( 0)» ( )
where can we find the value
- 2r-0-M 1 _ ilz—z
Alzt) === S 3 Pz 1)
c s

where M =n,, -b is the total number of emitters, and 7, is the density of emitters per unit length.

From equations (1) - (3) we obtain a system of equations for the polarization and inversion of the j-th large particle-
emitter.
where can we find the value

d 2i _ _

Z(pm, —Pp) = ;[p *A-pA*], (22)
d _ i

E = _E(paa = Pw) | dy, |2 4, (23)

using the relations P, =P(z,,7), M, =M(z,,7),as wellas 1, = p,(r = 0),
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2 _ 2m-@-|d,, | - pty -1y b
z:fZ, U= M p:|dab|‘% ‘P, t=1/y, T, =&, n,-b=M, , where y = | b;z oM is the increment of
% c
the process, we write system (20) - (21) in the form
d % k
ZMj=—2-[Pj A, +PA*], (24)
d
O =MA, (25)
where for A; = A(Z,,7) the relation
A2 =SR2 0 ¢7 (26)

The last expression can be represented as A(Z,7) = |A(Z ,z')| e o(Z,7)is the phase of the field at point Z. It

should be borne in mind that for the dimensionless representation of the field we have divided by y7 / |d »a| - Then, for the

total amplitude of the electric field in this normalization, the expression E = 2|A(Z , T)| is valid.
It is important to note that the growth rate 7/:27r-a)-|d,m|2 Uy, N, -b/ hcin the semiclassical model of

superradiance corresponds to the growth rate y = 7, / 5, of dissipative instability.

For 4000 emitters distributed at the wavelength, at P, (7 =0) =P, exp(iy/; ) , where the polarization phases ¥, of the

emitters are random valuesy, < (0+27), P, =0.1, M(r=0)=1, I',, =0 ,we obtain the following results of the

numerical solution. Figure 4 shows the time dependences of the field amplitude on the left and right of the system and
the maximum inside the emitter and the average inversion of the system. Figure 5 shows the time dependence of the mean
inversion of the system.

E M
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Figure 4. Dependence of the field amplitude on time, Figure 5. Dependence of the average inversion of the system

1-max(E(Z,7)), 2-E(Z =0,7),3-E(Z = 1,7). M = %Z M(Z,,7) on time
J

As can be seen from Figures 4 and 5, energy is pumped from the system of emitters into the electromagnetic field.
The field has two approximately equal maxima at times t = 13.2 (E = 0.52) and t = 15.8 (E = 0.555). The first maximum
is on the right edge of the system (Z = 1), the second is on the left (Z = 0). When setting other random initial phases of
the polarization of the emitters, the field maximum of approximately the same magnitude and at approximately the same
time was observed only at one of the edges of the system.

From the initial moment to reaching the maximum, the formation of a field with a minimum in the middle of the
system is observed. In this case, there also occurs (mainly in the region of high fields) a decrease in the inversion and an
increase in the polarization modulus. The polarization phases are also synchronized. The polarizations of neighboring
emitters are rather quickly collected in a narrow band of angles. In the region of maximum fields, the polarization phases
of the emitters are also synchronized with the field phase. This leads to the fact that the difference between the phase of
the polarization of the emitter at a point and the phase of the field at this point is close to zero. Figure 6 shows the
distributions of some characteristics at the moment t = 15.8 (the second maximum of the field on the left edge)

Figure 6a) demonstrates a field dip in the middle of the system. In fig. 6b) shows the greatest decrease in inversion
at the right edge, where the first field maximum was formed; the decrease at the left edge occurs more slowly in
accordance with the slower formation of the field maximum in this region.

In the region of the field maximum, the polarization modulus is larger (Fig. 6¢) and the greatest synchronization of
the polarization phase and the field phase (Fig. 6d). Note that at the instant T = 13.2, in the region of the field maximum
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on the right edge, there was the greatest synchronization of the polarization phase and the field phase, and the inversion
decreased.
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Figure 6. Distribution along the length of the system of quantities
a) field modulus, b) emitter inversion, ¢) emitter polarization module, d) difference between the polarization phase of the emitter and
the field phase.

Further, the field falls rapidly along the edges of the system (faster on the right edge) and an area of relatively larger
field in the center is formed, although it does not reach its maximum values. Figure 7-8 shows the field and inversion
distribution at T = 30.
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Figure 7. Distribution of the field modulus along the length

Figure 8. Distribution of the inversion of emitters along the

of the system at t = 30. length of the system at T = 30.

CONCLUSIONS

The similarity of dissipative generation regimes and superradiance regimes for systems of excited quantum emitters
placed in an open cavity is shown.

In open systems, with a sufficiently high level of radiation from the ends of the system, both a dissipative excitation
mode of a waveguide or resonator field by non-interacting with each other emitters, and a superradiance mode of the
system, when there is no waveguide field, and each emitter participates in creating a sufficiently intense integral field, are
possible.

The dissipative generation mode is realized in the case of the existence of only a resonator field due to reflections
from the ends of the system. For this generation mode, the decrement of oscillations in the waveguide in the absence of
emitters turns out to be greater than the increment of the resulting instability of the system of emitters placed in the
resonator. The influence of the emitters on each other and the sum of their own fields are neglected. To describe the
process, the equations of the semiclassical theory based on the use of the density matrix are quite sufficient.

The superradiance mode can manifest itself in the case when there is no resonator or waveguide field. Then taking
into account the eigenfields of the oscillators becomes essential. To simulate the superradiance process, we use large
emitting particles, which can be described by equations for the density matrix. It is believed that the interaction of quantum
emitters in this case is due to electromagnetic fields under conditions when the overlap of their wave functions is
insignificant. When the emitters interact, an integral field is formed in the resonator, an increase in the intensity of which
leads to synchronization of the emitters into the cavity volume.

It is shown that the characteristic times of the development of the process, as well as the attainable amplitudes of the
excited fields for dissipative regimes of generation and regimes of superradiance of emitters filling an open cavity, are
practically the same. The asymmetric behavior of the field in the superradiance regime is associated with the choice of
the initial conditions. You can make sure that the field strength in the superradiance mode is expressed in terms of the
radiation intensity, that is, where, (see the notation in front of formula (13)).

Two values of the maxima in Fig. 4 correspond to values equal to 0.27 and 0.31, respectively. Thus, for the same
resonator, the increments of superradiance and dissipative instability are practically of the same order of magnitude, and
the intensities of the excited field turn out to be comparable. The saturation mechanism of instability regime is the decrease
of the inversion level and also the appearance of resonator regions where induced attenuation dominates [13,14].
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HAHNIBKJIAYACHI MOJIEJII JUCATTATABHOI'O PEXKUMY HECTIMKOCTI TA HAJIBUITPOMIHIOBAHHS
CHUCTEMU KBAHTOBUX BUITPOMIHIOBAYIB
Kyxain B.M., Jlazypuk B.T., Iloksionckuii €.B.
Xapxiecvkuil Hayionanvrutl ynieepcumem imeni B.H. Kapaszina, Xapxis, Ykpaina
Csoboou na. 4, Xapxie, Yrpaina, 61022

Y po6oTi 0OTOBOPIOETHCS MOAIOHICTh TUCUITATHBHUX PEKUMIB TeHEpalii Ta pe)KHMMiB HaABUIIPOMIHIOBAHHS JJIsI CHCTEM 30y IKEHUX
KBaHTOBUX BHITPOMIiHIOBaiB, MOMIIIEHNX Y BIIKPUTHIA pe3oHATOp. Y pa3i iCHyBaHHS Pe30HATOPHOTO TOJIS 32 PaXyHOK BiIOWUTTS BiX
TOPLIB CHCTEMHU 3BHYAMHO peali3yeThcsi NUCHIATHBHUII pexuM reHepauii. IIpu HbOMy IEKPEMEHT KOJHMBAaHb y XBHIICBOJI HPH
BiZICyTHOCTI BHIIPOMIHIOBAUiB BHSIBIISIETHCS OijIbIIE IHKPEMEHTa BHHUKAIOYOI HECTIMKOCTI CHCTEMU BHIIPOMIHIOBAUiB, MOMIIIEHOI B
pe3onarop. [Ipu onuci bOro pexxuMy BILUTMB BUIIPOMIHIOBaUiB OZIMH HA OJHOTO i CyMa IX BIaCHUX HOJIiB HeXTyeThes. [Tone pe3onaropa
3MyIIy€ OCHMISITOPH BHIIPOMIHIOBAaTH 200 IOTJIMHATH KBAaHTH CHHXPOHHO 3 HUM, B 3QJISKHOCTI BiJl JIOKaJBbHOTO 3HA4YCHHs iHBepCil
3acenieHOCTi. ['eHepauisi HaOyBae ci1ab0 OCLMJIITOPHUI XapakTep 4Yepe3 HECHHXPOHHY 3MiHY iHBepCii 3aceneHOCTi CHCTeMH
BUIPOMIHIOIOUHUX AUTIONIB (HyTawii), [0 MAIOTh OCHOBHUII 1 30y KeHuit piBHI eHeprii. [1Jist Onucy HpoIecy KoM 0CTaTHHO PIBHIHB
HaMIBKJIACHYHOI Teopii, 3aCHOBAHOT Ha BUKOPUCTAHHI MaTPHIIl MIIJIBHOCTI. Y pa3i, KOJIX pe30HATOPHE a00 XBUIICBIIHE TOJIE BiICYTHE,
BpaxyBaHHs BIACHUX MOJIB OCIWIIATOPIB CTa€ icTOTHUM. J{JIs1 MOZIENIOBaHHS MPOIIECY HAABHIIPOMIHIOBAHHS 3aCTOCOBYIOTHCS BEJTUKI
YaCTKHU-BHIIPOMIHIOBAUi, IS OIHCY SIKUX CIiJ CKOPUCTATHCS PIBHSAHHAMHU Ui MaTpumi minbHocTi. [lokaszano, mo B3aemomnist
KBaHTOBHX BHIIPOMiHIOBayiB B IIbOMY BHITaKy 00YMOBJICHA CICKTPOMArHITHUMH IOJISIMH B YMOBaX, KOJIM MEPEKPUTTS X XBUIILOBHX
¢yHKuidi HecyTTeBo. OTpHMaHi pPIBHSHHS, IO JO3BOJLSIIOTH PO3MITHYTH Ipoliec B3aemonil BumpoMiHioBauiB. [Ipm B3aemonmii
BUIIPOMIHIOBAaYiB B PEe30HATOpPi (OPMYETHCS IHTErpajbHE I0JIe, 3POCTaHHS IHTEHCHBHOCTI SIKOTO NPHU3BOJHUTH JIO CHHXPOHI3aLlil
BUMpOMiHIOBaYiB. [loka3aHO IO XapaKTepHi 4Yach PO3BHUTKY IPOLECY, @ TAKOX JOCSKHI aMIUNITyAd 30y/KEHHX IOJIB s
JUCHIIATHBHUAX PEXUMIB TeHepallii Ta pekMMiB HaIBUIPOMIHIOBaHHS BUIIPOMIHIOBAUiB, IO 3alIOBHIOIOTH BiIKPUTHI pe30HATOP,
BUSIBJISIIOTBCS TOPIBHIOBAHHMH.

KJIFOYOBI CJIOBA: mucunaTtvBHI pe:KUMH TeHepallii, HaJBUIPOMiHIOBaHHS, BIIKPUTHI pE30HATOD





