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A.M.Ermolaev, N.V.Ulyanov

LANDAU-SILIN SPIN WAVES IN CONDUCTORS WITH IMPURITY
STATES

Theoretical investigation results of spin waves properties in nonmagnetic conductors

and heterostructures with 2D electron gas in presence of impurity atoms be able to localize

electrons are listed in monograph. The effect of quasi-local and magnetoimpurity states of

electrons on dynamic spin susceptibility of electron gas, on spectrum and damping of spin

waves are considered. New branches due to electron impurity states in spin wave spectrum

are predicted. Methods of diagnostics of these waves in experiments with slow neutrons are

proposed.
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I N T R O D U C T I O N

Impurity atoms in a conductor exert a complicated influence on quasi-particle energy

spectrum. They cause shift and spread of energy zones as well as state density rearrangement

accompanied by appearance of both local and quasi-local levels.

A local state concept in non-ideal crystalline lattice oscillation spectrum has been

suggested by I.M.Lifshits [1] in 1940s. These investigations were continued in the Kagan and

Iosilevskii [2, 3] and Brout and Visscher [4] articles in which impurity atom quasi-local

oscillations in lattice was predicted. A theory of other quasi-particles electrons and magnons

was been elaborated at the same time.

However, despite electron local states in semiconductors [5] were known long time ago, a

quasi-local state concept in impurity conductors was given an intensive development during

last decades (see articles [6-9] as well in [10-14]).

These works demonstrate that electron impurity levels r in an insulated inclusion field

can occur in a continuous spectrum region of assembled carriers. Being in resonance with

zone states each of these levels splits into two sublevels which in their turn split as well and

so on. This process is accompanied by appearance of a quasi-local level finite width . One

can consider that an electron is captured by an impurity for some time / ( - quantum

constant) and then it is emitted. On a collision theory view point [15-17] such states

correspond to complex poles ir of scattering amplitude. These poles are placed on a non-

physical sheet of a Riemannian surface. Such states result into a sharp change of de Broglie

wave phase on (those waves are scattering by an impurity center), and scattering cross-

section increase in 0/ r times ( - electron wave length, 0r - scattering center radius) when

electron energy passes through the resonance value r [15].

Though such resonances were known in quantum physics long ago [15] their role in solid

state physics has become clear quite recently.

The situation changes in a magnetic field. Special electron bound states appear which are

caused by influence of an attraction impurity and magnetic field on particle. The idea of

magnetic localization of carriers at insulated impurity atoms goes back to works of

V.G.Skobov [18] and Ju.A.Bychkov [19]. It is stated there that Landau quantization leads to

proper quasi-local states. Magnetoimpurity state physics was developed in the works [20-22].

A theory of spin waves in ferromagnetics and antiferromagnetics has been thoroughly

elaborated [23]. Less attention was paid to spin waves in nonferromagnetic metals in
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monographic literature. Here we deal with resonance electron state influence in a field of

impurity atoms on properties of these waves.

Resonance states of electrons influence considerably on properties of spin waves in

nonferromagnetic metals in a magnetic field. L.D.Landau [34] pointed out the possibility of

such wave propagation without magnetic field and V.P.Silin [24] pointed out the possibility

of such wave propagation in a magnetic field. They were recorded experimentally [25, 26].

A cause for spin wave appearance in nonferromagnetic metals in a magnetic field is an

exchange interaction of assembled carriers [27-31]. The waves described in the works [28, 29]

exist due to  spin resonance of conductivity electrons [32] which form degenerated Fermi-

liquid [28-31, 33-36]. Other resonances lead to new branches of collective excitation

spectrum of metal spin system. For example, near frequencies of electron resonance

transitions between spin split magnetoimpurity levels and Landau levels there exist slightly

damped spin magnetization oscillations called magnetoimpurity spin waves [37]. They are

analogous to magnetoimpurity electromagnetic waves [38-41]. A physical cause for existence

of these waves is localization of electrons on insulated impurity atoms stimulated by a

magnetic field. The localization attenuates dissipation processes and leads to a possibility of

propagation of new electromagnetic and spin waves which are absent in pure samples.

The waves of this type exist also in the case when electron localization is due to just

impurity at

prediction of such spin waves, studying their properties and characteristics as well as

consideration of the experimental investigation methods are an important problem of solid

state physics. 

-local states of electrons on impurity

atoms in nonferromagnetic metals influence characteristics of spin waves in a magnetic field.

lowing problems: with the help of the

contributions in components of a tensor of dynamic spin susceptibility of electrons with a

square isotropic and anisotropic dispersion law, to predict new branches of spin wave

spectrum in nonferromagnetic metals with quasi-local states of electrons in a magnetic field,

to consider neutron magnetic scattering on these waves as a method of experimental detection

of new types of spin waves. 

The components of a tensor of dynamic spin susceptibility of electrons of conductivity in

nonferromagnetic metals with quasi-local states of carriers on impurity atoms in a magnetic

field were calculated in the course of this work. Those components contain new resonance
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contributions induced by electron transitions between quasi-local levels and Landau levels,

the latter caused by variable magnetic field. New resonance contributions to components of a

tensor of dynamic spin susceptibility of normal metals with quasi-local states of electrons

whose Fermi-surface resembles a revolution ellipsoid were determined. These contributions

depend on an angle between a direction of a tense vector of magnetic field in which the metal

is placed and an axis of an ellipsoid revolution. New branches in a transversal spin wave

spectrum were predicted while examining the processes of wave propagation in

nonferromagnetic metals with quasi-local states of electrons on impurity atoms in a magnetic

field. Transparency bands of these waves lie close to frequencies of resonance electron

transitions between quasi-local levels and Landau levels accompanied by a spin flip. New

type wave characteristics such as polarization, spectrum, damping decrement were calculated

for the first time. An influence of quasi-local electron states on a spectrum and damping of

quantum spin waves in nonferromagnetic metals in a magnetic field was investigated for the

first time. It was shown that in this case a spin wave spectrum reorganization takes place in a

region of intersection of spin wave dispersion curve with the frequency of resonance

transitions of electrons between quasi-local levels and Landau levels accompanied by a spin

flip. New branches of quantum spin waves appear in transparency windows.

A spectrum and damping decrement of these waves were determined. New resonance

features were discovered in an energy spectrum of inelastic neutron magnetic scattering on

spin waves in normal metals with quasi-local states of electrons in a magnetic field. A

differential cross-section of magnetic scattering of neutrons with an excitation of spin waves

of a new type was computed for the first time.

The results obtained broaden the notion about collective spin excitations in

nonferromagnetic metals with quasi-local states of electrons on impurity atoms in a magnetic

field and contribute into a development of a theory of spin waves in solids. A practical value

of this work is assessed by a possibility of use of statements which were developed in it about

new spectrum branches of spin waves which propagate in nonferromagnetic metals with

elaboration of principles of creating new functional materials with definite properties for solid

state microelectronics.

We express our gratitude to N.V.Gleizer, G.I. Rashba, A.D. Rudnev and A.D. Serdjuk for a

discussion of the results used in this monograph, to V.V.Ulyanov for stimuli in work, to

and also to Lyudmila

Khristenko for fruitful collaboration.
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CHAPTER I. SPIN WAVES IN A FERMI-LIQUID OF NONFERROMAGNETIC METALS

AND IMPURITY STATES OF ELECTRONS

1.1. Spin waves in a Fermi-liquid of nonferromagnetic metals

In a nonferromagnetic metal spin waves can propagate due to exchange interaction of

conductivity electrons. These waves were predicted by V.P.Silin [24]. Studying the spin

waves is carried out on a basis of a kinetic equation for a vector spin density of electrons [29,

31]

))(][( 2
0f

p
Hv

c

e

r
v

t

col
2

0 )(
2

t
f

H .                            (1.1)

Here H - magnetic field directed along z axis, - a little non-equilibrium addition to a

spin density ( H ), p and v - momentum and velocity of electron, )(0f - Fermi-

function of  distribution, - effective magnetic moment of a quasi-particle in a degenerated

electron liquid,

),,(),(
)2( 32 trppp

pd
H ,                                   (1.2)

- magnetic moment of electron, H - variable magnetic induction, - correlative

function depending on an angle between p and p vectors lying on the Fermi sphere, r and

t - radius-vector and time, e - the charge of electron, c - velocity of light, - the quantum

If one neglects the collision integral in the right part of (1.1) than for excitations of

)](exp[ trqi type this expression gets equal

0)(
2

))(( 22 gHgvqigi . (1.3)  

Here q and - a wave vector and frequency of excitation, - an angle in ),( yx plane,

- cyclotron frequency and g function  is  defined by  an equation

),(0 g
f

,                                                              (1.4)
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where
mn

mnmn Yag
,

,, ),(),( - g function expansion in series over spherical harmonics

mnY , . Neglecting space dispersion ( 0q ) and a wave magnetic field ( 0H ) in the kinetic

zg and yx iggg components:

0)( 2zzz ggi ,                                                 (1.5)

0)(~)( 22 giggi , (1.6)

where
H2~ .

For  the zg and g function

mn
mnmn Ybg

,
,, ),( .

Thus for z2 and 2 values with taking into account the formula (1.2) we obtain

mn
mnnmn YBb

,
,,2 ),( . Here nB - coefficients of an expansion of spin part of correlation

Landau function in series of Legendre polynomials [29-31]. Substituting these expressions in

the kinetic equations (1.5) and (1.6) we determine natural frequencies of longitudinal and

transversal oscillations of magnetization of the system:

)1)(~(

)1(

nnm

n
z
nm

Bm

Bm
(1.7)

With taking into account an expression for the effective magnetic moment of quasi-particles

)1/( 0B if 0n , m = 0 formula (1.7) gives

0000 /2)1(~ HB ,                                      (1.8)

where 0 - frequency of a spin resonance of conductivity electrons [32].

Let us consider a case of longitudinal propagation of spin waves ( Hq ) with a polarization

corresponding to g function. As this takes place, g

angle and,  therefore, an expression 002 gB is valid for the value of 2 , where 0g
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is obtained by integration of g value over all the directions: dOgg
4
1

0 . The kinetic

equation with taking into account spatial dispersion takes a form

1
00 )~cos)(~cos( FF qvqvBgg .                          (1.9)

Here Fv - Fermi velocity of an electron. Integrating (1.9) relation over the directions we

obtain the dispersion equation in a form

1
1

1
ln

2

1

0

0

0 ss

sss

B
, (1.10)

where
Fqv

s ,
Fqv

s
~

0 .

The dispersion equation (1.10) is real under those values of and q which lie beyond the

region bounded by straight lines Fqv~ , Fqv~ which define boundaries of a

region of one-particle excitations which are connected with a spin flip of an electron. In other

words, the dispersion curve of spin waves must lie outside the Stoner sector where the waves

experience the Landau damping.

At low values of q the logarithm in the equation (1.10) can be expanded in the Taylor

series. It will give the following dispersion law of the spin waves:

)~3
1)(1(~

2
0

22

0 B
qv

B F .                                    (1.11)

0B value in metals is negative [28, 31]. The dispersion curve (1.11) is shown in Fig. 1. Notice

that the formula (1.8) leads to a spin wave limit frequency equal to the frequency of the spin

resonance.

The damping of the waves is defined by the collision integral in the right part of the

equation (1.1). In a case of low temperatures, which are considered by the author of the [29],

the only collisions of  electrons with    impurities are sufficient. Therewith one makes a

distinction between collisions with a spin flip which change the magnetization and collisions

with a momentum  change not changing the magnetization. The collision integral is

correspondingly written as [29]
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Fig. 1. The dispersion curve (1.11) for

the spin waves of Silin ( 00B ) [30]. 
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Here 0 and )( characterize a momentum relaxation of electrons while - spin flip time.

Let us use the expansion [29]

0

)(cos)12(
1

)(

1

l
l

l

Pl ,

where

l
l

l

ll z
dz

d

l
zP )1(

!2

1
)( 2   

are Legendre polynomials. A frequency of electron collisions is inversely proportional to

relaxation time. In the vicinity of the spin resonance frequency of conductivity electrons

lfree , where free is time of  a free path of an electron. Experimentally the spin

waves with the spectrum (1.11) were detected in alkaline metals by Schultz and Dunifer [25]. 

At rather high temperatures or under reasonably high frequency of electron collisions the

following physical pattern takes place in their experiments [25]. If penetrated into a metal

electromagnetic field tense to damp sharply in a small region of a skin layer where it directs

spin magnetic moments of electrons. Then electrons with a directed magnetic moment diffuse
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from the skin layer into a metal depth. Since spin flip time is rather big ( 610 s)

magnetization caused by diffusing electrons diffuses in a metal depth at lengths which are

much bigger then a depth of skin layer. Such a phenomenon occurs in a small vicinity of the

spin resonance frequency. The width of a region of metal film selective transparency is

determined by spin flip time [32, 36].

With temperature reduction electron momentum relaxation time increases and diffusion

coefficient firstly is getting depended on a frequency at first and secondly it becomes pure

imaginary in a limit. The latter leads to a rising possibility of propagation of

magnetization waves (the spin waves) with dispersion law (1.11) instead of magnetization

diffusion. As a result transparency of metal films appears not only with spin resonance

frequency but also in a neighborhood of such a frequency on spin wave frequencies.

Experiments [25] gave a possibility to assess the values of parameters nB which are

constituent the expressions (1.7). In a case of  sodium it turned out [31] that

03,0215,00B .

Transparency windows within which a collisionless damping of transversal spin waves is

absent appear in a quantizing magnetic field in a Stoner sector. New branches of so called

quantum spin waves can locate in those windows. Their spectrum is linear in a long

wavelength approximation and damping is determined by electron collisions [42].  

1.2. Quasi-local and magnetoimpurity states of electrons

Let us consider a conductor with one group of carriers with a dispersion law mpp 2/)( 2

(m effective mass of an electron, p - momentum),   containing iN impurity atoms

randomly distributed over N lattice  points.

NNi / little and take linear approximation over

this parameter. 

Let us mark potential energy of a-th electron in the field of j-th impurity center )( ja rrv .

Here r with or without a corresponding index is a radius-vector. Density of impurity atoms is

equal to

)(ri =
iN

j
jrr

1

)( .                                                            (1.12)

Its Fourier component is
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j
q

rqirqi
i

jrrd )(3 ,                                             (1.13)

where q is a wave vector of a plane wave. Hamiltonian of electron-impurity interaction has a

form
ja

ja rrv )( and Fourier component of the function )(rv is equal to

rqi
q rrvdv )(3 .                                                (1.14)

H with a vector

potential in Landau gauge )0,,0( HxA . Then suitable quantum numbers of a electron state

in the magnetic field are orbital quantum numbers ),,( zy ppn ( ,2,1,0n ) and a spin

quantum number 1 as it follows from [15]. 

Hamiltonian of electrons in the field of impurities and in the magnetic field in a secondary

quantization representation has a form

21

21

21
aaqIv

V
aaH

q
qq )(

1
,                                (1.15)

where is an electron energy in the state with a ket vector ,        a and a are

operators of secondary quantization, V is the volume of the sample, )(
21

qI = 21
rqie are

matrix elements of plane wave in the Landau basis }{ [43]. Orthonormalization of spin

wave functions:
2121 is taken into account.

-particle temperature function of electrons [44, 45]:

)}0()({)( aaTG ,                                           (1.16)

where ( TkB/1 , Bk is Boltzmann constant, T is temperature),

HH /}{... - averaging over Gibbs large canonical ensemble ( NHH ,

- chemical potential, N - operator of electron number), T - symbol of a chronological

product of operators, HH aa )0()( - a Matsubara operator. Symbol includes

averaging over positions of impurity atoms as well. 

)( siG ( )12( ss ,

,1,0s ) of this function in the Landau basis with a scattering operator:

)()()()()( )0()0()0(
sssss iGiTiGiGiG ,                            (1.17)
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where )/(1)()0(
ss iiG is electron Green function in a pure sample ( 0qv ),

, )( siT is a Matsubara operator of scattering electrons by impurities. The last

one satisfies a Lippmann-Schwinger equation which has a form in the Landau basis

1

111

2221

21

11

1

1

11

).()(

)()(

)()(

)0(

)0()0(

)0(

ss

ss

ss

iTViGV

ViGViGV

ViGVViT

(1.18)

Here
1

V is matrix elements of the Hamiltonian of electron-impurity interaction. In the

averaging [45] of its terms. Let us point out that in our case averaging concerns T operator

or more precisely it concerns the products of Fourier-densities
nqq1

which depend on

coordinates of the impurity centers.

After averaging over the configurations of impurities

)()( ss iGiG ,

where

1

)()( sss iiiG (1.19)

and )( si is Matsubara self-energy part.

A series for G can be represented in a diagram form [45]:

)( siG function is connected with a diagonal element of averaging Matsubara operator of

scattering by an equation
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)()()()()( )0()0()0(
sssss iGiTiGiGiG .                              (1.21)

Let us leave only terms which are proportional to the iN for T . They descript impurity

scattering of electrons by centers which act independently:

If an impurity is short-range, i.e. 0vvq , we obtain:

)(1

/
)(

)0(0

0

s

i
s

iG
V
v

VvN
iT (1.23)  

(a sum of geometric progression). In particular, for -potential

)()( 0 rvrv (1.24)

we obtain

0
3 )( verrvdv rqi

q .                                                    (1.25)

Having Green temperature function G we may obtain retarded G and advanced G Green

functions by changing si to 0i :

)(),(),(),(
2)0()0( TGGG , (1.26)

where

)}()({1
)(

0

0

iFv
vn

T i ,                                                (1.27)

1)0( )0(),( iG ,                                                 (1.28)

),(
1

Re)( )0(G
V

F ; (1.29)

)(
1

)(
V

(1.30)

is state density (per volume unit) of electrons with the given spin orientation in a magnetic

field, VNn ii / is impurity atom concentration. The function (1.29) is a Hilbert transform of

state density. 

Poles of the function (1.27) define locations and widths of impurity (local and quasi-local)

electron energy levels. The local states correspond to roots of equation

0)(1 0Fv , (1.31)
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lying in a region where 0 . Broadening a local level is absent in the considered case. In

0 ) quasi-local states are solutions. They

have finite width which is in inverse proportion to the life time of electron near the impurity

[10]. 

In a general case the root r of this equation is lost in a continuous spectrum of positive

energies. However, in some cases (low state density )( in the neighborhood  of the point

r , big value of 0v ) the state which is about to be bound exists and has positive energy [6-

9]. In a resonance way this state is combined with the states of a continuous spectrum (these

states superimpose on it) with the same energy and splits into two states with close energies.

Both of these states resonate in their turn with continuum states (which coincide with them in

energy) and split again and so on. This process leads to some width of quasi-local level.

Electrons may be considered to be captured for some time ~ / at a quasi-local level and

then they are emitted in a random direction. Wave functions making a contribution in such

states are concentrated near the impurity and form  almost a local state. Let us write a spectral

representation of average Green function (1.26):

d
i

G
0

),(
),( , (1.32)

where

),(Im
1

),( G (1.33)

is spectral density. For electrons in a magnetic field

)(),()0( , (1.34)

where , .

Knowing the spectral density )( of electron average Green function both in a magnetic

field and a field of impurities one can determine density of states

),(
1

)(
V

g .                                                       (1.35)
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Electron state density only in a magnetic field is equal to (1.30). Since the electron energy

yp and
yp c

HeL

2
1

2

is a degeneracy order of the level
znp [15], 

znpc

HLe

2

2

( e is a value of electron charge, L is a dimension of a sample). Thus

0
0

2

2 22
)

2
1

(
)2(

)(
n

z
z H

g

m

p
ndp

c

He
,                       (1.36)

where
mc

He
is cyclotron   frequency, g is   g-factor, 0 is Bohr magneton. From

here we obtain

)(

0
0

222/3

2/3

2
)

2
1

(

1
2

)(
n

n H
g

n

m
,

where )(n is a maximal value of the n under which the radicand is not negative.

In linear approximation over in

0 ,                                                                   (1.37)

where

)(Im),(
1

),(
2)0( TG . (1.38)

Near the impurity level r (a root of the equation (1.31)) impurity addition to the spectral

density has a form

222 )(
1

)(
1

)(
),(

rrr

i

F
n

,                                 (1.39)

where ddFF /)( and

)(
)(

r

r

F
(1.40)

is the width of quasi-local level. In the next chapter it will be shown that a feature of the

function (1.39) at r ffect the properties of new branches in a spin wave

spectrum in a degenerated electron liquid. Their characteristics are connected with a sharp

peak of the function (1.39) at r . 

A contribution to the density of states near the r is obtained by summarizing the

expression (1.39) over :
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22)(
1

)(
r

i

V
N

g .                                                 (1.41)

Near the local level l ( 0 ) we find

)()( ling .                                                         (1.42)

The function )(F is connected with the by a dispersion relation

)(
)( dF , (1.43)

where the integral has a principal value sense. This function is equal to

n n

m
F

1
2

)( 222/3

2/3

,                                                 (1.44)

where

H
g

nn 02
)

2
1

(

are Landau levels.

The sum incoming into the (1.44) diverges at large n this is connected with using the -

potential. The means of eliminating this divergence were discussed in articles [19, 46, 47]. 

If a distance from an impurity level to a Landau level is small compared to the we

can leave only singular item

n

m 1
2 222/3

2/3

  

in the
n

. Substituting this expression in the equation (1.31) at 00v we obtain:

422

22
0

2

8 c
Hmve

(1.45)

is a distance between a Landau level and an impurity level splitted off from it. 

From the expression (1.45) it is obvious that the impurity states mentioned here are due to

combined action of both an attraction impurity ( 00v ) and a magnetic field on an electron.

For this reason they are called magnetoimpurity states [21, 22, 39, 48]. Proper quasi-local

levels [10] which are not connected with a magnetic field can be present in the spectrum of

electrons in addition to these states. They correspond to complex poles of scattering operator

ir , where r are locations of resonances, are their widths. We will assume that

only one (spin-splitted) resonance exists. In the next chapter we will consider its influence

on a dynamic spin susceptibility of metals.
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CHAPTER II. TENSOR OF DYNAMIC SPIN SUSCEPTIBILITY OF METALS WITH

QUASI-LOCAL STATES OF ELECTRONS IN A MAGNETIC FIELD

2.1. Dynamic spin susceptibility of electrons

A reaction of a system on a weak variable magnetic field is characterised by a tensor of

generalized magnetic susceptibility ),(q depending on a wave vector q and a frequency

of the field. This tensor plays a fundamental role in the theory of magnetism. It defines a

spectrum and damping of magnetic excitations of a system, a spectrum of magnetization

thermal fluctuations, a cross-section of neutron magnetic scattering in a magnetics and other

values. Let us consider conductivity electron response of paramagnetic metal to a variable

magnetic field ),( trH . The latter induces both an orbital and a spin magnetization. Let us

take just calculation of dynamic spin susceptibility. Let us use a method of Green functions

for this purpose.

2.1.1. Operator of spin magnetization

Hamiltonian of interaction between spin magnetic moments of conductivity electrons and

the variable magnetic field has a form:

),()()( 3 trHrMrdtV ,                                                      (2.1)  

where )(rM is an operator of spin magnetization. Integration is carried out over the volume

of a conductor. It is known that

a
aa rrrM )()( 0 ,                                                   (2.2)

where ar is a radius-vector of a -th electron, 0 is Bohr magneton, are Pauli matrices

[15]. Further we will need a spatial Fourier component of the operator (2.2)

a

rqi
a

aeqM )( 0 .                                                       (2.3)

In a representation of secondary quantization the additive operator (2.3) has a form:

21

2121
)()(

)(0
k

kqk
aaqM ,                                           (2.4)



20

where
k

a and
k

a are operators of destruction and creation of electrons with wave vector k

and spin quantum number 1,
21

)( are matrix elements of -th Pauli matrix.

2.1.2. Dynamic spin susceptibility

It is known from electrodynamics that in linear approximation over the weak field H -th

component of the tensor of electron spin magnetization in a point r in the moment t equals

to

t

tdrdtrM 3),(

),(),( trHttrr .                                              (2.5)

Let us suppose that the medium is homogeneous and stationary so the tensor of

susceptibility depends only on differences of spatial )( rr and time )( tt

coordinates. Finite upper limit in the integral over time in (2.5) reflects an existence of

causality principle, i. e. the fact that the magnetization in the moment t is defined by the

magnetic field only in earlier moments of time.

The Fourier transformation (2.5) leads to linear relations connecting spatial-time Fourier

components of values incoming in the (2.5):

),(),(),( qHqqM .                                             (2.6)

Dependence on q is called spatial dispersion of susceptibility and a dependence on is

time dispersion.

[49]. Let us

enumerate them. 

A conse

inversion operation are Onsager relations:

),(),( qq .                                                   (2.7)

An expression of causality principle is Kramers-Kronig dispersion relations binding real and 

imaginary parts of susceptibility:

),(Im1
),(),(Re

q
dqq ,
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),(),(Re
1

),(Im qq
d

q .                             (2.8)

A connection between susceptibility and thermal fluctuations of magnetization is a content

of fluctuation-dissipation theorem:

S

ti qMtqMdte )(),(

),(Im
2

qVcth S .                                                       (2.9)

Here

tH
i

MtH
i

tM expexp)(

is an operator of magnetization in Heisenberg representation, H is Hamiltonian of electrons

(without the (2.1)), )(
2
1

abbaba is a symmetrized product of operators, is inverse

temperature, V is a volume of a system. The corner brackets symbolize averaging over Gibbs

large canonical ensemble. A symmetrical part of the tensor is marked by index S .

2.1.3. Kubo formula for susceptibility

In 1957 R.Kubo obtained a general expression for the tensor of qeneralized susceptibility

connecting this tensor with the correlation function obtained on magnetization operators. Let

us obtain the Kubo formula following the method given in works [23, 45, 50]. 

Spin magnetization of electron gas in variable magnetic field H

),(),( trMSptrM H ,                                              (2.10)

where is a statistical operator for large canonical ensemble; ),( trM H is a Heisenberg (with

taking into account the (2.1)) operator of magnetization connected with an operator M in

Dirac representation by a relation:

)()()()( 1 tStMtStMH ,                                            (2.11)

where

t

t tVtd
i

TtS )(exp)( (2.12)
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k
kkk

aaH ,                                                        (2.18)

where kk , k is a particle dispersion law.

eaa )( , eaa )( . 

Let us substitute these operators in the (2.17). Then for calculating K it is necessary to find

an average datum 4321 aaaa . Average data of this type are calculated with the help of Wick

theorem [45]:

324143214321 aaaaaaaaaaaa .                                    (2.19)

To a reader who is not familiar with the Wick theorem we propose to derive the (2.19) with

the help of commutation relations for the operators of secondary quantization.

Substitution of the (2.19) into the (2.17) leads to the following expression for the two

particle temperature Green function of free electrons:

)()()4,3;2,1( 4123213412 GGffK .                                (2.20)

Here

2112 )()( aaTG (2.21)

is one particle temperature Green function of electrons; 1
1 )1( 1ef is Fermi function, 12

is Kroneker symbol.

contribution  into  susceptibility.  Time Fourier  component  of  the second item equals to

S
nSS GG )()(

1
122314 ,                                            (2.22)

where 1
11 )()( SS iG is Fourier component of one particle temperature Green function

of free electrons,

)12( SS ;
n

n

2
(n is an integer number).

To calculate the sum in the (2.22) let us consider contour integral

C

nizzzdzf
i

1
1

1
2 )())((

2
1

,                                           (2.23)

in which )(zf is Fermi function and C is a circle of a large radius with a center in the point

0z . When the radius of the circle tends to infinity this integral tends to zero. On the other
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hand, according to Cauchy theorem it equals to a sum of residues of the integrand function in

poles. The latter has simple poles in points ni1 , 2 , Si , where Si are poles of Fermi

function with residues - 1 . As a result the expression (2.22) takes form:

1
12122314 )()()( niff .                                           (2.24)

2.1.5. Dynamic spin susceptibility of free electron gas

Knowing the Fourier component )( nK of the function (2.20) we can find the K . For this

)( nK from the discrete set of

points ni in z -plane into an upper half-plane and then to pass on a real axis [45]. In the

given case this procedure comes to change the ni in the (2.24) into 0i . Substituting an

expression obtained in this way in the (2.15) we obtain a dynamic spin susceptibility of free

electron gas:

,                                                                 (2.25)

where

k kqk

kqk

i

ff

V
q

0

)()(
2),(

2
0 .

In moving from the (2.15) to the (2.25) a well-known property of Pauli matrices [15] is

taken into account:
21

1221
2 .  

The expression (2.25) satisfies the Onsager relations and the dispersion relations (2.8). It is

useful to obtain high-temperature limit of the susceptibility (2.25) when Fermi function f

may be changed into Boltzmann one.

At zero temperature for a case mkk 2/22 (m effective mass of an electron) from the

(2.25) we find

;
1

1
ln1

1

1
ln1

8
1

2
1

Re

2

2

0

w

w
w

w

w
w

(2.26)
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2
2
0 )()()(),(

21

2121

2112
qI

V
q

10
22112211

iff . (2.31)

Here is an energy of an electron in the state , . In the case of  isotropic quadratic

dispersion law it equals to [15]:

H
m
k

n z
Cnkz 0

22

2
)

2
1

( , (2.32)  

where n is an oscillator quantum number, zk is a projection of an electron momentum onto

a magnetic field H , C is cyclotron frequency.

Neglecting a spatial dispersion of susceptibility i.e. putting 0q in the (2.31) we will

obtain:

21

2112
)()()( 2

0

0)( 210

21

iH

nn
,                                                      (2.33)

where f
V

n
1

is a concentration of electrons with a spin quantum number .

containing

)(
2
1

yx i in the (2.31) and the (2.33).

From the (2.33) for it we will obtain an expression

02
)(

0

112
0 iH

nn
.                                            (2.34)

Transversal components of susceptibility may be found with the help of relations

)()()()( yyxx ,

)()()()( iyxxy

which are easily obtainable from the (2.33) and the (2.34). 
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2.2. An influence of quasi-local electron states on dynamic spin susceptibility of metals in a

magnetic field

In this paragraph a dynamic spin susceptibility of conductivity electrons in metals with

quasi-local electron states in presence of quantizing magnetic field [51-56] is discussed.

Using the temperature Green function method described in the paragraphs 1.2 and 2.1 we

arrive to a  formula  for a tensor of  electron dynamic  spin susceptibility of

nonferromagnetic metal with quasi-local states of electrons

0
)()(

)()(

)(),(

21

21
12

21

2
2

12

21

2112

i
ff

ddqI
V

q ki
ik

12

21

21

(2.35)

This formula is analogous to the expression (2.31) for the 0 of a pure sample. 

With taking into account the expansion (1.37) the tensor of dynamic spin susceptibility will

be presented in the form of a sum

0 ,                                                                (2.36)

where 0 is the ideal contribution of electrons in impurityless sample,  is impurity

addition.

Taking into account the (1.34) and the (1.37) we obtain
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22
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22

2112

22
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ii

ffqId
V

q

kiki

ik

21

21

where f is Fermi function. From this we notice that ikRe is an even function of a

frequency and ikRe is an odd one. From this expression we find circular components of a

susceptibility tensor: 

yxxx i , 

2121

21221
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2
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22
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Summing over spin indexes is easily performed. Then

21

212

2

1

2

)()]()()[,(
2

),( qIffd
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q

21

2
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2
)0( 1

2
1 d

V
iH (2.37)

.)0()()]()([ 12

2122
iHqIff

Here
2

0 , 0 is a frequency of spin resonance, the indexes correspond to

1. We are interested in a contribution of electron impurity states in the that is why

in the formula (2.37) the can be taken in the form (1.39). As a result we obtain
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where

)(
1

rF
r (2.39)

is a residue of amplitude of electron impurity scattering in the pole ir . In the similar

way a contribution of impurity states in a longitudinal component of susceptibility can be

obtained:

21 1

21 222
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2 ii
ff .                    (2.40)
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In derivating these relations properties of symmetry of matrix elements )()(
1221

qIqI

were taken into account.

The contribution we are interested in is connected with integration in the neighborhood of

poles of the Lorentz functions incoming into the (2.38) and the (2.40). Let us note that a pole

of the second order in a point  r

not dangerous. The contribution of the poles of Lorentz function is found equal to

21 1

12 2

2
2

)(
)(

2
),(

r

i P
qIr

V
n

q

Hi

ff

r

r

2

2
)()(

(2.41)
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.                         (2.42)

It may be obtained immediately from the formula (2.37) if we take into account the

availability of poles of spectral density of Green function (these poles correspond to the quasi-

local states) and if we use Cauchy theorem about residues. The result derived in this way

contains characteristics of the quasi-local state i.e. location of the resonance in a complex

plane of energy ir and a residue r of amplitude of electron impurity scattering in the

pole. These values can be calculated if we give concrete expression to scattering potential and

a spectrum of electrons in the pure sample or they can be determined through comparison of

theory and experiment. 

Let us complete an expansion of the expressions (2.41) and (2.42) in a series over the q

powers in the long-wavelength approximation. With this aim let us use the relation [57]
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,

where
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2
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)(
!2

1
)( 2/

4/1

2

nnn He
n

h   

are eigenfunctions (normalized on the unit) of one-dimensional oscillator, Hecl / is a

magnetic length, 22
yx qqq ; 3LV is normalizing volume. If 1lqq an expansion

of the function (2.43) has a form [57]
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Taking into account these expansions and taking 2q -order terms we obtain:

n k nkr

nkr

i

z z

z

Hi

ff

r
l

L
V

n
q

2

)()(

2
2

),( 2

22

Hi

ff

r
z

z

nkr

nkr

2

)()(
(2.44)

4

2224

3

22

2 )(
/3

)(
/

)(
1

zzz nkr

zz

nkr

z

nkr

mqkmq
P

2

2

2

2

2

2

)(
)2/1(

)(2)(
1

2
zzz nkrnkrnkr

nqnqnq
,

n k
nkr

i
zz

z

z
ffr

l
L

V
n

q )()(
2

),( 2

22

zz nkrnkr ii
11

(2.45)



31

4

2224

3

22

2 )(
/3

)(
/

)(
1

zzz nkr

zz

nkr

z

nkr

mqkmq
P

2

2

2

2

2

2

)(
)2/1(

)(2)(
1

2
zzz nkrnkrnkr

nqnqnq
.

Let us use a rule of summarizing over Landau quantum numbers:
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where )(n is certain function and
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is density of electron states in n-th Landau zone. With taking into account this rule we obtain:
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Here )2/1(nn , ,...2,1,0n

In these formulae if one neglects the width of a quasi-local level ( 0 ) or applies them to

a local level and also if one uses a symbolic identity )(
1

0
1

xi
x

P
ix

the imaginary part

of susceptibility turns out to be equal to:
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where the discontinuous Heaviside function restricts a summarizing over that n wherein

the radicals are real.

From these formulae it is evident that dynamic spin susceptibility has root singularities on

frequencies of electron resonance transitions between quasi-local level and Landau levels.

These transitions are accompanied by spin-flip in the case of and in the

case of  and they are not accompanied by spin-flip in the case of zz . This is due to

features of electron state density on Landau levels taking part in the transitions.

The real part of susceptibility can be obtained from the formulae (2.46),  (2.47) or from the

dispersion relations (2.8) connecting the real and the imaginary parts. It is easy to make sure

that the real part of susceptibility also has root singularities on resonance frequencies.

The imaginary parts of susceptibility (2.48) and (2.49) determine energy absorbed by the

system of conductivity electrons [23, 58, 59], a differential cross-section of neutron scattering

on oscillations of spin magnetization in conductors with quasi-local states of electrons [60].

From the formula (2.48) it is seen that the first item in the right part of the Im has root

singularities on frequencies

)2(
1

Hnrrn (2.50)

of resonance electron transitions from Landau levels on a quasi-local level with the spin-flip

. The second item has a feature of the same type on frequencies

)2(
1

Hrnrn (2.51)

of  the trasitions from quasi-local level on Landau levels.

If frequency lies near one of the resonance frequencies obtained above, in the sum over

n incoming in susceptibility one can determine a resonance item and the rest of the sum can

be changed into an integral. It contributes to susceptibility in the absence of a magnetic field



34

[61]. This contribution leads to threshold effects in the absorption of electromagnetic waves

by electrons. These effects are accompanied by umklapps of electrons (localized on

impurities) in a conduction band. It is easy to make sure that in the resonance contribution in

susceptibility the finite width of the quasi-local level can be taken into account by the change

/i .                                                          (2.52)

As a result near resonance frequencies in the long-wavelength case the components of

susceptibility have a form listed in the appendix I. Here resonance frequencies of electron

transitions are marked rn . The values )(qan incoming in the (I.1)-(I.3) play the role of

oscillator forces of resonance transitions. They depend on temperature, strength of a magnetic

field, wave vector and are proportional to the concentration of impurity atoms. The

differences of Fermi functions incoming in these oscillator forces provide realization of the

Pauli principle.

The expressions (I.1)-(I.3) must be taken into account in the dispersion equation for a

spectrum of spin waves in a Fermi-liquid of metals. They have features of the  

2/1
2

i
Hnr (2.53)

type or

2/1
2

i
Hrn (2.54)

on frequencies of the transitions (2.50) and (2.51) respectively.

2.3. Dynamic spin susceptibility of metals with anisotropic Fermi surface

In the previous section the case when prime electron energy spectrum of a non-

ferromagnetic metal is isotropic and quadratic was considered. Here dynamic spin

susceptibility of electrons in metals whose Fermi surface has a form of revolution ellipsoid is

investigated. Results obtained in this paragraph were published in [62]. 

Let us consider an electron with anisotropic quadratic dispersion law:

ik
kiik ppmp 1

2
1

)( ,                                                        (2.55)
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where ip .

A solution of the Sc Hamiltonian

0H

we search in the form [62]
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The equation for the )(x has a form:
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Comparing it with an equation for the oscillator [15] we make sure that the Mmm / plays a

role of a mass of the oscillator, frequency of the oscillator equals to
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m
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l .

Substituting these values in a wave function of  a stationary state of the oscillator we will

find
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where lnA n
n !2 .
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An electron energy equals to 

M
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,

where
m
M

cm

He
C is cyclotron frequency [32]. 

Using (2.57) let us obtain matrix elements of a plane wave in the Landau basis:
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are generalized Laguerr polynomials,
yy kk , is Kronecker symbol.

Calculations analogous to those given in the previous paragraph lead to such a result (see

appendix II). 

From the (II.1) and (II.2) it is easy to find circular components of susceptibility near the

resonance frequencies.

For simplicity we neglect spatial dispersion of susceptibility and restrict to resonance

contributions due to transitions QL LL. To take into account a contribution of transitions

LL QL it is necessary to change the 1 in the
1

F and
1

into the 2 and the 2 into the

1 .

Thus, resonance contribution in components of dynamic spin susceptibility tensor of

electrons, whose Fermi surface has a form of revolution ellipsoid depends on an angle
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between a direction of a magnetic field in which a sample is placed and an axis of ellipsoid

revolution.

The formulae of appendix II can be used for calculation of characteristics of spin waves and

a cross-section of neutron magnetic scattering in metals with anisotropic Fermi surface.

2.4. A limit case H=0

As it was pointed out above spin susceptibility of metals dependent on frequency and a

wave vector defines a series of observable values: a differential cross-section of neutron

magnetic scattering by electrons, fluctuation spectrum of spin magnetization and others

[23,49,78]. Being sensitive to dynamics of conductivity electrons it experiences an influence

of impurity atoms which are present in the sample. The last ones not only restrict length of a

carrier free path but also change their energy spectrum.  

Under certain conditions in conductors impurity electron states (local and resonance) appear

[1,10] that must affect dynamic susceptibility and the values connected with it. As a result a

possibility to study impurity electron states appears in the experiments of neutron magnetic

scattering.

As a rule local electron states do not appear in metals [13]. Resonance states were

discovered in Al with impurity of Cu and with impurities of transition metals [6-9,14]. In

these systems impurity atoms lead to d -resonances, localized magnetic moments being

absent.

A contribution of resonance electron states on impurity atoms in the dynamic spin

susceptibility of simple metals in absence of magnetic field can be obtained from the formulae

(2.41) and (2.42) by a limiting transition  0H .  But we would like to revise a method of

calculation used in the paragraph 2.2 supposing 0H [61] from the beginning.

In this section simple metals with non-magnetic impurities are considered. An electron

dispersion law of matrix metal is supposed to be parabolic mk
k

2/2 where m and k are

effective mass and a momentum of an electron. In Al such approximation leads to the error

d 3%   [14]. In   the   proposed theory a  pole  part  of   electron

impurity potential [15]. Only characteristics of resonance states (energy and widths of

resonances, residues of scattering amplitude in poles) depend on it. In our consideration these

values are parameters which can be found by comparison with an experiment. On this reason
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here a particular form of scattering potential is not important. The only thing which is

important is that its intensity is sufficient for the resonance appearing. One can make a

scattering potential self-consistent after subjecting it to the rule of Friedel sums [6-9,14]. Pole

structure of scattering amplitude can be taken into account precisely approximating impurity

potential by a separable operator [10,17] 0u ( 0u is a constant characterizing intensity of

interaction, rr )( is arbitrary function) used in the theory of pseudopotential. This

potential can be used for both s resonance description and a description of resonances with

non-zero orbital moment. In the last case the function must not be invariant relatively to

rotations. Consideration of separable potential using for description of diluted alloy properties

is contained in [10]. We will calculate dynamic spin susceptibility in I.M.Lifshits model

[1,10]. In particular, this model was used for Pauli susceptibility calculation of simple metal

alloys with 3d-elements at low temperatures when local magnetic moments of impurity atoms

are absent [6-9]. It was used also for description of magnetic systems [12].

Dynamic spin susceptibility tensor ),(q of a conductor coincides with Fourier

component of a retarded Green function assembled on spin magnetization operators [23]. For

calculation of the last one let us introduce Green temperature function [47]. Writing down

magnetization operators in the secondary quantization representation and approximating

configuration average mean of two Green electron function product by the product of average

then we obtain

21

21221
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),(
1 nskG ,                                                           (2.58)

where   ),( skG is average one-particle temperature  Green function of electrons; are

Pauli matrices; 0 is Bohr magneton; n and s are Matsubara frequencies of bosons and

fermions; is spin quantum number; 1T is inverse temperature, 1Bk .

Function G incoming in (2.58) is connected with the transition operator R by a relation

[10] 000 RGGGG ( 0G is Green function of free electrons). In a case of small

concentration of impurity centers the full operator of transition R can be represented into a

sum of one-center operators. The last ones can be found precisely [10]. As a result we obtain

GGG 0 , where G is an addition to the Green function, which is linear over impurity

concentration.
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An approximation adapted here is equivalent to an account of a set of diagrams with one

cross which describe multiple scattering of electrons and holes by an impurity center in

electron lap for the (2.58). It means that the frequency and a wave number q of external

magnetic field satisfy a condition [45] 1Fqv . Here Fv is Fermi velocity; is time

of electron free path; q . In other words, q and denote a point ),(q on the

between the parabolas qFqv and axis q . In this region the conservation laws of

energy and momentum allow forming electron-hole pares by quantum of external field.

For calculation (2.58) it is convenient to use spectral representation of Green function [45]

allowing to express through spectral density. The last one coincides with imaginary  part of

retarded Green function. Substituting spectral expansion of G in (2.58), making summarizing

over Matsubara frequencies and analytical extension we obtain 0 , where ),(0 q

is spin susceptibility of pure conductor; is impurity addition. It consists of two items:

cl ( l is a contribution of localized electrons)

21
21221
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)( )]()([
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kd
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0
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1 ii
i

qk

k

) (2.59)  

is a contribution of transitions in continuous spectrum. Here ),(k is impurity

contribution to spectral density of Green function; )(f is Fermi function.

In isotropic paramagnetic the tensor is diagonal. It has both real and imaginary

parts. If 0q and 0 the imaginary part being odd function of frequency turns into zero

and the real part coincides with the Pauli susceptibility PPP
)0( where

)(2 0
2
0

)0(
FP is spin susceptibility of pure conductor ( )(0 F is dissolvent density of

states on Fermi level F ); P is impurity addition. If the resonance in the electron spectrum

is absent or its width is big in comparison with the width of  the Fermi distribution thermal

disassembly for strongly degenerated electrons we obtain )(2 2
0 FP where is

impurity addition to the state density. In the case of a sharp resonance ( FT ) an

additional item appears. It equals to
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ir 24
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2 22
0 .                                                     (2.60)  

Here in is density of impurity atoms; r is the resonance energy. It is the root of the equation

[1,10] 0)(1 0Fu getting into the region of continuous spectrum. The contribution (2.60)

is evident if r and F are located in a zone of the Fermi distribution disassembly.

Let us consider the imaginary part of susceptibility of isotropic paramagnetic connected

directly with the differential cross-section of neutron magnetic scattering by electrons [23]. In

the region of frequencies and wave vectors evolved 00 therefore the impurity part

dominates. If 1aq ( a is radius of scattering potential) a Fourier component of the function

)(r can be considered as a constant 0 . In this case one can neglect spatial dispersion of the

susceptibility.  As a result from the (2.59) we obtain

0

1
22

2
00

2
0 )()][(Im)[()( fDkd

num i

)()()](f ,                                               (2.61)

where )(D is resonance denominator occurring in the theory of quasi-local states [10]; is

Heaviside function, 2/1)2()( mk .

In the Born approximation over electron-impurity interaction at FT from the

(2.61) an expression

/)(4)( 2
0

2
0

2
0 iF nu , (2.62)

follows valid at 1.

In the case of the sharp resonance ( T ) under the integral sign in the (2.61) one can

suppose that

)())(()(Im 1
0

1
rrFuD , 

where derivative over energy in the point r is marked by the prime. As a result

21 rr :
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i
r ffk

F
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(2.63)

is contribution of electron transitions from a resonance level into the zone and

)]()()[()(
)(

)( 2

2
0

2
0

2 rrrr
r

i
r ffk

F
nm

(2.64)
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is contribution of zone electron transitions into the resonance level. The expressions (2.63)

and (2.64) are proportional to the zone state density and possess typical factors (in square

brackets) due to the Pauli principle. If the resonance level is located below the Fermi level

only the first item (2.63) remains. At rF it decreases according to 2/3 law. If then

Fr the second item (2.64) remains. It has threshold frequency r connected with the

transitions of zone bottom electrons into a resonance level. Near threshold 2r ~ 2/1)( r .

In both cases at 0T lower threshold rF exists due to the Pauli principle. Taking into

account thermal motion of electrons leads to disassembly of this red bound. Let us point out

that the maximum items (2.63) and (2.64) exist at the background of the smooth dependence

(2.62) due to potential scattering of electrons.

The expressions (2.63) and (2.64) can be checked in the experiments measuring neutron

magnetic scattering cross-section in Al with impurity atoms mentioned above. For checking

the  formula  (2.63)  one  should use diluted alloys of Al with those d3 -

which are located in Mendeleev periodic chart after the Chromium. They lead to the d -

resonance located below the Fermi level [6-9,14]. In alloys of Al with Ti and V the resonance

level is located above the Fermi boundary [6-9,14] which corresponds to the formula (2.64).

The method of inelastic neutron magnetic scattering was used for measuring dynamic spin

susceptibility of Ni above the Curie point [88]. Experimental data are listed at a fig. 3 in [88]. 

It is not inconceivable that evident non-monotony in distribution of experimental points in

interval )1,005,0( eV is connected with the effect of resonance state activation

descripted here.

Let us consider static case 0 . Since the imaginary part of the susceptibility turns into

zero in a point 0 we can deal with linear term of expansion over powers beyond Kohn

threshold where Fkq 2 . In the Born approximation at 0 , Fkq 2 , FT from

(2.59) we obtain

22
0

2
0

2
0 /)( qiF nu .                                            (2.65)

At presence of sharp resonance one should add a resonance contribution

T
ch

T
n rF

qF

i
Pr 24

1
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2 2
2

0

)0( (2.66)

to the smooth part (2.65) which is due to potential scattering of electrons.
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This expression differs from zero in the case where there is a possibility of thermal

excitation of resonance level ( rF T ). At 0T the expression (2.66) comes to a -

shaped splash in the point rF .

Let us list a final expression for the contribution into dynamic spin susceptibility of

-

)]()()[(
)(
)(

),(
2
0)0(

llg
lF

li
Pl ff

Fk
kn

q

12
2

m
qkl ,                                                       (2.67)

where l is energy of local state; 2/1)](2[)( gl mk ; lg is threshold frequency.

This expression differs from zero at  g ,  while near  the threshold l ~ 2/1)( g . If

0T then the threshold moves to a point   Fg .  With the increase of frequency the

expression (2.67) passes through the maximum and at g decreases proportionally to

2/3 . As electron local levels in metals are non-known, one should refer to experiments on

neutron magnetic scattering in semiconductors for examining the formula (2.67).
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CHAPTER III. SPIN WAVES IN NON-FERROMAGNETIC METALS WITH THE QUASI-

LOCAL ELECTRON STATES IN THE MAGNETIC FIELD

3.1. A new type of spin waves in metals with the quasi-local states of electrons

It is necessary to take into account the contributions (I.1)-(I.3) in the dispersion equation

for the transversal spin wave spectrum.  Let us consider spin waves with the right circular

listed at the works [51,53,55,63,65,66,69-72].

Let us take into account an electron-electron interaction in the random phase approximation

[73-76] as it was done in [37]. The Landau quantization in this approximation was taken into

account in [75,77,78] and the potential scattering of electrons by the impurity atoms (not

considering the quasi-local states) was in [79,80]. Dispersion equation for the waves near the

frequencies of resonance electron transitions from quasi-

(QL ) has a form [75]:

0),(),(
2

1 )()0(
2 qq

I n , (3.1)

where I is a constant of Fermi-liquid interaction [44]. 

At fig. 2 the scheme of these transitions is listed. Spin-splitted Landau levels are painted in

solid lines and the quasi-local level is dotted. The transitions QL LL on the resonance

frequencies (2.50) are shown by vertical arrows.

The last ones can be rewritten in such a form

nrn 00 , (3.2)

where 0 is the spin resonance frequency, ,...1,0n is the resonance number, is the

cyclotron frequency, 0 = rL the distance between the quasi-local level and the nearest

Landau  one L lied  above.  One should mean that mutual location of the quasi-local level
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r and the nearest Landau level L can be different (see fig. 2). In the case b) the resonance

Fig.2. Resonance transitions QL LL :

) scheme of transitions for the case rL ;

b) the case Lr .  

frequency equals to (3.2) in which it is necessary to suppose 00 where Lr0 .

Due to the Fermi function difference in (I.2,b) such transitions are possible if the Fermi

boundary F is located between the first and the final levels taking part in the transitions.

This difference equals to 1 if F lies far from the initial and the final levels (the width from

F to these levels must exceed the disassembly of Fermi step kT ). If the field H is reduced

some low-

i.e. the Pauli principle.

From the expression (2.31) with taking into account electron scattering in the case of

longitudinal propagation ( Hq ) of long-wavelength excitations when Fqv and relaxation

frequency 2 of transversal magnetization are small in comparison with 0 we obtain
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q F
P ,                            (3.3)

where P is Pauli susceptibility. The part with 2 is due to the potential electron scattering on

impurities and the other scatters. The Landau quantization in this form is not taken into

account since F .

Near the frequencies (3.2) the component (I.2,b) has the resonance. Let us write it in a form

2/1

/
)(),(

i
iqaq

rn

rn
nP ,                                         (3.4)

where is a half-width of quasi-local level. If one neglects spatial dispersion of the

susceptibility, the oscillator forces incoming in this expression will be equal to

)()(
)()(2 2/12 rnrr

rnFn

i
n ff

nr
a .                                (3.5)

Here nn 0 . 

The real part (3.4) is responsible for the dispersion of spin waves and the imaginary part

for their damping. The root singularities of the imaginary part of (3.4) at 0 , 0rn

reproduce the peculiarities of electron state   density   at   Landau   levels taking part in the

transitions. From the equations (2.8) it follows that the real part of susceptibility will have

the same features on the other side of the resonance. In the region rn the imaginary part

is big, i.e. strong damping of spin waves due to resonance transitions QL LL takes

place. The new branches of the spin wave spectrum can be formed only in the region rn

where their damping is small.

Substituting  (3.3) and (3.4) in the dispersion equation (3.1) we obtain

0

2

2

000

0

3
1

1 i
qvF

0

2/1
1

/ Bi
a

rn

rn
n ,                                               (3.6)

where FIgB0 is a parameter describing the Fermi-liquid interaction, Fg is the state density

at the Fermi boundary. It is known [28] that 10B . Neglecting the little values 2 and in

the (3.6) and assuming 0q we obtain the equation for the limit frequencies, i.e. proper

oscillation frequencies of spin magnetization with taking into account the quasi-local state:
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This equation can be written in the form

1
0000 )]()][1([ BBa

rn

rn
n .                                    (3.7)

From this it is evident that the solutions of this equation can exist in the regions 0 and

)1( 00 B .

Thus, new branches of spin waves can be formed both above the corner of the Stoner sector

0 and below the limit frequency of the Silin wave [28]. In the last case the transparency

band of the new spin waves lays on the spectrum of the Silin waves.

We solve the dispersion equation (3.6) in the region rn . Near the rn one can assume

rn everywhere except the root in the denominator:

0

2/1

2

2

0

0 1
/3

1
1

Bi
ai

qv

rn

rn
n

nn

Frn

n

,

2

2

2

0

0

0

2

3
1

1
1

/

nn

Frn

n

n

rn

rn

iqv
B

ai
.

Let us linearize the dispersion equation over the small imaginary additions which lead to the

spin wave damping:
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It is well seen that the solution of this equation has a form
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)()( qiq nn ,                                                                    (3.8)

where

2
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/
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nnrnn

qvb
baq (3.9)

is the dispersion law of the spin waves and
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is wave damping decrement. Here a designation

00

0

B

B
b

n

rn
n

is introduced.

In the long-wavelength limit with taking into account the item with 2q we obtain

rn

n
nn
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n
nnn ba

qv
baq 22

2

32
2 )(

3
2

)(2)( ,

where is the frequency of electron collisions accompanied by a momentum relaxation and

the part with 2
2q is omitted.

In the fig. 3 the new branch of the spin wave spectrum is shown at 0n . The branches with

,...2,1n are located at higher frequencies.

Fig.3. The dispersion curve (3.9) location at 0n relatively to the Stoner sector and the Silin

wave spectrum. 
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The relationship /)0(n to the first item in the right part of (3.10) equals to:

2
0

32
2 )(2

/
/)0(

rn

nnnn ba
.                                           (3.11)

The estimations listed below show that this expression is usually little in comparison with the

1. Presence of small values 2 and in the damping decrement (3.10) means that the spin

waves slightly damp in transparency bands ]),0([ rnn located between the resonance

frequencies and the proper oscillation frequencies.

The limit frequency )0(0 can be obtained directly from the equation (3.7):

2

000

000
00 1)0(

B

Ba
r

. 

The width of the transparency band for the waves with 0n equals to

2

000

000
0000 )0(

B

Ba
rr .

In the general case:

2)/( rnnnnrnn ba .                                                      (3.12)

The dispersion of these waves is normal. They will be slightly damped if the width of

transparency band (3.12) exceeds the damping decrement (3.10). If

2
032

2 )(2
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n
nn ba ,

this condition has a form

1
4 22

222

2
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rn
n

n nr
b .                                            (3.13)

With increasing n the widths (3.12) and the oscillator forces (3.5) decrease proportionally to

4n and 2/5n respectively. At
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the band width is compared to / and one could not resolve it. 

The condition (3.13) allows to define the minimal concentration of impurity starting with

which the width of n -th transparency band exceeds / :
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00min )(
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F
nn

i Br

B
n .                                     (3.15)

Dynamic spin susceptibility also has the root singularities at the frequencies of

resonance transitions between the Landau levels and the quasi-local level shown at 

fig. 4.

Fig. 4. Resonance transitions LL QL :

) transition scheme for the case Lr ;

b) the case Lr .
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It is well shown from this figure that the resonance frequencies are equal to

nrn 00 as in the previous case but now Lr0 and n is limited from

above by the number of the filled Landau levels. In this case the resonance part of

susceptibility and the oscillator force equal to

2/1

/
)(),(

i
iqaq

rn

rn
nP

and

)()(
)()(2 2/12 rrnr

rnFn

i
n ff

nr
a

respectively. Weak damping solution of the equation (3.1) exists now only at 0n if 00

( Lr but Lr ) and 000 B . This case is shown on the fig. 4, b. The dispersion

law of the spin waves in the vicinity of the frequency 000r has a form
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baq ,                                     (3.16)

and damping decrement is:
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Here

000

00
0 B

B
b r .

The transparency width for these waves is located between the central Stoner sector and the

branch of the quasi-classical Silin wave. Dispersion curve (3.16) is shown schematically on

the fig. 5. The dispersion of the wave is anomalous in contrast to (3.9). The width of the

transparency band is defined by the expression

2
000000 )/( rr ba .
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Fig.5. The location of the dispersion curve

(3.16) relatively to the Stoner sector

and the Silin wave spectrum. 

The quasi-local electron states in the absence of the magnetic field were discovered in

Bismuth with the impurities of IV and VI qroups of elements [81]. For example, the

impurities of Sn, Pb and Se, Te lead to the quasi-local levels located below and above the

Fermi boundary respectively. For the estimations we use the residue r calculated in the

model of Gauss separable potential [46,82]. Substituting in the formulae (3.2), (3.11)-(3.15)

the values 14108,4F erg, 14106,4r erg, 2910m g, 3
0 10/ , 1,00B ,

210in at. %, 6
2 10 s-1,  310H Oe,  we   obtain    12

0 105,1r s-1,

3
00 107,7/ r ,   7,8/0 , 4mn , 18min 109,1in sm-3,

6
0 107,1/)/)0(( .

Thus, in Bi with impurities of  Sn or Pb one can observe a few branches of the spin waves

with the spectrum (3.9), for example, in the experiments with slow neutrons.
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3.2. Spin waves propagating at the angle to the magnetic  field

In the previous paragraph the spectrum and the damping decrement of spin waves

propagating along quantizing magnetic field were calculated. In this paragraph the waves

whose wave vector is oriented arbitrarily in relation to the field direction are considered [71]. 

Circularly polarized spin waves with the right circular polarization weakly damp near the

frequencies of electron transitions from the quasi-local level into the Landau level and

are propagated at the angle to the magnetic field. Their spectrum is defined from the

equation

0
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in which
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is a frequency of electron momentum relaxation. As regards the dispersion of one can

neglect it since 2q incomes as a factor at a little impurity concentration in .

From the dispersion equation (3.18) near the resonance frequency (3.2) of the above

mentioned transitions we obtain the wave dispersion law:
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where

2
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n

n
nA .

From the formula (3.19) it is well shown that there is the critical angle c at which the

normal dispersion of the waves changes into the anomalous one. It is defined from an

equation

0cos c .                                                                (3.20)

If c the dispersion of the wave with the spectrum (3.19) is normal. At c the

dispersion becomes anomalous. The wave dispersion in the bands ,...2,1n remains normal

at any value of . In the case of the waves near the frequencies of transitions from the

Landau level into the quasi-local level, which were considered in the previous paragraph, the
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nrn 00 ,                                                           (3.21)

where 0 is the distance between the quasi-local level r non-splitted due to the spin and the

next Landau level located above it; ,...1nn ( 1n is the number of the Landau levels between

r and the Fermi boundary). The circular component of magnetic electron susceptibility

has the root singularities due to the state density at the Landau levels. From the expression for

0 in the long-wavelength limit ( 1Fqv , 02 ) in the case Hq we obtain [28]
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On the frequencies (3.21) the component
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has the resonance. In this expression the oscillator forces of the resonance transitions in the

neglecting of spatial dispersion of susceptibility equal to
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i
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The dispersion equation for the spin waves with taking into account the contributions (3.22)

and (3.23) has a form
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Its analyses shows that there are the transparency bands for slightly-damping transversal spin

ircular polarization below frequencies (3.21). The dispersion law of

these waves equals to
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and the damping decrement in the long-wavelength limit has a form
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where 222 )/()( rnnnnrnn ba are the transparency band widths. Here
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n
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n . 

If one consider reversal transitions from the Landau level into the quasi-local level with the

spin-flip it turns out that the dispersion equation does not have slightly-damping

solutions. The spin waves near the frequencies of these transitions are absent. 

The expressions (3.24) and (3.25) are also valid in the case of the magnetoimpurity levels

splitted from the each Landau level with the value 0 . Now the scattering amplitude residue

of electrons by the impurity atom in the pole ir equals to [82]

2/3
0

2

)/2(
2

mr

and oscillator forces contain an additional summarizing over the numbers of the

magnetoimpurity levels which take part in electron transitions between the magnetoimpurity

levels and the Landau levels on the given frequency [37]. 

3.3. Quantum spin waves in the non-ferromagnetic metals with the quasi-local states of

electrons

Quantum spin waves in the non-ferromagnetic metals without taking into account quasi-

local states of electrons are considered in the works [42,77,78] and the same waves with

taking into account these states are described in the works [54,56,83].     

Let us consider transversal quantum spin waves propagating along the magnetic field. The

oscillations of the electron spin magnetization occur in the plane ),( yx which is normal to the

magnetic field. If one neglects the orbital quantization of the electron motion, the spin waves

(3.1) will experience collisionless damping in the region of the plane ),(q limited by the

parabolas

qFqv0 ,

qFqv0
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(for the electrons 00 ). Here mqq 2/2 . 

The Landau quantization leads to the fact that inside of  this region transparency windows

appear, in which quantum spin waves can propagate [77,78]. Let us make sure of this.

polarization propagating  along  the  magnetic  field. In the absence of impurities they damp

due to Cherenkov absorption of spin waves by electrons [29]. To find regions of damping on

the plane ),(q let us use the laws of energy

)()( znzn kk (3.26)  

and z -momentum component conservation

zz kkq (3.27)

at the magnon absorption by the electron. Here )( zn k is electron energy (2.32) before

absorption, )( zn k the energy after it. According to conservation laws let us take into

account Pauli principle:

)( zn k ,

)( zn k ,                                                                 (3.28)

where is chemical potential of electrons in the magnetic field at zero temperature ( 0T ).

Let us take into account the selection rules [42]

2

,0nnn
(3.29)

for the transitions between the states within one Landau zone.

Form the relations (3.26)-(3.29) it follows that the Landau damping exists in the hatching

regions at the fig. 7. For simplicity we restrict ourselves the case of one filled Landau zone

with 0n . At this figure nv is a velocity projection of the electron which belongs to the n -

th Landau tube on the magnetic field, /nn mvk , 1. Indices + and correspond the

electron spin orientation along and against the magnetic field respectively. 
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Fig. 7. The regions of collisionless wave damping in the case

of one filled Landau zone.

At fig. 8 the Landau damping regions are hatched in the case of two filled Landau zones. 

Besides it is supposed that 0 , i.e. nn vv 1 . From the fig. 8 it is well-shown that three

types of the transparency windows (P petalous, Par parabolic, T triangular) exist.

At fig. 9 the Landau damping regions are shown (hatched) at little q . By 1N the number

of filled Landau levels is designated. The magnetic field is selected in such a way that the

number of filled spin-splitted Landau sublevels is even. In the case of odd number of filled

Landau sublevels the parabolic window at fig. 8 is partially closed. In this case the Landau

pipe N is filled and the N -th one is empty.

Let us find the solutions of dispersion equation (3.1) in the transparency windows. The real

part of )0( in these regions is given by the first item in (2.36). Low frequency solution

(2.36)  of  the  dispersion  equation can  be obtained in the quasi-classical limit :

2

00
00 3

1
1)1()( Fqv

B
Bq ,

where 00B . This solution corresponds to the quasi-classical Silin spin wave.
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1: qqv00 5: qqv10

2: qqv00 6: qqv10

qqv10:3 qqv00:7

qqv10:4 8: qqv00

Fig.8. The Landau damping regions and transparency windows for

the spin waves in the case of the two  filled Landau zones.

Fig.9. The Landau damping regions in the long-wavelength limit. 
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If only two Landau sublevels 0 and 0 are filled, then in the sum
n

in 0 (2.35) it is

necessary to remain only one item with 0n . Then the dispersion equation can be solved

precisely:
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)( cthvv
q

cthvv
q

q

2/12
0000

2 })( qq cthvvqvvq ,                                         (3.30)

where
HemI

qc
2

)2( 2

. The dispersion curve corresponding to this solution lies in the

parabolic transparency window (fig. 10). In the long-wavelength limit from (3.30) we obtain

)
11

(

2
)(

00

232

0

vv
HemI

qc
q .

Let us notice that the spectrum of this quantum wave is quadratic in the long-wavelength

limit. The spin wave spectrum in petalous transparency windows is linear at 0q .

Fig.10. The dispersion curve of the quantum spin

waves in the parabolic transparency window

without taking into account the quasi-local  

states at two filled Landau sublevels 0 .

Let us consider the case of slow quantum spin waves in the parabolic transparency window

for which Nv
q

0 . Performing expansion of the logarithm in (2.26) over the powers of
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10

Nqv
we find the spectrum of the  slow  quantum  spin waves in the  parabolic

transparency window in the case of arbitrary even number of the filled Landau sublevels:

)(
1)(

0

2

0 ggmI
q

q ,

where g is the state density of Fermi electrons in the magnetic field.

Let us find out how the quasi-local electron states influence the properties of the quantum

spin waves in the parabolic transparency window.   The main cause of the existence of

quantum spin waves in degenerated electron liquid of non-ferromagnetic metals in the

magnetic field is the quantization of Fermi electron velocity projections on the field direction.

As a result of the quantization in the continuous region of the wave quasiclassical

collisionless damping the transparency windows, in which the damping is absent, appear. The

boundaries of these windows can be found from the conservation laws of energy and z -th

momentum component )( Hz in the process of magnon absorption by electron with taking

into account the Pauli principle and the selection rules. In the windows the new branches of

variety in the system of conductivity electrons, which are at the different Landau levels, leads

to the phenomenon that the spectrum of the transversal quantum spin waves appears to be

basically linear in the long-wavelength limit. The dispersion curves of these waves begin at

the frequency of the spin resonance 0 and phase velocities are defined by the Landau pipe

lengths. If the electron cyclotron frequency exceeds the frequency of the spin transitions

0 and the even number of the spin-splitted Landau sublevels are located below the Fermi

boundary, the wide transparency window for the transversal quantum spin waves with the left

circular polarization propagating along the magnetic field exists in the neighborhood of 0 .

Its boundaries are parabolas

qNqv0 , (3.31)

where N is the number of the last filled Landau level,   Nv are velocities of the Fermi

electrons on the Landau sublevels N . In this window the dispersion curve of the slow

quantum spin waves whose spectrum is quadratic in the long-wavelength limit is located. 

The circular components of the high-frequency electron spin susceptibility have the

features on the frequencies of the resonance electron transitions between the quasi-local levels
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and the Landau levels with the spin flip [54]. It is necessary to take into account these features

in the dispersion equation (3.1). It turns out that intersection of the quantum spin wave

dispersion curve with the resonance frequency of these transitions leads to the cross situation

which is analogous to that found in studying sound propagation in dielectrics with quasi-local

oscillations of the crystalline lattice [84]. Instead of one spectrum branch of the quantum spin

waves in each transparency window two branches low and high frequency - appear. They

are due to the interaction of electron spin magnetization oscillations at the resonance

transitions with oscillations in the process of the spin wave propagation.

Let us consider a conductor with the isotropic quadratic spectrum of the carriers with

randomly distributed insulated impurity atoms on which the quasi-local states are formed. Let

us find out how they influence the quantum spin waves.

The results listed below are expressed through the characteristics of the quasi-local states,

i.e. energy r of resonances, their half-widths and the residues r of the electron impurity

scattering amplitude in the pole ir . These values can be calculated giving concrete

expression to scattering potential or they can be obtained from the experiment. The sample

temperature and also the widths of the levels participating in the transitions induced by the

variable magnetic field of the spin wave are supposed to be little in comparison with the

transition energy. Quantizing magnetic field influences the electrons. It is selected in such a

way that below the Fermi boundary the even number of spin-splitted Landau sublevels is

located. Then between the parabolas (3.31) the transparency window for slow quantum spin

wave with the quadratic spectrum exists. If inequality

Nqv0 (3.32)

is obeyed its spectrum has a form1)

1

0

2

0 )(1)( gg
Im

q
q ,                                            (3.33)

1) Here and then in this paragraph 1. 

where g is state density of the electrons with the spin quantum number 2/1 on the Fermi

level; I the parameter of  electron-electron interaction. It is connected with the constant 0B

which appears in the theory of Fermi liquid by the relation FIgB0 . If the sublevels N are

located on the different side from the Fermi boundary, electron transitions between them will

lead to appearance of the Landau damping region limited by parabolas

qNqv0 .
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Inside this region the propagation of the wave with the spectrum (3.33) is impossible. 

The method of calculation of electron dynamic spin susceptibility tensor  ),(qik with

taking into account the quasi-local states is listed above. In the transparency windows where

collisionless damping of the spin waves is absent this tensor can be expanded in series over

the powers of impurity atom concentration in :

0 ,

where 0 is a well-known contribution calculated without taking into account quasi-local

states and is the impurity addition which is due to these states. To obtain it we should take

into account the resonance structure of electron scattering operator by the impurity atoms.

With the help of this operator Green functions incoming in the electron lap for the high

frequency spin susceptibility are expressed.

The circular component of susceptibility has the root singularities on the frequencies n

of the electron transitions from the quasi-local level into the Landau levels which are

accompanied by the spin-flip . Near the resonance frequency ( n ) it equals

to

2/1

)(),(
i

qaq
n

n
nn ,                                               (3.34)

where the values na play the role of oscillator forces of the resonance transitions. In the long-

wavelength limit at Hq they are equal to

)()(
2

)( 2/52/1

22/3

nrr
n

i
n ff

nrm
qa

1
0

22

0 )/1(11 n
nn m

q
,                                            (3.35)

where is electron magnetic moment; rnrnn 0 are the resonance

frequencies ( n and r are the locations of the n -th Landau level and the resonance level

without taking into account spin splitting); f is Fermi function. The radical in (3.34) is

connected with the singularity of the electron state density on the Landau level participating

in the transitions, and the difference of the Fermi functions in (3.35) takes into account the

Pauli principle.
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The expressions (3.34) and (3.35) are obtained on assuming that in the electron spectrum

one quasi-local state exists. Its characteristics can be calculated in the frames of a certain

model of the priming electron spectrum and the impurity potential. For example, in the case

of the resonance on the short-range impurity the residue of S -scattering amplitude in the pole

ir equals to [15]

r

r

m
g

r 3

32
,

where rg is the state density of free electrons in the point r . In the case of electron

magnetoimpurity states formed on the short-range donor impurity in the magnetic field, the

residue is listed in the end of the p. 3.2. It consists 2
2

1 )/( la , i.e. the distance between

the Landau level and the magnetoimpurity level splitted off from it ( a is scattering length, l

is magnetic length). In this case the width of the n -th magnetoimpurity level equals to [21,22]

2/1

4 nn ( 1n ).

The expressions (3.34) and (3.35) also remain valid for the magnetoimpurity states. But the

oscillator forces (3.35) contain an additional summarizing over the numbers of

magnetoimpurity levels participating in the transitions on the frequency n [82].  

The contribution (3.34) will be taken into account in the dispersion equation   for   the

spectrum  of  the quantum  spin waves. Let us find spectrum and damping the transversal

spin waves with the left circular polarization which are propagating along the magnetic field.

The dispersion equation for them in the random phase approximation has the form (3.1). 

Electron-electron interaction is supposed to be contact. This approximation is equivalent to

inclusion of the first item in the expansion of the exchange part of the function of Landau

Fermi-liquid interaction in the series over the Legendre polynomials [44]. We are interested

in the solution (4.40) of the dispersion equation (3.1) near the resonance frequency

00r which exceeds the spin resonance frequency with the value rN 10

which equals to the distance between the resonance level r and the (N+1)-th Landau level.

The magnetic field is selected so that the Fermi boundary is located between the levels r

and 1N .

Let us consider an influence of the quasi-local state on the properties of slow quantum spin

wave with the spectrum (3.33). In the region of intersection of the straight line r with
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the dispersion curve (3.33) of this wave the inequality (3.32) is obeyed, that is why the

dispersion equation in this region can be written in a form

BxAx 2/1)1)(1( , (3.36)

where

0

0x , )(2
0 gg

q
Im

A ,

)]()([
2 2/5

0

2/3

rrr
i ff

nrIm
B .

From the equation (3.36) it is well shown that the parameter B plays the role of the

coupling constant of electron spin magnetization oscillations at the transitions 1Nr and

in the process of the spin wave propagation. In the absence of such a coupling ( 0B ) the

functions (3.33) are the solutions of the equation (3.36) and r .

At the presence of the quasi-local state the frequency change of the spectrum of electron

magnetization oscillations occurs. Two branches of the spin wave spectrum - low )(qd and

high )(qu frequency appear. They are shown on the fig. 11 where only one sector in which

the Landau damping exists is depicted (hatched). 

Low frequency solution of the equation (3.36) depends on the parameter

2/1
00 )]([ ggImq . If 0qq , this solution has a form

]
3

cos)
1

1(2
2

1[
3
1

AA
x , (3.37)

where 3
2

)/11(
2

27
1cos A

A
B

.

Fig. 11. Two branches of the quantum spin wave spectrum. 
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If 0qq we find

3
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x , (3.38)

where now

32

1
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2
27

1
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ch . 

In a long-wavelength limit ( 0qq ) from the expression (3.37) we obtain

1

0

2

0 )(
)1(

1)( gg
Im
qB

qd .                                           (3.39)

The quasi-local state leads to reducing frequency and group velocity of the quantum spin

wave with the spectrum (3.33). If 0qq , then with increasing q the dispersion curve (3.38)

asymptotically approaches to a limit frequency

2

2/12
0

2/3

2/3

2
1

r

i
rl

nrIm
.

Low frequency branch of the quantum spin wave spectrum is located in the band ],[ 0 l

where the Landau damping is absent. The damping of this wave is defined by the collisions of

electrons with impurity atoms. The damping decrement equals to:

1

)
1

(
2
1

1)
1

(
2

)1( x
A

xx
A

xd ,                           (3.40)

where x is equal to (3.37) or (3.38) in accordance with 0/ qq and is a relaxation frequency

of the electron spin magnetization. This frequency is due to the potential scattering on the

impurities. In the long-wavelength limit ( 0qq ) from the formula (3.40) we obtain

1

0

2

))((
2

)( gg
Im

Bq
qd .

Small values and provide the trifle of the decrement in comparison with the wave

frequency (3.39).

The spectrum of the high frequency wave in the long-wavelength limit 0Fqv can be

obtained in the quasi-classical approximation for 0 :

2

1
2
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22

0
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00 )
3
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1(1)( F

r
ru

vq
bbaq ,                                  (3.41)
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where

000

0
0 B

B
b r , 

0a is the value (3.35) at 1Nn and 0q . The decrement of this wave equals to

r
u baq 03

0
2
02)( . 

At q ~ 00 / v the dispersion curve (3.41) crosses the Landau damping boundary beyond

which the wave damps fast. If r , the contribution (3.34) becomes imaginary in general.

It means that the high frequency spectrum almost coincides with (3.33). With the increase of

q the dispersion curve of this wave approaches to the Landau damping boundary

qNqv0 . In the region r this wave experiences strong damping with

decrement

2/1

0

r
u A

B
,                                                           (3.42)

due to the resonance electron transitions 1Nr induced by the magnetic field of the spin

wave.

The characteristics of a new type of spin waves discussed in this chapter depend on the

parameters of the quasi-local states the resonance locations and widths, the residues of the

electron scattering amplitude by the insulated impurity atoms in the pole. 

In the next chapter we will consider the neutron magnetic scattering method which is

convenient for the experimental detection of these waves. 
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CHAPTER IV. NEUTRON MAGNETIC SCATTERING IN NON-FERROMAGNETIC

METALS WITH THE QUASI-LOCAL STATES OF ELECTRONS

4.1. Connection between the cross-section of neutron magnetic scattering and the

tensor of dynamic spin susceptibility

Spin waves to be considered here as well as the waves in the magneto-ordered crystals

[23,49,50,60,85-90] can be found in the experiments with slow neutrons and also in the

experiments on measuring light cross-section [91-93]. In this chapter we will find out how

new types of the spin waves in the non-ferromagnetic metals described in chapter III become

apparent in a neutron scattering cross-section.

Neutron magnetic scattering discussed in this chapter is due to the interaction of a neutron

magnetic moment with the current of spin magnetization of collectivized electrons [49,88,90]. 

Let V be the Hamiltonian of this interaction. The latter causes the neutron transitions

)()( ss mkmk from the initial state with the wave vector k and spin quantum number sm in

a final state ( smk ). In Born approximation the probability of the transition in a unit of time

equals to:

nn
mknmknkknmkmk ssss

EEnVnW )(
2 2

,                       (4.1)

where n is index of the scatter stationary state with energy nE , n is probability of the state

n ,
kk

V is a matrix element of the operator V assembled on neutron proper states,
smk
is

neutron energy.

If one takes into account the -function expansion in the Fourier integral, the expression

(4.1) can be represented in a form

)(
1

,,

)(

2 tVVdteW
ssss

smksmk

ss mkmkmkmk

t
i

mkmk
,                                 (4.2)

where

tH
i

tH
i

eVetV )0()(

is the interaction Hamiltonian in Heisenberg representation, H is the scatter Hamiltonian

(
nH n E n ), averaging with the density matrix of the scatter and also configuration

averaging over locations of impurity atoms in the sample are designated by the angular
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brackets. To obtain twice differential neutron scattering cross-section
dOd

d 2

in a solid

angle Od and the energy interval d it is necessary to multiply the probability (4.2) on the

number  

238
dOdkVmn

of neutron states with the wave vector k in a solid angle Od and with the energy in the

interval d ( nm is neutron mass, V is the volume of the sample) and divide into the density

of falling neutron beam Vmk n/ :

t
i

dtP
k
kVm

dOd
d

ss

ss

s mkmk
mm

m
n )(exp
)2(

)(
53

22

)(
,,

tVV
ssss mkmkmkmk

, (4.3)

where
smP is probability of neutron spin projection in a falling beam equals to sm . As usual,

in (4.3) the averaging over neutron spin states in falling beam and summarizing over spin

states in a scattered beam are accomplished. It is well seen that (4.3) contains the Fourier

component of the correlator assembled on the operators of neutron interaction with the target

particles. The formula (4.3) is also applicable at presence of the magnetic field H . In this

case

Hm
cm

e

m
k

s
nn

kms 22

22

,

where 1sm , 913,1 is gyromagnetic relation for a neutron. The interaction energy of a

neutron with the matter consists of two main parts: the energy of nuclear interaction with the

nuclei of the atoms and the energy of magnetic interaction with electrons [85-89]. Let us

consider magnetic interaction of the magnetic field made by a neutron magnetic moment with

a spin magnetization current of conductivity electrons. The vector potential of neutron

magnetic field in the point of electron location er equals to [88]

3

)]([
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rr

rr
rA

e

en
e , 

where n is a magnetic moment of the neutron located in the point r . It equals to



70

n
n

n cm

e

2
,

where n is the ort directed against n . The energy operator of neutron interaction with the

spin electron current equals to [88]

)()(
1 3

eee rArJrd
c

V ,

where J is the operator of magnetization current density. Passing to Fourier components over

er we obtain

q

qAJ
cV

V )(
1

,

where
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e

enrqi
e

e .

Let us calculate matrix elements of the operator V between the states of neutron k ,  k and

the scatter n ,  n .  Let us take into account the matrix element of the spin current operator

[15]:  

)( nnnn rotcJ ,

where n is a wave function of the target, is an electron magnetic moment, are Pauli

matrices. As a result of not complicated calculations we obtain:
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where

2

2

0 mc
e

r

is a classical radius of the electron,
e

is summarizing over electrons, eS and nS are spin

moments of electron and neutron respectively, kkq is a neutron scattering vector, 

qqe / . Substituting the matrix element (4.4) in the formulae (4.1) and (4.3) we find
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,                                         (4.5)

where
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The features of susceptibility described in chapter II can be discovered in the experiments

with slow neutrons.

4.2. Neutron magnetic scattering on spin waves in non-ferromagnetic metals with quasi-local

electron states

The results listed in this paragraph were published in the work [52].

In the previous paragraph it was shown that twice differential cross- section of inelastic

magnetic neutron scattering by an electron subsystem of  a conductor contains a spin

contribution:

)],(),(Im[)1(
4
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2

0
2

qq
p
p

nV
r

dOd
d

,                          (4.8)

where

ppq ,

)(
2

1 22 pp
mn

are changes of a neutron momentum and energy as a result of scattering, and are

circular components of electron dynamic spin susceptibility,

1
1

/ TkBe
n

is Planck function, V is a scatter volume. Scattering vector q is supposed to be parallel to

H . The components and correspond to the electron transitions with the spin-flip

and respectively.

Susceptibility features considered in the chapter II become apparent directly in the cross-

section. We are interested in behavior of the cross-section as a function of near the

frequencies of the electron transitions between the quasi-local level and Landau levels. At the

random phase approximation (RPA) a circular component of dynamic spin susceptibility

equals to:

),(
2

1

),(

2 q
I

q
.                                                                 (4.9)
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The function ),(q with taking into account the quasi-local states and the magnetic field

was calculated in the par. 2.2. From the formula (4.9) it is well seen that the features of

susceptibility can be of  two types. The first type is presented also in the case 0I . It is due

to the numerator in (4.9). Due to the numerator we obtain the contribution of one-particle

excitations with the spin-flip in the neutron cross-section. Further we will consider this

contribution near the frequencies of the transitions between the quasi-local levels and the

Landau levels. The other type of susceptibility (4.9) features is connected with the zeros of

the denominator. They correspond to the collective electron excitations, i.e. the spin waves.

Let us calculate the cross-section (4.8) in the regions of existence of spin waves considered in

the par. 3.1, 3.2.

The following results from (4.9)
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2
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II
,                                                 (4.10)

where i and indices "+" and "-" of susceptibility are omitted. This expression has

a sharp maximum in the region of existence of slightly damping spin waves where

0),(
2

1 2 q
I

(4.11)

and is small. The solutions )(q of the dispersion equation (4.11) was considered in par.

3.1, 3.2. The left part of the equation (4.11) near zero of )(q can be represented in the form
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.

Substituting this expression in (4.10) near the point )(q we obtain
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where (4.11) is taking into account. This expression can be written like this:
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where

q

q
d
d

qq
q

),(

)](,[
(4.13)

is a damping decrement of the spin wave. Substituting (4.12) in the formula (4.8) we will

obtain differential cross-section of neutron scattering accompanied by a magnon production

with the energy )(q and also by an electron spin-flip . In the same way one can

consider the contribution of the processes with the spin-flip . Let us find out how the

cross-section (4.8) behaves in the region of existence of new spectrum branches of the spin

waves considered in par. 3.1, 3.2.

As it has been noticed before the magnetic scattering cross-section of slow-neutrons by a

spin current in normal metals is connected with dynamic spin susceptibility of conductivity

electrons [49,88,90]. Susceptibility of the non-ferromagnetic metals with the quasi-local

electron states on insulated nonmagnetic impurity atoms in the absence of the magnetic field

was considered in the work [61]. It was shown that electron transitions between the quasi-

local and zone states caused by the variable magnetic field lead to the features of dynamic

spin susceptibility. In a quantizing magnetic field these features become stronger [37]. The

electron resonance transitions from the quasi-local levels into the Landau levels lead to the

root singularities of susceptibility, which reproduce the features of electron state density. The

new spectrum branches of collective excitations of metal spin system are based on these root

singularities. The features of susceptibility must arise in the cross-section of neutron inelastic

magnetic scattering. In the energy spectrum of scattered neutrons the maxima must be

observed when the energy transmitted by a neutron equals to the resonance frequency. It is

true not only for the metals with the proper quasi-local electron states [10] also existing in the

absence of the magnetic field but also with the magnetoimpurity levels [37].   

The calculation results of inelastic magnetic scattering cross-section of slow neutrons by a

spin current in normal metals with the quasi-local electron states in the presence of a

quantizing magnetic field are listed below. The model and the method of the calculation are

described in [37,61]. It is supposed that exceeds summary width of the levels
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participating in the transitions and a scattering vector q is parallel to the constant magnetic

field H . The scatter temperature is supposed to be low in comparison with transition energy.

The frequencies of the electron resonance transitions between the quasi-local level

Hrr (indices correspond to the spin orientation along and against the field H )

and the Landau levels accompanied by the spin-flip equal to

nrn 00 ,                                                      (4.14)

where rL0 ( HLL is the nearest to the Fermi energy F        free Landau

level), 0 is the spin resonance frequency, is the cyclotron frequency, ,...1,0n is the

resonance number. In the neighborhood of the frequency (4.14) the circular component of

susceptibility ),(q equals to 0 where 0 is a well-known contribution [78]

and is a resonance part connected with electron transitions evolved. It equals to (3.4).

This expression leads to the additional maxima in the energy spectrum of scattered neutrons.

These maxima lie above the Stoner sectors. These maxima are due to one-particle excitations

of localized electrons with the spin-flip. The dimensionless twice differential scattering cross-

section in the solid angle dO and the energy interval d

2

0

2

9,1
4

rdOd
d

h
P

(4.15)

as a function of has maxima at the frequencies (4.14). The value of the n -th maximum

equals to
2/1

2
rn

nn ah  .                                                                         (4.16)

The maxima are asymmetric and displaced in the high frequency region. With the increase of

n the value (4.16) decreases proportionally to 2n .  Let us notice that the electron resonance

transitions between the nearest to F filled Landau level and free quasi-local level

located above F lead at Lr (but Lr ) to the analogous cross-section maximum at

frequency Lr0 lying below a central Stoner sector. This maximum is displaced in

the low frequency region.

Let us take into account electron-electron interaction in the random phase approximation. In

this approximation the new spectrum branches of collective excitations of non-ferromagnetic

metal spin system appear outside the Stoner sectors. They are analogous to the transversal

magnetoimpurity spin waves [37]. These waves slightly damp due to electron collisions in
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narrow transparency bands lying below the resonance frequencies (4.14). The dispersion law

and damping decrement of the waves in the n -th band equal to (3.9) and (3.10).

The neutron cross-section with the excitation of the quantum of the spin wave with the

spectrum (3.9) as a function of has Lorentz maxima at spin wave frequencies. In the

neighborhood of the n -th maximum

1)9,1(
2/1
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122 )]([)]([)( qqq nnn ,                                               (4.17)

where n is the transparency band width (3.12). The maximal value of the cross-section

(4.17) equals to

n

n
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n aIg

h
2/1

2)(
2

.                                                       (4.18)

The width of the maximum coincides with the damping decrement of the spin waves (3.10).

With the increase of n the value of the maximum (4.18) decreases proportionally to 4n and

its width tends to a constant limit .

As it has already been mentioned the quasi-local electron states below the Fermi boundary

in the absence of the magnetic field were observed in Bi with the impurities of Sn and Pb

[81]. Using the parameters of the Bi spectrum and also the characteristics of quasi-local states

listed in [81] we find the ratio of the value of the first ( 0n ) maximum (4.16) at 210in at. 

%, 310H Oe to maximal value of  )/Im( 0 P at the spin resonance: )/(2,24 02 . If one

takes 1,0FIg , the ratio of 0h (4.18) to the maximal value of the cross-section with

excitation of the quasi-classical Silin waves [90] will equal )/(4,142 02 . The ratio of the

value of the first maximum (4.18) to (4.16) turns out to be equal to 5,4. For calculations we

used the residue r in the model of Gauss separable potential [82].  

Let us consider the case when the scattering vector q is oriented at an angle to H . As it has

already been pointed out the differential cross-section of the neutron magnetic scattering on

the spin magnetization fluctuations of collectivized electrons is connected to the anti-

Hermitian part of susceptibility tensor [87-90]. Susceptibility features become apparent
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directly in the scattered neutron spectrum. On the curve of cross-section dependence on

transmission of neutron energy the maxima due to one-particle Stoner excitations

of electrons are present. They are located near energy )( 0 n and restricted by the

Stoner sectors [90]. In the metals with the quasi-local states there exist additional maxima

connected with electron (localized on the impurities) excitations by the neutron magnetic

field. The maxima due to the electron transitions are located in the points (4.14) the

value 0 higher than the Stoner sector corners. They are asymmetric. The character of the

maximum asymmetry depends on the transition type. For example, in the case of the

transitions from the quasi-local level into Landau levels the maxima are displaced in the high

energy region and in the case of the transitions from the Landau levels into the quasi-local

level in the region of low energies. The series of the maxima due to the transitions is

located in the points

nrn 00 .                                                            (4.19)

Depending on the ratio 00 / they  can be located both above and below the Stoner sectors. 

The differential cross-section of the neutron scattering in the energy interval d in the solid

angle Od related to the unit volume of a sample in the neighborhood of the energy rn

(4.19) equals to

n
Pn an

k
kr

Odd
d

)cos1)(1(
9,1

8
2

2

0
2

2/1

/
Re

irn

rn ,                                                          (4.20)

where is the angle of the neutron scattering.  

On the fig.12 the dependence of dimensionless scattering cross-section

Fig. 12. The dependence of the neutron scattering cross-section on 

the value of energy loss near the frequency rn .
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Pn a

r
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d
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on /)( rnx at 0 is presented. The scattering cross-section near frequencies of

the transitions from the Landau levels into the quasi-local level can be obtained by the change

of the resonance denominator in the expression (4.20) into )/( irn , indices "+, "

into "-, " at the characteristics of the quasi-local state and by the change of the oscillator

forces described in [71]. 

The neutron scattering cross-section also has the maxima at the points

nn 0 .

They are due to the features of the longitudinal susceptibility on the frequencies of the

transitions without the electron spin orientation change. Near these frequencies due to the

transitions from the quasi-local level into the Landau levels we obtain

2

2
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2

sin)1(
9,1

8
n

k
kr

Odd
d Pn
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/
Re

i
a

n

n
n ,                                                (4.21)

where

)]()([
2 2/52/1 nrr

nF

i

n ff

nr

a .

The maxima in the expression (4.21) are displaced in the region of high frequencies. The ratio

of the maximal value of the cross-section at 0n to the maximum of the cross-section on the

quasi-classical Silin waves [90] equals to 2/1
0020 )/)(/(a . For the magnetoimpurity

states in bismuth with the impurities of Te at 210/ ei nn , 8
2 10 s-1, 410H Oe this ratio

equals to 0,013.

With the increase of n the maxima values of cross-sections defined by the expressions

(4.20), (4.21) decrease proportionally to 2n . In the case of the transitions from the Landau

levels into the quasi-local level it is necessary to change the sign of the resonance

denominator in (4.21) that will lead to the series of the maxima displaced in the low energy

region.

Besides the maxima due to the one-particle excitations in energy spectrum of scattered

neutrons the Lorentz lines connected with scattering on the spin waves are present. The cross-
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section of scattering with emission of a quantum of the transversal spin waves considered in

ch. III equals to

n
k
k

Ig
r

Odd
d

F

Pn (
9,1

4

2

0
2

)()cos1)(1
2/3

2 q
a n

rn

n

n

rn (4.22)

122 )}()]({[ qq nn .

The maxima of this expression are located inside of the transparency bands and their widths

coincide with the wave damping decrement. Along with the maxima in the region  0

connected with the wave absorption they form satellites located symmetrically relative to the

unshifted line 0 . The experimental examining of these satellites would allow to define

)(qn and )(qn of new waves. The ratio of the expression (4.21) maximum value to the

maximum value of the scattering cross-section with excitation of the Silin waves [90] in the

case of narrow quasi-local level (
n

rnnnrn a
22/32 )/()/( ) equals to

22
0

2 / Frnnn gIC .

If the typical values

3,0FIg ; 1,0/ 00

are substituted here, we obtain 1,00C . With the increase of n the ratio nC decreases

proportionally to 2n .

The listed values show that several branches of spin waves in the non-ferromagnetic metals

predicted in the work can be discovered in the experiments with slow neutrons. As for the

new branches of the wave spectrum they can exist in the ferromagnetic metals either. The

consistent theory of these waves with taking into account the Fermi liquid effects (without the

quasi-local electron states) is evolved in the works [94-96].  
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CHAPTER V. SILIN SPIN WAVES IN TWO-DIMENSIONAL ELECTRON GAS

5.1. Dynamic spin susceptibility of two-dimensional electron gas with impurity electron states

A reaction of the two-dimensional electron gas [97] on a slight variable magnetic field is

characterised by a tensor of dynamic spin susceptibility ,(q ) depending on the wave

vector q and the field frequency . The features of susceptibility on a complex plane of the

frequency determine the spectrum and damping of magnetic excitations of a system. 

Susceptibility allows to obtain the fluctuation spectrum of the spin magnetization of the two-

dimensional electron gas, the cross-section of the neutron magnetic scattering by the spin

magnetization current of conductivity electrons and the other values.

A big deal of the works are dedicated to a calculation of spin susceptibility of two-

dimensional electron systems. The calculation results of  free electron gas static susceptibility

in a magnetic field which is normal to a plane of electron motion, are listed in a work [98]. 

Coulomb electron interaction is taken into account in [99]. A precise expression for dynamic

spin susceptibility and also the functions of a reaction density-density of free degenerated

two-dimensional electron gas were listed in the works [97,100]. The quantizing magnetic field

was taken into account in [101]. High frequency asymptotics of spin susceptibility of two-

dimensional Fermi liquid was obtained in a work [102]. An influence of the impurity atoms

(which potentially scatter conductivity electrons) on susceptibility was considered in [103]. 

The review of properties of two-dimensional disordered systems in a magnetic field was

given in [104]. 

Being sensitive to the dynamics of conductivity electrons, spin susceptibility experiences an

influence of impurity atoms in the system. In particular, the electron impurity states must

affect on susceptibility and the values connected with it. To include these states is actual since

in the two-dimensional case the impurity atom which attracts the electrons in any slight way

forms a bound state. The corresponding local level is located at a lower edge of two-

takes place. They exist in the field of both attracting and repulsing scatters. The local levels

are located between the Landau levels [105]. 

Here an influence of the local states on high-frequency dynamic spin susceptibility of the

two-dimensional electron gas is considered at low temperatures.   The method of the local

excitations [10] applied earlier [106] for the calculation of susceptibility tensor is used. The
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field frequency is supposed to be high in comparison with the frequency of the electron

collisions.

As in the par. 2.2 for the calculation of spin susceptibility tensor let us use the Kubo formula

0

)0,(),,(),( qMtqMdteiq ti ,                                     (5.1)

here ),( tqM is spatial Fourier component of Heisenberg operator of the two-dimensional

electron spin magnetization; a commutator of operators is designated by the brackets and the

Gibbs averaging and averaging over the configurations of the impurity atoms are marked by

corner brackets; , yx, ; the sample area and quantum constant are equal to 1. The

operator of the spin magnetization in the representation of the secondary quantization has a

form

ssp
spsqpss aaqM )()( ,                                                    (5.2)

where is electron magnetic moment; p and s are momentum and spin quantum number;

spa and spa the annihilation and production operators of electrons in the state sp ; is the

Pauli matrices. Substituting the expression (5.2) in the formula (5.1) we obtain a connection

between susceptibility tensor and the Fourier component of the retarded two-electron Green

function. Let us use the method of the temperature Green functions [45] for calculation of the

last one.

In the one-electron approximation the two-particle Green function comes to one-particle

Green function product averaged over the impurity atom configurations. If one neglects the

vertex corrections [45] then this mean value will come to the product of the mean values of

one-particle Green functions. Using their spectral representations [45] we obtain for the tensor

(5.1) the expression

ssp
ssssq 2),(

),(),(
0
)()(

qpp
i

ff
dd ss , (5.3)

in which )(f is the Fermi function; ),( ps is spectral density of the one-electron Green

function averaged over the impurity configurations. In a pure sample it equals to

)(),(0 pp ,

where mpp 2/2 , m is the effective electron mass. 
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The one-particle Green function G is connected with the scattering operator T of electrons

by the impurity centers [10]:

000 TGGGG ,                                                             (5.4)

where 0G is Green function of the free electrons. The exact expression for the mean value of

electron scattering operator by short-range acting impurity atoms in the one-center

approximation is well-known [10]. Therefore, the spectral density of the mean Green function

(5.4) can be represented in the form i0 where i is the impurity addition. In the

linear approximation over the impurity atom density in it is proportional to in . As a result

i0 where 0 is tensor of spin susceptibility of a pure sample and i is impurity

contribution. It equals to i
i)( where

p
qpii ffpdq )]()()[,(2),( 2

0
1

0
1

ii qpqp

.                                         (5.5)

From the formula (5.4) it is well seen that the function G has an additional peculiarities

connected with the features of the scattering operator. The electron local energy levels on

insulated impurity atoms correspond to them. A contribution of local levels in the spectral

density of the mean Green function equals to

)](1[)(),( 0
2

0 Fvnvp pi ,                                         (5.6)

where 0v is a constant characterizing the intensity of short-range acting impurity potential;

)(F is the function of the Lifshits equation [10] 0)(1 0Fv for the local levels. From the

formula (5.6) it is well seen that the spectral density has the delta-shaped maxima on the local

levels:

l
llpli rnp )()(),( 2 ,                                            (5.7)

where l is location of l -th local level;

1

)(

l
d

dF
rl

is a residue of electron scattering amplitude by the impurity center in a pole l . In the case of 

a shallow ( 10vm ) local level it equals to
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mr l /2 .

From the formulae (5.5) and (5.7) we find the contribution of the local levels into the high-

frequency spin susceptibility:

lp
lplqpli ffrnq )]()([)(2),( 22

0
1

0
1

ii plpl

.                                               (5.8)

As it would be expected, the real part of this expression is an even function of the frequency

and the imaginary one is an odd function.

If in the energy spectrum of the system there is only one local level located at the lower

edge of two-dimensional conductivity zone from the formula (5.8) after the integration over

vector p directions we obtain

irnmq 24),(

0 0
1

0
1

)]()([
ii

ffd
ll

l

2/32 ]4)[( qqlql .                                              (5.9)

In the case of the weak spatial dispersion ( lq ) we can expand the real part of the

function (5.9) in series over lq / powers. Then with taking into account the terms of 2q

order for the degenerated electrons we find

224),(Re irnmq

1

1
4

ln
2
3

1
4

1
l

F

l

q

lF

lFlq

)(1
4
3

1
1

l

F ,                                            (5.10)

where F is Fermi energy and by ( ) the item obtained from the previous one by a

change of the frequency sign is designated. The function (5.10) has a logarithm peculiarity at

the threshold frequency lF of activation of electrons localized on impurities by the

temporal magnetic field. Impurity absorption of temporal field energy has a threshold at this

frequency.

The imaginary part of (5.9) at any degree of electron degeneracy and any q equals to
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)()[(4),(Im 22
lli frnmq

)()](4)][( 2/32
lqlf ,                                      (5.11)

where q ; is Heaviside function. At finite temperature the expression (5.11) has a

threshold on the frequency lg of local level activation. As the temperature is reduced

the threshold is displaced into the point lF in accordance with the Pauli principle. At

transition through the threshold frequency the imaginary part of susceptibility (5.11)

experiences a jump which is equal to (at 0q ) 2224 girnm . With increasing frequency

the expression (5.11) decreases proportionally to 2 . Taking into account final width of the

local level leads naturally to the jump disassembly.

The method of the local perturbations used above is also applicable in that case when two-

dimensional electron gas is located in a quantizing magnetic field which is normal to 0z

plane in which electrons move. In this case electrons are located on the Landau levels and the

local levels disjoined from them. For the calculation of spin susceptibility tensor of such a

system it is convenient to use the Landau representation. In particular, the spatial Fourier

component of the spin magnetization operator in this representation has a form

ssvv
vssvvvss aaqIqM )()( ,

where v is a set of the electron orbital quantum numbers in a magnetic field;

vevqI rqi
vv )( are matrix elements of the flat wave in the Landau basis.

As a result of the above described transformations we obtain the contribution of local levels

in the tensor of high-frequency spin susceptibility of the two-dimensional electrons:

ssnkn
ks

ic r
nm

q
2
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2

)]()([
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2
l
kssnl

ksns

nn ff
q

00 ii sn
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sn
l
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ssss .                                       (5.12)

Here c is cyclotron frequency; ns and l
ks are a location of n -th Landau level and k -th

local level;

)(
2

exp
!
! )(

2

12/1
nn

n

nn

nn L
n
n

,
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nn
nL are generalized Laguerre polynomials; )2/(2

cmq ; the wave vector q is parallel to

y axis. If the distance 0 between the Landau level and the local level disjoined from it is

small in comparison with c the residue of electron scattering amplitude by the impurity

atom in the pole l
ks equals to

)/(2 2
0 cmr .

In that case when 1 one can neglect spatial dispersion of a tensor (5.12). Then the

circular components of susceptibility equal to

)()()( yxxx i

kn

l
knl

kn

kic ff
rnm

)]()([
)( 2

2

)(
0

1

in
l
k

,                                                 (5.13)

where indices at kr , n and l
k correspond to the electron spin orientation along and

against a magnetic field; by ( ) the item (which is obtained from the previous one by

the change of the sign of the electron spin projection and the sign of 0i ) is designated.

From the formulae (5.12) and (5.13) it is well seen that spin susceptibility of the two-

dimensional electron gas has the resonance features at the frequencies of the electron

transitions between the Landau levels and the local levels accompanied by the spin flip. The

resonance frequencies equal to l
kn . 

On fig. 13 the dependence of the real (1) and the imaginary (2) parts of the value

in
Q 2

1

2
(5.14)

on 1/1x near the frequency 01 c of the resonance electron transitions

between the Landau level and the local level with the electron spin flip ( ) within one

Landau subzone are listed. Here 1/ where is the summary width of the levels

involved in the transitions. The calculations are performed for 1,0 . The ratio of the

maximal value of Re to the Pauli susceptibility of the two-dimensional electron gas [98]

122
0 )4( mce

equals to

1m
n

k i .
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Substituting the values 1210in sm-2, 410H Oe, i.e. the strength of constant magnetic field,

1,0/0 c are typical for the experiments with the inversion layer at the boundary Si

SiO2 we will obtain 218k .

Fig. 13. The dependence of the real (1) and the imaginary (2) parts of

susceptibility (5.14) on the frequency in the neighborhood of 

the resonance.

In this paragraph an influence of the electron localization in the field of the impurity atoms

on tensor of high-frequency spin susceptibility of the two-dimensional electron gas is

considered. The mean distance between the impurity atoms is supposed to be big in

comparison with the radius of electron orbit in the magnetic field and the frequency of

variable magnetic field is sufficiently higher than the electron collision frequency. It allows to

use the expansion of susceptibility in series over powers of impurity atom

density in and to select the contribution of the local levels which is proportional to in . The

local levels are the poles of one-electron Green function averaged over the impurity

configurations. They become apparent in the form of the delta-shaped maxima on the



87

dependence of the spectral density of the mean Green function on the electron energy. Taking

into account these maxima allows to obtain the susceptibility contribution due to the electron

transitions between the bound and zone states induced by the variable field. This contribution

can be obtained both in appearance and absence of quantizing magnetic field which is normal

to the electron layer.

In the absence of the magnetic field the real part of the dynamic spin susceptibility of the

degenerated electrons has the logarithm feature on the threshold frequency of the localized

electron transitions into the two-dimensional conductivity zone. The imaginary part of

susceptibility has the threshold and experiences the jump at this frequency. Taking into

account the finite width of the local level leads to the disassembly of the jump and to the

maximum on the frequency dependence of susceptibility.

In the quantizing magnetic field susceptibility has the resonance features on the frequencies

of the electron transitions between the Landau levels and the local levels alternating with

them. The real part of susceptibility as a function of the frequency has the simple poles on the

resonance frequencies and the imaginary one has the delta-shaped maxima. Let us notice that

at the deduction of the formulae (5.10)-(5.13) only the fact of existence of the local levels in

the electron energy spectrum is used. Their characteristics (locations of levels l
ks and

residues of scattering amplitude ksr ) are not defined precisely. Therefore, the formulae (5.10)-

(5.13) can be used for obtaining these characteristics by comparison of the theory with the

experiment. 

The results obtained can be used at studying high-frequency magnetic properties of

inversion layers at the boundary of semiconductors and dielectrics, heterotransitions,

superlattices, two-dimensional and layered metals, thin metal films in the conditions when the

electrons fill only the lower energy level due to the spatial quantization [97]. It is necessary to

take into account the above obtained features of imaginary part of susceptibility in the

dispersion equation for the spin wave spectrum in the two-dimensional non-ferromagnetic

Fermi-liquid. Below we will see that they will lead to the reorganization of the wave spectrum

in the neighborhood of the resonance frequencies. The maxima of the imaginary part of

susceptibility must become apparent in the energy absorption of the high-frequency field and

in the cross-section of inelastic neutron magnetic scattering by the two-dimensional electron

gas.
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5.2. The spin waves in the non-magnetic two-dimensional electron liquid

In par. 1.1 it was noticed that the spin waves in the non-ferromagnetic metals in a magnetic

field are connected with the spin resonance of the conductivity electrons forming the

degenerated electron liquid of the metal. The spin branch of the spin excitation spectrum of

the system of interacting electrons corresponds to a dynamic spin susceptibility pole located

outside the Stoner sectors [24,33]. Wave damping at low temperatures is due to the electron

collisions with the impurity atoms and lattice defects. Usually they are taken into account by

introducing collision frequency due to the relaxation of the electron momentum and spin [36]. 

In the presence of the impurity atoms attracting electrons and also the magnetic field in a

sample the other types of the electron resonance transitions induced by the variable magnetic

field are also possible. Those are the transitions with the spin flip between the quasi-local [10]

and also magnetoimpurity [21,22] levels and the Landau levels. Near the frequencies of these

transitions the new spectrum branches of the spin waves which were called magnetoimpurity

waves [37,51] are located.

In the existence of an additional poles of dynamic spin susceptibility connected with the

above mentioned electron resonance transitions can be proved on a basis of the simplest

approximation, which takes into account the electron-electron interaction in random phase

approximation [36]. In this approximation the electron exchange energy is taken into account

and their mutual scattering is considered in the stair approximation [36]. The random phase

approximation for the description of the spin waves in the non-ferromagnetic metals in the

presence of the magnetic field was used in the work [75]. The review of the works in which

an influence of impurity atoms on dynamic spin susceptibility without taking into account the

electron impurity states is delivered in [76]. 

In connection with the heightened interest to the two-dimensional systems [97] it is

advisable to ascertain how the impurity atoms influence the properties of the spin waves

propagating in the two-dimensional electron liquid placed into a magnetic field. The actuality

of this task is connected with the fact that in the two-dimensional electron system in a

magnetic field an impurity which intensity is somehow small removes the degeneracy over a

al levels from each Landau level

[47,105]. In contrast to a three-dimensional case [22] in two-dimensional system the local

levels exist in the field of both attracting and repulsing impurity atoms. The electron

resonance transitions between the local levels and the Landau levels must be accompanied by

appearance of new branches in a wave spectrum. 
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In the present paragraph the results of calculation of spin wave spectrum and damping in the

two-dimensional electron liquid are listed with taking into account the electron local states on

impurity atoms in a magnetic field [108]. Electron-electron interaction is taken into account at

random phase approximation. Rare impurity atoms are supposed to be distributed at random.  

Let us consider two-dimensional electron liquid in a plane z=0 which is normal to stable

magnetic field H . Electron dispersion law is supposed to be isotropic and quadratic and

chaotically distributed impurity atoms in a small concentration are supposed to be short-range

acting. In the random phase approximation a dispersion equation for the spin waves

propagating in the two-dimensional electron liquid normally to the magnetic field has a form

[75]

0),(
2

1 2 q
I

, (5.15)

where is electron spin magnetic moment; yxxx i are circular components of

dynamic spin susceptibility tensor (they depend on a wave vector q and the frequency );  I

is Fourier component of electron-electron interaction energy. The last one takes into account

only s-th wave part of particle mutual scattering amplitude. The sheet z =0 occupied by

electrons is submerged in a media whose magnetic susceptibility is taken to be equal to 1. The

value I in quasi-classical approximation is connected with the parameter 0 which appear in

Fermi-liquid theory by a relationship

)2/( 2
0 mIB

)0(
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00

0
0

)0(

2
1

1),( Fqv
q .                                        (5.16)

0

22
0 /m

is Pauli susceptibility of two-dimensional electrons. Substituting the expression (5.16) in

dispersion equation (5.15) we make sure that distribution of spin waves with polarization
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It differs from the dispersion law of the waves in three-dimensional sample [24] only in

numerical factor before 2q . Damping decrement of the waves with the spectrum (5.17) equals

to the frequency of electron collisions with impurity atoms. This frequency is due to

momentum and spin relaxation [36]. 

In the previous paragraph it was shown that taking into account local levels in energy

spectrum of two-dimensional electrons leads to appearance of resonance contributions in

components of high-frequency ( ) susceptibility tensor. It is necessary to take into

account these contributions in dispersion equation (5.15). Near frequencies s of the

resonance electron transitions between Landau levels and local levels circular components of

spin susceptibility besides (5.16) consist items

0
0

)(

is

s
s

s ,                                                   (5.18)

where s is oscillator forces of the resonance transitions, 0 is local level width. The

values s depend on a wave vector. This dependence becomes apparent in terms of the order

( qR )2 ( R is cyclotron radius), which lead to the weak renormalization of the group velocity

of the waves and will not be taken into account later on.

In the case of electron transitions from the Landau level into the local level with a spin-flip

the resonance frequencies equal to

00cs s ,                                                 (5.19)

where c is electron cyclotron frequency, 0 is a distance between the Landau level and a

local level splitted off from it,  s is a resonance number. In the case involved the oscillator

forces equal to

k

l
kskk

sc

ic
s ffr

s
n

)()(
)( )(2

0
2 ,                              (5.20)

where n and l
k are locations of n-th Landau level and k-th local one with a spin projection

, f is Fermi function, kr is a residue of amplitude of electron-impurity scattering in a

pole 0il
k , ni is impurity atom density. Summarizing in (5.20) is performed over couples
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of the levels participating in the transitions at a frequency s . Function Fermi difference

includes the Pauli principle. The number of items in (5.20) depends on location of Fermi

energy F of degenerated electrons.

Electron transition frequencies from the local level into the Landau level with a spin-flip

equal to

00cs s .                                                      (5.21)

The corresponding oscillator forces have a form

k
sk
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2 .                             (5.22)

Let us consider a neighborhood of frequency 000 of electron transitions from

Landau level N into local level l
N . Since l

NFN , in the sum over k incoming in

the formula (5.20) only one item with k =N remains. Other transitions at the frequency are

forbidden by the Pauli principle. It is supposed that 00 . And if 000 B the resonance

frequency 0 is less then a limit frequency of the wave with a spectrum (5.17). In this case a

dispersion curve (5.17) of Silin wave intersects with a straight line 0 and there is a

cross-situation which is analogous to the discovered one in a crystalline lattice with the quasi-

local oscillations [84]. The cross-situation is an intersection of dispersion law curves of two

type waves or elementary excitations. If one takes into account the contributions (5.16) and

(5.18) the dispersion equation (5.15) for limit ( 0q ) frequencies in the spin wave spectrum

takes a form

r

B
B

/1/1
/1

0
0

00 , (5.23)

where r = 0 ,  

0
2

0
0 )(

iNc nr
. (5.24)

This equation has two solutions corresponding to low- and high-frequency branches of 

spin wave spectrum:  

)1(
2
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2
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BBB rr . (5.25)
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The limit frequency is located below r and is located in a gap [ )1( 00 B , 0 ].

The parameter defining branch (5.17) splitting into two branches is . If 0 then the

frequency approaches to r , and approaches to )1( 00 B . In the spin wave

spectrum there is a gap [ , r ] within which wave propagation is impossible. Its width

equals to

00 .                                                        (5.26)

The curve (5.17) crosses a line = r in a point  

2/1

00

00000
0 )1(

)(2
B
BB

v
q

F

. 

If q << 0q one may only take an expansion of the dispersion equation (5.15) in a series over q

powers. In long-wavelength limit we obtain a dispersion law of considered spin wave

branches:  

12

0

00

2

1
)(

2
1

)(
r

rFqv
q .                              (5.27)

The dispersion of these waves is anomalous. They represent heterogeneous precession of

magnetization around the direction of a constant magnetic field. This precession propagates in

a plane z=0. Component ratio of spin magnetization vector m induced by a variable magnetic

field in the waves with the spectrum (5.27) equals to

i
m

m

xx

yx

x

y .

One can easily obtain cartesian coordinates of susceptibility tensor from (5.16) and (5.18).

The damping of spin waves propagating normally to the magnetic field is due to electron

collisions with the impurity atoms. They are determined by the parameters and 0

characterizing the impurity broadening of Landau levels and local levels. Taking into account

small imaginary additions in the expansion (5.16) and (5.18) we make sure that the solution of

the dispersion equation (5.15) has a form

)()( qiq ,

where )(q is the dispersion law of the waves (5.27) and is damping decrement. It

equals to
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r .                       (5.28)

Small values and 0 provide fulfillment of inequality << . If 0 then from the

formulae (5.27) and (5.28) we obtain spectrum and damping decrement of spin waves in the

absence of electron localization.

Two solutions (5.27) of the dispersion equation also remain in the case 000 B . But now 

)1( 00 B , 00 . 

Let us consider electron transitions from local level l
N into Landau level N . The

transition frequency equals to 00r and the oscillator force is

)()( 00
2

0

iNc nr
.                                                            (5.29)

The dispersion equation for the limit frequencies in a considered case has a previous form

(5.23) but now 00r and oscillator force is expressed by the formula (5.29). The

limit frequencies are located in the regions

)1( 00 B , r0 .

Low-frequency spectrum branch is recovered with the band of Silin wave (5.17). High-

frequency branch is located in a frequency region where propagation of quasi-classical Silin

waves is impossible. The solutions of the dispersion equation differ from (5.25), (5.27) and

(5.28) by the other values of resonance frequency and oscillator force. Spin waves with a

dispersion law ( q ) slightly damp in a transparency band [ , r ] with width 

00 .                                                            (5.30)

From the formula (5.16) it is well seen

that in the absence of electron localization a slightly damping solution of the equation (5.15)

10B . But electron liquid

under this condition becomes instable [36]. The positive contribution (5.18) of local levels in

real part of spin susceptibility in a region s leads to the possibility of propagation of

such waves. This situation reminds antihelicons in electron gas [39] whose propagation is

possible due to the existence of subsystem of localized electrons with a direction of rotation

which is determined not only by a magnetic field but also by impurity center.
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Resonance frequency of transitions from Landau level )1(N into local level N with spin

flip equals to 001 c . Oscillator force

)]()([
)( )1(

1
2

0
21

l
NN

c

iNc ff
nr

.                                     (5.31)

In this case dispersion equation for limit frequencies of spin waves has a form

r

rB
B

0
0

00 )1(
, (5.32)

where 1r , 1 . In a region r two solutions of this equation exist

)1(
2
1

)1(
2
1

000 BBr

2
000 )1()1(

2
1

BBr

2/1
00 )(4 rrB . (5.33)

If 0 the upper branch (5.33) approaches the resonance frequency r and a solution

becomes negative. 

In a long-wavelength limit the solutions of the equation (5.15) in a considered case are the

following:

12

0

00

2

1
)(

2
1

)(
r

rFqv
q ,                               (5.34)

where are the limit frequencies of (5.33). Dispersion of these waves is normal. They

slightly damp due to electron collisions with impurity atoms in the transparency bands

located between limit frequencies (5.33) and a resonance frequency 1 . 

The frequency of electron transitions from the local level l
N into Landau level )1(N

equals to

00cr

and oscillator force is

)]()([
)( )1(2

0
2 N

l
N

rc

iNc ff
nr

.                                           (5.35)

In this case two branches of spin waves are located in the interval (0, r ). The solutions of the

dispersion equation are given by formulae (5.33) and (5.34) in which 00cr and

the oscillator force is determined by (5.35). 



95

5.3. Neutron magnetic scattering by two-dimensional electron gas with the magnetoimpurity

electron states

The spin waves considered in the parts 5.1 and 5.2 can be detected in the experiments with

slow neutrons. Differential cross-section of neutron magnetic scattering by two-dimensional

electron liquid which is calculated on a square unit equals to [60]

)1(
4
1

2

0
2

n
k
kr

dOd
d

ik

s
ikkiik qee ),(Im)( ,                                                    (5.36)  

where s
ik is symmetrized tensor of spin susceptibility, 22

0 / mcer is classical electron

radius, =1,91 is a neutron giromagnetic ratio, q = kk and = are changes of the

neutron wave vector and energy at scattering in a solid angle Od , n is a Planck distribution

function, qqe / .

Since scattering vector q is normal to magnetic field the sum incoming in (5.36) equals to

zz)(
2
1

, (5.37)

where components of spin susceptibility tensor are calculated in random phase approximation.

In the absence of electron-electron interaction a local level contribution in longitudinal

component of dynamic spin susceptibility equals to

nk
l
kn

k
iczz

r
n 20 )(2

1
)(

)]()([ n
l
k ff

iol
kn

1
iol

kn

1
.

This function has resonance singularities at frequencies /l
kn of electron transitions

between Landau levels and local levels without spin flip.

From the formula (5.36) one can easily obtain a contribution of one-particle excitations of

electrons localized on impurity atoms in a cross-section of inelastic neutron scattering. Items

with in (5.3) give contribution in scattering cross-section with electron spin flip

and items with zz give a contribution without spin flip. In particular, cross-section of the

scattering accompanied by electron transitions from local level into Landau level with spin

flip near s (5.21) equals to
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.                                     (5.38)

Here temperature is supposed to be small in comparison with the transition energy. In the

energy spectrum of scattered neutrons symmetrical maxima (5.38) are present due to one-

particle excitations of localized electrons. Such maxima connected with electron transitions

from Landau levels into local levels must be observed at s (5.19). Let us notice that in a

three-dimensional case analogous maxima are asymmetrical [52]. It is connected with

asymmetry of electron state density at the Landau levels.

Besides maxima described by the formula (5.38) in spectrum of scattered neutrons a series

of Lorentz maxima is present due to the scattering on spin waves with the spectrum (5.27) and

(5.34). Cross-section of a scattering with emission of spin wave quantum with a dispersion

law q equals to:
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qq

q

rq

qr ,                                         (5.39)

where r is a resonance frequency (5.19) or (5.21), is an oscillator force (5.20) or (5.22),

q is a wave damping decrement. If 0 from the formula (5.39) we obtain neutron cross-

section on the spin waves with the spectrum (5.17) [90].  

Characteristics of local electron states (locations and widths of local levels, residues of

electron scattering amplitude by impurity atoms) have not been given a precise expression so

far. Only the fact of existence of a pole of electron-impurity scattering amplitude has been

used. These characteristics can be obtained by the way of comparison of the theory with the

experiment or they can be calculated on a basis of a certain model of impurity potential. In

particular, in a case of short-range acting potential of impurity atom and slight splitting local

level from Landau level off ( c0 ) a residue of scattering amplitude equals to [82,107]

cmr /2 2
0

3 . This expression will be used for estimations.

For an estimation of values of differential cross-section maxima obtained in this part for

neutron scattering we use values of parameters which are typical for thin films of semi-metals

and inversion layer at a boundary of Silicon with Silica [97]: m =10-31 kg, ne=1016 m-2, i.e.

two-dimensional electron liquid density, ni/ne=0,01, 00 / = 0,2, 0B = 0,1, 0 . Then in
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the field with magnetic flux density 10 T we obtain 0
12 s-1, ratios of maximal

values of cross-sections (5.38) and (5.39) to the cross-section maximum of  the scattering on a

Silin wave equal to 0,23 and 0,12. In this case ratios of widths of the gap (5.26) and of the

transparency band (5.30) to 0 equal to 0,74 and 0,02 respectively.

Resuming the results obtained in the parts 5.2 and 5.3 we notice that impurity atoms in two-

dimensional electron systems exert important influence on a quasi-particle energy spectrum. 

In such systems a very weak impurity is able to form a local level at the edge of a

conductivity zone. In a quantizing magnetic field which is normal to a plane of electron

motion multiplication of local levels occurs. They are splitting off up or down from each

Landau level in dependence on a sign of impurity potential. Such a structure of spectrum of

two-dimensional electron system in magnetic field affects on its high-frequency

characteristics. In particular, dynamic spin susceptibility has resonance singularities on

frequencies of electron transitions between Landau levels and local level with spin flip. On

these singularities new branches of spin wave spectrum are formed in non-ferromagnetic two-

dimensional electron liquid.

Here it is shown that electron localization on impurity atoms competing with dissipation

processes is conducive to spin wave propagation. New spectrum branches of collective

oscillations of spin magnetization exist in those regions where Silin wave propagation is

impossible. The spectrum and damping decrement of these waves have been calculated.

When the Silin wave frequency coincides with the frequency of electron resonance

transitions between Landau levels and resonance levels the rearrangement of spin wave

spectrum which is due to binding oscillations in the spin wave with oscillations at the

resonance occurs. Dispersion curve of Silin wave in two-dimensional electron liquid splits

into two branches: low- and high-frequency. They are divided by a gap within which the wave 

propagation is impossible.

The spin waves considered here can be detected in experiments over measurement of

differential cross-section of inelastic neutron magnetic scattering by the current of spin

magnetization of two-dimensional electrons. In energy spectrum of scattered neutrons there

are maxima due to both one-particle excitations of electrons localized on impurities and spin

waves. Symmetrical maxima due to one-particle excitations are located on resonance

frequencies of transitions between Landau levels and local levels. The widths of these

maxima are determined by the widths of levels participating in the transitions. Locations of
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Lorentz maxima of scattering cross-section on the spin waves allow to obtain the wave

spectrum and their widths allows to obtain damping decrement. 

The results listed in this chapter can be used at studying two-dimensional metals, inversion

layers on the boundary of semi-conductor with dielectric, layered systems, thin metal films

under the conditions when electrons are located on a lower energy level which is due to

dimensional quantization.
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C O N C L U S I O N

Here we resume the main results listed in the monograph.

Dynamic spin susceptibility of conductivity electrons in non-ferromagnetic metals with

quasi-local states of carriers on impurity atoms in a magnetic field has the resonance

singularities on frequencies of electron transitions induced by a variable magnetic field

between quasi-local levels and Landau levels.

Resonance contribution in a tensor of dynamic spin susceptibility of electrons with the

quasi-local states in metals whose Fermi surface has a form of a revolution ellipsoid depends

on orientation of strength vector of the magnetic field relatively to an axis of ellipsoid

revolution.

In non-ferromagnetic metals with the quasi-local electron states in magnetic field new

spectrum branches of transversal spin waves exist. Their frequencies lie in the transparency

bands near the frequencies of the resonance transitions of localized electrons into Landau

levels accompanied by a spin flip.

Characteristics of these waves (dispersion law, damping decrement, polarization) depends

on parameters of the quasi-local states.

The quasi-local states of electrons in a field of impurity atoms influence spectrum and

damping quantum spin waves in the non-ferromagnetic metals in a magnetic field. In the

region of intersection of spin wave dispersion curve with the frequency of resonance electron

transitions between the quasi-local levels and Landau levels the rearrangement of quantum

spin wave spectrum which is well- -

one branch in every transparency window two wave spectrum branches exist.

Inelastic neutron magnetic scattering in the non-ferromagnetic metals with the quasi-local

electron states on the impurity atoms in magnetic field leads to excitation of spin waves which

damp slightly in transparency bands near frequencies of resonance electron transitions

between quasi-local levels and Landau levels. Calculation of differential cross-section of

neutron magnetic scattering by these waves shows that in energy spectrum of scattered

neutrons there is a series of Lorentz satellites located symmetrically relatively to the unshifted

line.

High-frequency asymptotic of dynamic spin susceptibility of two-dimensional electron gas

is calculated. Local states of electrons on impurity atoms and quantizing magnetic field are

considered. Susceptibility has resonance singularities on frequencies of electron transitions

between Landau levels and local levels. In the absence of a magnetic field the real part of
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susceptibility has logarithm feature and the imaginary one has a maximum on threshold

activation frequency of bound electrons by a variable electromagnetic field.

In a random phase approximation spin waves in non-ferromagnetic two-dimensional

electron liquid are considered in a magnetic field. Bound electron states in a field of impurity

atoms are considered. It was shown that electron localization provides spin wave propagation.

New spectrum branches of the waves exist in frequency regions where propagation of Silin

waves is impossible. Wave spectrum and damping decrement of the waves are found. When

crossing a dispersion curve of Silin wave with electron resonance frequency between Landau

levels and local levels a cross-situation which is typical for bound waves takes place.

Differential cross-section of neutron magnetic scattering by two-dimensional electron

liquid in a magnetic field is calculated. In an energy spectrum of scattered neutrons additional

maxima are present due to one-particle excitations of localized electrons and spin waves.

Locations and widths of these maxima allow to obtain the data about a spectrum of electron

impurity states and also the spectrum and the damping of the spin waves.
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APPENDIX I

The formulae used in the text for the resonance contributions to circular components of a

tensor of dynamic spin susceptibility of electrons with isotropic and quadratic dispersion law

have a form:
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APPENDIX II

Formulae for resonance contributions to components of a tensor of dynamic spin

susceptibility of electrons with anisotropic dispersion law
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