New branches of spin waves spectra in non-ferromagnetic conductors and
two-dimensional electron gas were predicted. The resonance (local,
quasilocal and magnetoimpurity) electron states on impurity atoms were
taken into account. Near frequencies of electron resonance transitions
between spin split resonance levels and Landau levels there exist weakly
damped spin magnetization oscillations called magnetoimpurity spin waves.
A physical cause for existence of these waves is localization of electrons on
impurity atoms stimulated by a magnetic field. The localization attenuates
dissipation processes and leads to a possibility of propagation of new spin
waves which are absent in pure samples. A spectrum and damping
decrement of these waves were determined. New resonance features in an
energy spectrum of inelastic neutron magnetic scattering on spin waves in
conductors and two-dimensional electron gas with resonance states of
electrons in a magnetic field were discovered.
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A .M.Ermolaev, N.V.Ulyanov

LANDAU-SILIN SPIN WAVES IN CONDUCTORS WITH IMPURITY
STATES
Theoretical investigation results of spin waves properties in nonmagnetic conductors
and heterostructures with 2D electron gas in presence of impurity atoms be able to localize
electrons are listed in monograph. The effect of quasi-local and magnetoimpurity states of
electrons on dynamic spin susceptibility of electron gas, on spectrum and damping of spin
waves are considered. New branches due to electron impurity states in spin wave spectrum
are predicted. Methods of diagnostics of these waves in experiments with slow neutrons are

proposed.
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INTRODUCTION

Impurity atoms in a conductor exert a complicated influence on quasi-particle energy
spectrum. They cause shift and spread of energy zones as well as state density rearrangement
accompanied by appearance of both local and quasi-local levels.

A local state concept in non-ideal crystalline lattice oscillation spectrum has been
suggested by I.M.Lifshits [1] in 1940s. These investigations were continued in the Kagan and
losilevskii [2, 3] and Brout and Visscher [4] articles in which impurity atom quasi-local
oscillations in lattice was predicted. A theory of other quasi-particles — electrons and magnons
— was been elaborated at the same time.

However, despite electron local states in semiconductors [5] were known long time ago, a
quasi-local state concept in impurity conductors was given an intensive development during
last decades (see articles [6-9] as well in [10-14]).

These works demonstrate that electron impurity levels ¢, in an insulated inclusion field
can occur in a continuous spectrum region of assembled carriers. Being in resonance with
zone states each of these levels splits into two sublevels which in their turn split as well and
so on. This process is accompanied by appearance of a quasi-local level finite width T". One
can consider that an electron is captured by an impurity for some time z=7%/I" (# - quantum
constant) and then it is emitted. On a collision theory view point [15-17] such states
correspond to complex poles ¢, —il” of scattering amplitude. These poles are placed on a non-
physical sheet of a Riemannian surface. Such states result into a sharp change of de Broglie
wave phase on 7 (those waves are scattering by an impurity center), and scattering cross-

section increase in A/7, times (A - electron wave length, r, - scattering center radius) when

electron energy passes through the resonance value ¢, [15].

Though such resonances were known in quantum physics long ago [15] their role in solid
state physics has become clear quite recently.

The situation changes in a magnetic field. Special electron bound states appear which are
caused by influence of an attraction impurity and magnetic field on particle. The idea of
magnetic localization of carriers at insulated impurity atoms goes back to works of
V.G.Skobov [18] and Ju.A.Bychkov [19]. It is stated there that Landau quantization leads to
bound state “multiplying”. A state under the condition mentioned above resembles a case of
proper quasi-local states. Magnetoimpurity state physics was developed in the works [20-22].

A theory of spin waves in ferromagnetics and antiferromagnetics has been thoroughly

elaborated [23]. Less attention was paid to spin waves in nonferromagnetic metals in



monographic literature. Here we deal with resonance electron state influence in a field of
impurity atoms on properties of these waves.

Resonance states of electrons influence considerably on properties of spin waves in
nonferromagnetic metals in a magnetic field. L.D.Landau [34] pointed out the possibility of
such wave propagation without magnetic field and V.P.Silin [24] pointed out the possibility
of such wave propagation in a magnetic field. They were recorded experimentally [25, 26].

A cause for spin wave appearance in nonferromagnetic metals in a magnetic field is an
exchange interaction of assembled carriers [27-31]. The waves described in the works [28, 29]
exist due to spin resonance of conductivity electrons [32] which form degenerated Fermi-
liquid [28-31, 33-36]. Other resonances lead to new branches of collective excitation
spectrum of metal spin system. For example, near frequencies of electron resonance
transitions between spin split magnetoimpurity levels and Landau levels there exist slightly
damped spin magnetization oscillations called magnetoimpurity spin waves [37]. They are
analogous to magnetoimpurity electromagnetic waves [38-41]. A physical cause for existence
of these waves is localization of electrons on insulated impurity atoms stimulated by a
magnetic field. The localization attenuates dissipation processes and leads to a possibility of
propagation of new electromagnetic and spin waves which are absent in pure samples.

The waves of this type exist also in the case when electron localization is due to just
impurity atoms and it isn’t connected with the magnetic field. That’s why a theoretical
prediction of such spin waves, studying their properties and characteristics as well as
consideration of the experimental investigation methods are an important problem of solid
state physics.

For this reason it’s necessary to find out how quasi-local states of electrons on impurity
atoms in nonferromagnetic metals influence characteristics of spin waves in a magnetic field.
To gane this objective it’s important to solve the following problems: with the help of the
method of Green temperature functions it’s necessary to calculate new resonance
contributions in components of a tensor of dynamic spin susceptibility of electrons with a
square isotropic and anisotropic dispersion law, to predict new branches of spin wave
spectrum in nonferromagnetic metals with quasi-local states of electrons in a magnetic field,
to consider neutron magnetic scattering on these waves as a method of experimental detection
of new types of spin waves.

The components of a tensor of dynamic spin susceptibility of electrons of conductivity in
nonferromagnetic metals with quasi-local states of carriers on impurity atoms in a magnetic

field were calculated in the course of this work. Those components contain new resonance



contributions induced by electron transitions between quasi-local levels and Landau levels,
the latter caused by variable magnetic field. New resonance contributions to components of a
tensor of dynamic spin susceptibility of normal metals with quasi-local states of electrons
whose Fermi-surface resembles a revolution ellipsoid were determined. These contributions
depend on an angle between a direction of a tense vector of magnetic field in which the metal
is placed and an axis of an ellipsoid revolution. New branches in a transversal spin wave
spectrum were predicted while examining the processes of wave propagation in
nonferromagnetic metals with quasi-local states of electrons on impurity atoms in a magnetic
field. Transparency bands of these waves lie close to frequencies of resonance electron
transitions between quasi-local levels and Landau levels accompanied by a spin flip. New
type wave characteristics such as polarization, spectrum, damping decrement were calculated
for the first time. An influence of quasi-local electron states on a spectrum and damping of
quantum spin waves in nonferromagnetic metals in a magnetic field was investigated for the
first time. It was shown that in this case a spin wave spectrum reorganization takes place in a
region of intersection of spin wave dispersion curve with the frequency of resonance
transitions of electrons between quasi-local levels and Landau levels accompanied by a spin
flip. New branches of quantum spin waves appear in transparency windows.

A spectrum and damping decrement of these waves were determined. New resonance
features were discovered in an energy spectrum of inelastic neutron magnetic scattering on
spin waves in normal metals with quasi-local states of electrons in a magnetic field. A
differential cross-section of magnetic scattering of neutrons with an excitation of spin waves
of'a new type was computed for the first time.

The results obtained broaden the notion about collective spin excitations in
nonferromagnetic metals with quasi-local states of electrons on impurity atoms in a magnetic
field and contribute into a development of a theory of spin waves in solids. A practical value
of this work is assessed by a possibility of use of statements which were developed in it about
new spectrum branches of spin waves which propagate in nonferromagnetic metals with
elaboration of principles of creating new functional materials with definite properties for solid
state microelectronics.

We express our gratitude to N.V.Gleizer, G.I. Rashba, A.D. Rudnev and A.D. Serdjuk for a
discussion of the results used in this monograph, to V.V.Ulyanov for stimuli in work, to
reviewers A.S.Kovalev and V.A.Yampol’skii for constructive remarks and also to Lyudmila

Khristenko for fruitful collaboration.



CHAPTER I. SPIN WAVES IN A FERMI-LIQUID OF NONFERROMAGNETIC METALS
AND IMPURITY STATES OF ELECTRONS

1.1. Spin waves in a Fermi-liquid of nonferromagnetic metals

In a nonferromagnetic metal spin waves can propagate due to exchange interaction of
conductivity electrons. These waves were predicted by V.P.Silin [24]. Studying the spin
waves is carried out on a basis of a kinetic equation for a vector spin density of electrons [29,

31]

6;" (v—+ [v H]—)(ﬁa—ﬁagzn
27(H 56 — afl’&z) (agfj (1.1)

Here H - magnetic field directed along z axis, 55 - a little non-equilibrium addition to a
spin density (66 LH), p and v - momentum and velocity of electron, fo(e) - Fermi-
function of distribution, y - effective magnetic moment of a quasi-particle in a degenerated

electron liquid,

52, :—yéH+j ~w(p, P)3G(P,7.1), (12)

(27h)
4 - magnetic moment of electron, SH - variable magnetic induction, w - correlative
function depending on an angle between p and p vectors lying on the Fermi sphere, 7 and

t - radius-vector and time, e - the charge of electron, ¢ - velocity of light, 7 - the quantum
constant. Collision integral is marked by the “col” index.
If one neglects the collision integral in the right part of (1.1) than for excitations of

exp[i(gr — wt)] type this expression gets equal
. O e 2V A -
7ta)g+(1qv795)(g+582)+?(H><g+5§2):0. (1.3)

Here ¢ and @ - a wave vector and frequency of excitation, ¢ - an angle in (x, y) plane, Q

- cyclotron frequency and g function is defined by an equation

55=-2250.0), (1.4)



where g(60,¢) = Zan_m}’m(ﬁ,go) - g function expansion in series over spherical harmonics
Y, . Neglecting space dispersion (4 =0) and a wave magnetic field (6H = 0) in the kinetic

nm*

equation (1.1) let’s express it in a form of equations for g, and g, =g +ig, components:

—ia&—Q%(gﬁ&z:):O, (1.5)

7ia)g17Q%(gi+&921)ii5(g¢+&g21):0’ (16)

where @ 2 )

For the g. and g, functions let’s use an expansion

€=2.0,,Y,.0.9).

Thus for &, and &,, values with taking into account the formula (1.2) we obtain

&%, = memBnYmm(H,(p), Here B, - coefficients of an expansion of spin part of correlation

Landau function in series of Legendre polynomials [29-31]. Substituting these expressions in
the kinetic equations (1.5) and (1.6) we determine natural frequencies of longitudinal and

transversal oscillations of magnetization of the system:

o=, =-mQ(+B,),
! N (1.7)
w=0',=—(mQ+d)(1+B,).

nm

With taking into account an expression for the effective magnetic moment of quasi-particles

y=u/1+B,) if n=0,m =0 formula (1.7) gives
Wy =FO(1+By)=F2uH | h=FQ,, (1.8)

where Q) - frequency of a spin resonance of conductivity electrons [32].
Let us consider a case of longitudinal propagation of spin waves (éHFI ) with a polarization

corresponding to g, function. As this takes place, g, function doesn’t depend on the

angle ¢ and, therefore, an expression d&,, = B,g, is valid for the value of ¢,,, where g,



is obtained by integration of g, value over all the directions: g, = o I dOg, . The kinetic
T

equation with taking into account spatial dispersion takes a form
g, = g,B,(qv, cos 0+ @) w—qv,cosO—m)". (1.9)

Here v, - Fermi velocity of an electron. Integrating (1.9) relation over the directions we

obtain the dispersion equation in a form

7S]nS_S°+1—

1_s 1, (1.10)
B, 2 s-s,-1

® @
where s =—, 5, =—.
qVr qVr

The dispersion equation (1.10) is real under those values of @ and g which lie beyond the
region bounded by straight lines @ =@ +qv,, @=@—qv, which define boundaries of a
region of one-particle excitations which are connected with a spin flip of an electron. In other
words, the dispersion curve of spin waves must lie outside the Stoner sector where the waves
experience the Landau damping.

At low values of ¢ the logarithm in the equation (1.10) can be expanded in the Taylor

series. It will give the following dispersion law of the spin waves:

2 2

Ve
—+...). 1.11
3Boa)2 ) ( )

o=a(l+B)(1+

B, value in metals is negative [28, 31]. The dispersion curve (1.11) is shown in Fig. 1. Notice

that the formula (1.8) leads to a spin wave limit frequency equal to the frequency of the spin
resonance.

The damping of the waves is defined by the collision integral in the right part of the
equation (1.1). In a case of low temperatures, which are considered by the author of the [29],
the only collisions of electrons with  impurities are sufficient. Therewith one makes a
distinction between collisions with a spin flip which change the magnetization and collisions
with a momentum change not changing the magnetization. The collision integral is

correspondingly written as [29]
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Fig. 1. The dispersion curve (1.11) for
the spin waves of Silin (B, <0) [30].

(@] L bos-Doszy+ Doy Loy«
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f 8%, (7).

(9)
Here 7, and 7(6) characterize a momentum relaxation of electrons while 7 - spin flip time.

Let us use the expansion [29]

L Z ! (21 +1)B(cos 6),
7(0) =7,
where
_ dl 2 1
F(z)= TN z =1

are Legendre polynomials. A frequency of electron collisions v is inversely proportional to
relaxation time. In the vicinity of the spin resonance frequency of conductivity electrons

T>>1,.,7, where 7, is time of a free path of an electron. Experimentally the spin

waves with the spectrum (1.11) were detected in alkaline metals by Schultz and Dunifer [25].
At rather high temperatures or under reasonably high frequency of electron collisions the
following physical pattern takes place in their experiments [25]. If penetrated into a metal
electromagnetic field tense to damp sharply in a small region of a skin layer where it directs

spin magnetic moments of electrons. Then electrons with a directed magnetic moment diffuse



from the skin layer into a metal depth. Since spin flip time 7 is rather big (~10° s)
magnetization caused by diffusing electrons diffuses in a metal depth at lengths which are
much bigger then a depth of skin layer. Such a phenomenon occurs in a small vicinity of the
spin resonance frequency. The width of a region of metal film selective transparency is
determined by spin flip time [32, 36].

With temperature reduction electron momentum relaxation time increases and diffusion
coefficient firstly is getting depended on a frequency at first and secondly it becomes pure
imaginary in a @>>v limit. The latter leads to a rising possibility of propagation of
magnetization waves (the spin waves) with dispersion law (1.11) instead of magnetization
diffusion. As a result transparency of metal films appears not only with spin resonance
frequency but also in a neighborhood of such a frequency on spin wave frequencies.

Experiments [25] gave a possibility to assess the values of parameters B, which are
constituent the expressions (1.7). In a case of sodium it turned out [31] that
B,=-0,215+0,03.

Transparency windows within which a collisionless damping of transversal spin waves is
absent appear in a quantizing magnetic field in a Stoner sector. New branches of so called
quantum spin waves can locate in those windows. Their spectrum is linear in a long

wavelength approximation and damping is determined by electron collisions [42].
1.2. Quasi-local and magnetoimpurity states of electrons

Let us consider a conductor with one group of carriers with a dispersion law &(p) = p*/2m
(m — effective mass of an electron, p - momentum), containing N, impurity atoms

randomly distributed over N lattice points.

Let’s consider a concentration of impurities N,/ N little and take linear approximation over

this parameter.

Let us mark potential energy of a-th electron in the field of j-th impurity center v(7;, —7,).

Here 7 with or without a corresponding index is a radius-vector. Density of impurity atoms is

equal to
Ni
P(F)=3 8 ~F). (112)
j=1

Its Fourier component is



[&rp, (e =™ = p,, (1.13)
J

where ¢ is a wave vector of a plane wave. Hamiltonian of electron-impurity interaction has a

form ZV@ —7,) and Fourier component of the function v(7) is equal to

aj
v, =l d’rv(F)e ™ . (1.14)
Let’s place the sample in a quantizing magnetic field with strength H with a vector
potential in Landau gauge A= (0, Hx,0). Then suitable quantum numbers of a electron state
in the magnetic field are orbital quantum numbers x =(n,p,,p.) (n=0,12,...) and a spin

quantum number o = =1 as it follows from [15].
Hamiltonian of electrons in the field of impurities and in the magnetic field in a secondary

quantization representation has a form

. . 1 e
H=Y¢.,4,4,,+ ;qu Py 2L, (@) ,4,, (1.15)
Ko q K1Kp0
where &, is an electron energy in the state with a ket vector ‘KU>, a., and a,  are

operators of secondary quantization, V' is the volume of the sample, /., () =<K]‘e"ﬁ‘1(2> are

matrix elements of plane wave in the Landau basis {‘K>} [43]. Orthonormalization of spin
wave functions: <O'1 ‘0'2> =0,,,, is taken into account.
Let’s introduce Green one-particle temperature function of electrons [44, 45]:

Goo(?) = ~(T {4, (D)2, (0)}), (1.16)

where —-p<r<p (p=1/k,T, k, is Boltzmann constant, I is temperature),
<> = Sp{e’”ﬁ ' ...}/Spe’ﬁﬁ " - averaging over Gibbs large canonical ensemble (FAI '=H- ,u]\7 s
4 - chemical potential, N - operator of electron number), 7, - symbol of a chronological

product of operators, 4, (7)= e’ﬁ'&w(O)e’T’9 " - a Matsubara operator. Symbol < . > includes

averaging over positions of impurity atoms as well.

. . . T
Let’s use a connection between a Fourier component G.(ig,) (gS=E(2s+1),

s =0,£1,...) of this function in the Landau basis with a scattering operator:

Grolis,) =G g8, + G is )T (is )Gk (ig,), (1.17)



O 2 2\ _1/(i ; on i —
where Gk (ig,) =1/ig, —&,,) is electron Green function in a pure sample (v;=0),
& =6 — M, To.(ig,) is a Matsubara operator of scattering electrons by impurities. The last
one satisfies a Lippmann-Schwinger equation which has a form in the Landau basis

T5(i6,) = Ve + 2 Ve GVR (6 W +

+ D Ve G ig W, G i, W 4= (1.18)

i,
0)o (- o /s
=V + 2 G716, W, T3 (i)
Here V,, is matrix elements of the Hamiltonian of electron-impurity interaction. In the

general case it’s not possible to sum this iteration series. Let us accomplish configuration
averaging [45] of its terms. Let us point out that in our case averaging concerns 7,.. operator
or more precisely it concerns the products of Fourier-densities p; ...p; which depend on

coordinates of the impurity centers.

After averaging over the configurations of impurities
(Gie(ig))e = GI(ig )0,
where
Grlis) =lis, - &, - Yot (1.19)
and z:(igx) is Matsubara self-energy part.

A series for G7 can be represented in a diagram form [45]:

R

Vol Vo
—= - + l .
X X KI[K(O) =1 o
(1.20)

X N X, L RN
+ IV WiV + 9 7/ 9 +

| |

ke i x i Kl i

G? (ig,) function is connected with a diagonal element of averaging Matsubara operator of

scattering by an equation



GZ(is,) =G (ig,) + GV (ig, )T (i, )G (ig,) . (1.21)
Let us leave only terms which are proportional to the N, for 7.7 . They descript impurity

scattering of electrons by centers which act independently:

T A N

I N A B + 02
1 / [
If an impurity is short-range, i.e. v; *v,, we obtain:
T"(l’@)%% (1.23)
1- v Z, G, (ig,)
(a sum of geometric progression). In particular, for ¢ -potential
v(#) =v,0(7) (1.24)
we obtain
v, =[d’rv(F)e™ =v,. (1.25)

Having Green temperature function G we may obtain retarded G* and advanced G~ Green

functions by changing i¢, to & £i0:

Gi(0,8) = G (1,9 + [ (e, O T2(9), (1.26)
where
T: ()= Y , 127
- L E© T @) (1.27)
G (k,&) = (=&, £i0) ", (1.28)
F,(&) :Re%ZGf,‘”i(K,é); (1.29)
Va(§)=%z5(§*§m) (1.30)

is state density (per volume unit) of electrons with the given spin orientation in a magnetic
field, n, = N,/V is impurity atom concentration. The function (1.29) is a Hilbert transform of
state density.

Poles of the function (1.27) define locations and widths of impurity (local and quasi-local)
electron energy levels. The local states correspond to roots of equation

1-v,F.(&)=0, (1.31)



lying in a region where v, =0. Broadening a local level is absent in the considered case. In
this equation “dipping” in continuous spectrum (v, # 0) quasi-local states are solutions. They
have finite width which is in inverse proportion to the life time of electron near the impurity
[10].

In a general case the root ¢, of this equation is lost in a continuous spectrum of positive
energies. However, in some cases (low state density v_(&) in the neighborhood of the point
£, , big value of ‘vo‘) the state which is about to be bound exists and has positive energy [6-

9]. In a resonance way this state is combined with the states of a continuous spectrum (these
states superimpose on it) with the same energy and splits into two states with close energies.
Both of these states resonate in their turn with continuum states (which coincide with them in

energy) and split again and so on. This process leads to some width I', of quasi-local level.

Electrons may be considered to be captured for some time 7z ~7%/I" at a quasi-local level and
then they are emitted in a random direction. Wave functions making a contribution in such
states are concentrated near the impurity and form almost a local state. Let us write a spectral

representation of average Green function (1.26):

o mE) .
GJ(K,é)—r_g,iiO g’ (1.32)
where
P, =F L ImG (5.5) (1.33)

is spectral density. For electrons in a magnetic field
P (k,8) = S(e~5,,), (1.34)

where e=&+pu, 6, =&+ 1.
Knowing the spectral density p_ (&) of electron average Green function both in a magnetic

field and a field of impurities one can determine density of states

gJ(S):%ZpJ(K,é‘). (1.35)



Electron state density only in a magnetic field is equal to (1.30). Since the electron energy

LZ\ i

doesn’t depend on p, and Zl is a degeneracy order of the level & [15],

np.c

e|HI
Z ‘2‘ - z (‘e‘ is a value of electron charge, L is a dimension of a sample). Thus

v (&)=

H
c

2
(Ml) ZI p. {6 hQn + )—p’;—guoHa}, (1.36)

where Q= is cyclotron frequency, g is g-factor, g, is Bohr magneton. From

here we obtain
m3"2Q n, () 1

23/2 th -
T =0 s—hQ(n+%) —o-%,uOH

ve(&)= ,
where n_(¢) is a maximal value of the » under which the radicand is not negative.
In linear approximation over #,
pP=p,+P, (1.37)
where

P, (k,6) = —L[69" (k. 0)f ImT (o). (1.38)
T

Near the impurity level ¢, (a root of the equation (1.31)) impurity addition to the spectral

density has a form

1 1 T,
T TP [Py gy e 8 (139

where F.(¢)=dF,/de and

_We(8,)

= 1.40
TSTP (1.40)

is the width of quasi-local level. In the next chapter it will be shown that a feature of the

function (1.39) at & =¢,, doesn’t affect the properties of new branches in a spin wave

spectrum in a degenerated electron liquid. Their characteristics are connected with a sharp

peak of the function (1.39) at e =¢,_
A contribution to the density of states near the ¢, is obtained by summarizing the

expression (1.39) over x:



le# (1.41)
V z(e—g,) +T2 ’

%, (8)~

Near the local level ¢, (I, — 0) we find

%, (&) =nd(s-&,). (1.42)

The function F, (¢) is connected with the v_ by a dispersion relation
F.(6)= deg'w, (1.43)
Jooe-¢g

where the integral has a principal value sense. This function is equal to

Q) 1

F.(e)= 0372 20 \/5 .

(1.44)

where
1 g
& =hQ-(n+-)+0=puH
no (n 2) 2#(1

are Landau levels.
The sum incoming into the (1.44) diverges at large n this is connected with using the J -
potential. The means of eliminating this divergence were discussed in articles [19, 46, 47].
If a distance A from an impurity level to a Landau level is small compared to the 7Q we
can leave only singular item
m*Q 1

UL S
225 e -«

no

in the Z . Substituting this expression in the equation (1.31) at v, <0 we obtain:

n

2 2 2
emvyH
=07 1.45

8zch’ ( )

is a distance between a Landau level and an impurity level splitted off from it.

From the expression (1.45) it is obvious that the impurity states mentioned here are due to

combined action of both an attraction impurity (v, <0) and a magnetic field on an electron.
For this reason they are called magnetoimpurity states [21, 22, 39, 48]. Proper quasi-local
levels [10] which are not connected with a magnetic field can be present in the spectrum of
electrons in addition to these states. They correspond to complex poles of scattering operator
¢, —il_, where ¢, are locations of resonances, I, are their widths. We will assume that
only one (spin-splitted) resonance exists. In the next chapter we will consider its influence

on a dynamic spin susceptibility of metals.



CHAPTER II. TENSOR OF DYNAMIC SPIN SUSCEPTIBILITY OF METALS WITH
QUASI-LOCAL STATES OF ELECTRONS IN A MAGNETIC FIELD

2.1. Dynamic spin susceptibility of electrons

A reaction of a system on a weak variable magnetic field is characterised by a tensor of

generalized magnetic susceptibility y,,(¢,®) depending on a wave vector ¢ and a frequency

o of the field. This tensor plays a fundamental role in the theory of magnetism. It defines a
spectrum and damping of magnetic excitations of a system, a spectrum of magnetization
thermal fluctuations, a cross-section of neutron magnetic scattering in a magnetics and other

values. Let us consider conductivity electron response of paramagnetic metal to a variable
magnetic field H(7,¢). The latter induces both an orbital and a spin magnetization. Let us
take just calculation of dynamic spin susceptibility. Let us use a method of Green functions

for this purpose.
2.1.1. Operator of spin magnetization

Hamiltonian of interaction between spin magnetic moments of conductivity electrons and

the variable magnetic field has a form:

V() =-1d"M A, @1
where Afl (7) is an operator of spin magnetization. Integration is carried out over the volume
of a conductor. It is known that

M) =, Y 5,6G 7). 22)
where 7, is a radius-vector of a-th electron, g, is Bohr magneton, &, are Pauli matrices

[15]. Further we will need a spatial Fourier component of the operator (2.2)

M@=~ 06" . (23)
In a representation of secondary quantization the additive operator (2.3) has a form:
M@) =ty Y @), ., - @4)
kayay



where 4, and a; are operators of destruction and creation of electrons with wave vector &

and spin quantum number « ==*1, (o), are matrix elements of g -th Pauli matrix.

2.1.2. Dynamic spin susceptibility

It is known from electrodynamics that in linear approximation over the weak field H u -th

component of the tensor of electron spin magnetization in a point 7 in the moment ¢ equals

to
M (1) =Zfd3r'_[dt’x

XX, F =V t=t)H (F,1). 25)
Let us suppose that the medium is homogeneous and stationary so the tensor of

susceptibility y,, depends only on differences of spatial (F—7') and time (¢—¢')

coordinates. Finite upper limit in the integral over time in (2.5) reflects an existence of
causality principle, i. e. the fact that the magnetization in the moment ¢ is defined by the
magnetic field only in earlier moments of time.

The Fourier transformation (2.5) leads to linear relations connecting spatial-time Fourier

components of values incoming in the (2.5):

M, (G.0)=3 7,.4.0)H,(G.0). (2.6

Dependence z,, on g is called spatial dispersion of susceptibility and a dependence on @ is

time dispersion.

General properties of susceptibility tensor are evolved in a R.White’s book [49]. Let us
enumerate them.

A consequence of invariance of Shrodinger equation for electrons relatively to a time
inversion operation are Onsager relations:

24, 0) = 2,,(=4:—). 2.7

An expression of causality principle is Kramers-Kronig dispersion relations binding real and

imaginary parts of susceptibility:
4,®")

. ; 10, dmy,(
Re[z,,v(q,w)—z,,v(q,w)]= ;dew 7@‘,_0) ,

20



1Ry, G0 - 2,.3.)) 28)

_ 17
Imy, (q,0)=-— JE
7[730 [0

A connection between susceptibility and thermal fluctuations of magnetization is a content

of fluctuation-dissipation theorem:
idref“(Wﬂ(q,t)MV @), =

=hVcth % Im;(fw(ﬁ, ). 2.9
Here
A:l(t) = exp(%f['tj]\fl exp(f é[jl'tj
is an operator of magnetization in Heisenberg representation, H' is Hamiltonian of electrons

without the (2.1)), ab _1 ab+ba) is a symmetrized product of operators, S is inverse
2

temperature, V' is a volume of a system. The corner brackets symbolize averaging over Gibbs

large canonical ensemble. A symmetrical part of the tensor is marked by index S .
2.1.3. Kubo formula for susceptibility

In 1957 R.Kubo obtained a general expression for the tensor of generalized susceptibility
connecting this tensor with the correlation function obtained on magnetization operators. Let

us obtain the Kubo formula following the method given in works [23, 45, 50].

Spin magnetization of electron gas in variable magnetic field H

M0 = Sp[ﬁz\ffﬁ(f,t)} 2.10)

where p is a statistical operator for large canonical ensemble; M ,(7,1) is a Heisenberg (with

taking into account the (2.1)) operator of magnetization connected with an operator M 4 in

Dirac representation by a relation:
M, () =8 OM ,()S(), .11

where

S =T exp[—; jdt'rfﬂ (t'):| 2.12)

21



(here T, is a symbol of chronological arrangement of operators).

Substituting the (2.11) into the (2.10) and taking just a linear item over H, for the

magnetization induced by the variable field we will obtain the expression (2.5) in which
2 F-Fot—1) = %Sp{ﬁ[]ﬁ AGE0MAFO], 2.13)

where [4,b] = ab — b4 is a commutator.

As a result of Fourier transform of this expression we will obtain the Kubo formula:
- = i T @il alatr = Y -
x.,(q,@)= = j.dte Sp{p[M” (q.0).M, (*f{,O)]}. (2.14)
1]

Index [ is omitted here and below.

Substituting the operator (2.4) in the Kubo formula (2.14) we find:

2
2@ =-523, ok, x

kkey 50,
xg;.a,K;: [(’;1 _a)aZ‘]zlal;(Ez +(})a4=]€2a3]’ (2.15)

where K is a Fourier component of two particle electron retarded Green function which is

defined by a relation:

K (1,2:3,4) = —%9@)([4 Oay).a5a, ]) @16)

Lt>0, pe e g
is Heavyside function.

where]:l?, , ey B() =
(knen) © {0,1«:0

2.1.4. Two particle Green function of free electrons

To find K let us calculate at first two particle temperature Green function of electrons
[45]:
K,0.234)=-{, & (r)&gﬂﬁﬁ&), 2.17)
where

'

#o Ay =e™de ™,

0<z< 3 dlr)=e"de
T. is a symbol of chronological arrangement of operators over the variable r .

Hamiltonian of free electrons

22



H'=Y¢&a a.,, (2.18)
ka
where & =&, —u, &, is a particle dispersion law.
Using (2.18) it’s easy to show that
a(ry=ae™, a(r)y=a‘e” .

Let us substitute these operators in the (2.17). Then for calculating K, it is necessary to find
an average datum <&f&2&; &4> . Average data of this type are calculated with the help of Wick
theorem [45]:

(a/a,a5a,) = (a/a, ) asa,)+(aa, ) aa7). (2.19)
To a reader who is not familiar with the Wick theorem we propose to derive the (2.19) with
the help of commutation relations for the operators of secondary quantization.

Substitution of the (2.19) into the (2.17) leads to the following expression for the two
particle temperature Green function of free electrons:

K. (1,2;3,4) ==0,,0,, /11> + Go5(0)G, (7). (2.20)

Here
G0 =~(T.[a, (0] @21

is one particle temperature Green function of electrons; f; = (e’ +1)"" is Fermi function, &,,

is Kroneker symbol.
It’s easy to show that the first item in the right part of the (2.20) doesn’t make a

contribution into susceptibility. Time Fourier component of the second item equals to

514523% iGZ(gS)Gl(gS -ho,), (2.22)

S=—0
where G,(gy)=(igs — &)™ is Fourier component of one particle temperature Green function

of free electrons,
2 . .
G5 = z(2S +1); ho, = =m (n is an integer number).
To calculate the sum in the (2.22) let us consider contour integral

L faf (-6 -inw) (2.23)
27,

in which f(z) is Fermi function and C is a circle of a large radius with a center in the point

z=0. When the radius of the circle tends to infinity this integral tends to zero. On the other

23



hand, according to Cauchy theorem it equals to a sum of residues of the integrand function in

poles. The latter has simple poles in points & +ifw,, &,, igg, where igg are poles of Fermi
function with residues - 8. As a result the expression (2.22) takes form:

8.0f (&)= 1 (E)N& — & ~ihe,) " (224)
2.1.5. Dynamic spin susceptibility of free electron gas

Knowing the Fourier component K(,) of the function (2.20) we can find the K . For this
reason it’s necessary to make an analytical extension of the K(w,) from the discrete set of
points i%w, in z -plane into an upper half-plane and then to pass on a real axis [45]. In the
given case this procedure comes to change the i@, in the (2.24) into @+i0. Substituting an
expression obtained in this way in the (2.15) we obtain a dynamic spin susceptibility of free
electron gas:

X=X, (2.25)
where

fep )~ (&)

&

2

~ Hy
,0 =—2—§ .
2(40) V< —& —ho-i0

k+q
In moving from the (2.15) to the (2.25) a well-known property of Pauli matrices [15] is

taken into account: ZO':] O =20

aya v
a2

The expression (2.25) satisfies the Onsager relations and the dispersion relations (2.8). It is
useful to obtain high-temperature limit of the susceptibility (2.25) when Fermi function f
may be changed into Boltzmann one.

At zero temperature for a case &, =h*k>/2m (m — effective mass of an electron) from the

(2.25) we find

(2.26)
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+/1)"]9{1—[%+ JJZJ}- @.27)

where A=g/2k.; w=hw/4g, (k. and &, are Fermi wave number and Fermi energy);

32 112
£

Xo =244 P

is Pauli susceptibility which is obtained from the (2.26) within a limit @ —0, g - 0.
2.1.6. Susceptibility in a quantizing magnetic field

A strong magnetic field significantly changes properties of an electron gas in metals and
influences dynamic spin susceptibility.

The method of calculation of the susceptibility mentioned above is applicable for the case
when a constant and uniform magnetic field H is available. But only as one particle basis in

the method of secondary quantization it is conveniently to choose eigenstates [K,a) of an

electron in a magnetic field. Here x is a complete set of orbital electron quantum numbers in

a magnetic field [15]. Then instead of the formula (2.4) we will have:

o2 e = oo ) (2.28)
M@ =—ty D, (g L, D0 Ve,

Ko

where

I.@)= (’ﬂ |e:':7F

,@) (2.29)

is matrix elements of a plane wave in the Landau basis.
The formula (2.15) connecting the tensor of susceptibility with two particle Green function

of electrons must be converted into the following:

2
20@®) =52 (6"),,,, (6", %
V 1234
I (I, @K, (21:43), 230
where now 1=(x;,¢), ... Substituting the above-obtained expression for the K here we

will find a tensor of susceptibility in a quantizing magnetic field:
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2
2G.0) =50 3(0"), (0 )L @ %
(/A CRSP I ToR) o 2.31)

Here ¢, is an energy of an electron in the state

K,a>. In the case of isotropic quadratic

dispersion law it equals to [15]:

272

Eta =haw.(n +%)+ hz z

+auH , (2.32)
m

where 7 is an oscillator quantum number, 7k, is a projection of an electron momentum onto
a magnetic field H , @, is cyclotron frequency.

Neglecting a spatial dispersion of susceptibility i.e. putting ¢ =0 in the (2.31) we will
obtain:

L @) =~ D (01,0, (0 ), X

a2,

na, N,

X = b
HH (e, —a,)—ho—i0

(2.33)

1 . . . .
where n, = ;Z /.o 1s a concentration of electrons with a spin quantum number « .
It is conveniently to calculate a “circular” component of susceptibility y , containing
“increasing” and “depressing” Pauli matrices o, = E(O'x tio,) in the (2.31) and the (2.33).

From the (2.33) for it we will obtain an expression

nm—n,

—_— . (2.34)
2u,H —ho—i0

2 (@)=—11;

Transversal components of susceptibility may be found with the help of relations

Ze(@) = 1, (@)= y_ (o) + 1 (~0),

Xy (@)=—2,.(0)= -z (@ -7 ()]

which are easily obtainable from the (2.33) and the (2.34).
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2.2. An influence of quasi-local electron states on dynamic spin susceptibility of metals in a

magnetic field

In this paragraph a dynamic spin susceptibility of conductivity electrons in metals with
quasi-local electron states in presence of quantizing magnetic field [51-56] is discussed.

Using the temperature Green function method described in the paragraphs 1.2 and 2.1 we
arrive to a formula for a tensor of electron dynamic spin susceptibility of

nonferromagnetic metal with quasi-local states of electrons

Xi(G,0) = —7 z 0 .0,0 510, | Lirry (q)‘z _ngl ngz x
K1Kp010, il —® (235)

§ [e)= /(&)
Pran E0Pe e T

This formula is analogous to the expression (2.31) for the y, of a pure sample.

With taking into account the expansion (1.37) the tensor of dynamic spin susceptibility will

be presented in the form of a sum
X=X+, (2.36)
where y, is the ideal contribution of electrons in impurityless sample, Jy is impurity

addition.
Taking into account the (1.34) and the (1.37) we obtain

I, @[ 1/(&)~ fle, )%

2@0)=="2 3 [dap, (x.€)

K1K20102 —0

i k i k
x o_o-zn, O_o',r)‘ o_a'lo'z O, 20}
N r
E—E o —ha)—zO £—¢&., tho+i0

20

where f is Fermi function. From this we notice that Redy, is an even function of a

frequency and Redy,, is an odd one. From this expression we find circular components of a

ik
susceptibility tensor:

X=X Tl

b, == S [dab, .00 @) - [ @ ¢

K1K20103 —o0

F + T +
x 05, 0] O_r!,rr G(Tlﬁz 05, 0]
E—¢. ., —hw—zO &—¢,, tho+i0
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Summing over spin indexes is easily performed. Then

¥ (G,)= ——Z jdaso (5.8 (@)~ F (e M, @)
x(s—gkz+,uH—ha)—i0)’l—%ZTdﬁoi(lq,g)x (2.37)

XLf (€)= f (e ML @ % (6 &, — H +heo+i0)".

Here ¢, = 2. Q, is a frequency of spin resonance, the indexes N correspond to

o =x1. We are interested in a contribution of electron impurity states in the gy that is why

in the formula (2.37) the dp can be taken in the form (1.39). As a result we obtain

r
: . 5
5.3, w)———nr > H<q)\ P e Trer
. y 1
X[f(g)_f(%i)]g_g CH ho -0 (2.38)
o 1 r¢
o e @ 7)2 [ de———1r(0)-

T
o )
e—¢, | +T
1 N
T T

1
—fle i
f[ KZJ]E—SKI FuH +heo+i0

where

1

" FGe) 3

is a residue of amplitude of electron impurity scattering in the pole ¢, —il_ . In the similar

way a contribution of impurity states in a longitudinal component of susceptibility can be

obtained:
@g;z(é,w)? n2f \ P I ,,7(5 P
1 1
xLrte) f(gkza)][s—gxz(, —hw—i0 " £-¢,, +hw+i0] ' (240)
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In derivating these relations properties of symmetry of matrix elements /,_, (—¢)= I:z,q @)

were taken into account.
The contribution we are interested in is connected with integration in the neighborhood of
poles of the Lorentz functions incoming into the (2.38) and the (2.40). Let us note that a pole

of the second order in a point &=g¢, doesn’t come to the region of integration and thus it is

not dangerous. The contribution of the poles of Lorentz function is found equal to

5. Guw)=-2H Z w\(q)\ 5
f(e)- f(sm )
x : ' - (2.41)

" —iI’T —-&., tuH —ho

4 1

1(&, )~ f(e)

2u°n P
R S (q)\ T—— - :
,,q,(z —&.) &, +zl"l &, FuH +ho
b b
_ ; _ P2 P
=\q,0)= : L PRV VAT
dr=gw) =" 3l @ oy 2l
= f(€,6)] 1 + ! (2.42)
27 e, —il, —&o—how &, +il, —¢  +ho ’ ’

It may be obtained immediately from the formula (2.37) if we take into account the
availability of poles of spectral density of Green function (these poles correspond to the quasi-
local states) and if we use Cauchy theorem about residues. The result derived in this way
contains characteristics of the quasi-local state i.e. location of the resonance in a complex
plane of energy ¢, +il and aresidue r, of amplitude of electron impurity scattering in the
pole. These values can be calculated if we give concrete expression to scattering potential and
a spectrum of electrons in the pure sample or they can be determined through comparison of
theory and experiment.

Let us complete an expansion of the expressions (2.41) and (2.42) in a series over the ¢

powers in the long-wavelength approximation. With this aim let us use the relation [57]

LZ
o @] =558 0,00, (@0

S

n'n

where
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2

Conlg) = Idée‘&“hm@)h"z ©) . (243)

1 2
h(&)=———e?H
(D= e )

are eigenfunctions (normalized on the unit) of one-dimensional oscillator, / = ,lch/‘e‘H isa

magnetic length, ¢, =./q’ +q}2, ; V=D is normalizing volume. If § = ¢,/ <<1 an expansion

of the function (2.43) has a form [57]
C,=1-(n+1/2)g* +0@G",

nn+l (n+1) q +0(q)

1_ ,
C,.1q)=C, ,(q,)= ngtf +0(7"),

nnem

Chrim = = cr.@ 2.
Taking into account these expansions and taking ¢’ -order terms we obtain:

2ﬂn f(gm) f(gnk )
@K-v—(q’a))_ v 2771122 ¢ g, _11" _gk +2[uH hw

&)= f(e)

o ~ y (2.44)
le +il -, 12uH +ho
+
1 nq*/ 3ntk2q? I m?
7+ — 3+ 4 WZ
(gr - gnk: ) (gr - gnk: ) (gr - gnk: )
L4 n+1 q° n _cjz(n+1/2)
2 (6, —hQ2— Enk. )Y 2 (&, +nQ— Enk. )2 (&, - Enk. )2 '
~ wn. r
R e ) WAL CHR BN AR
VoS2d”
y ! + ! y (2.45)
&, —il, — o —-ho s, +il, - Eto +hw
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2 2 472 2, 2
<P 1 - hqz/m?*'ﬁ’zkzqz/m4
(¢, _gnk:) (¢, —Eur. )y (e &,

LT n+l 2 n qz(n+1/2)}
. .

+ R —
(¢, —nQ— Enk. )Y 2 (&, +nQ— Enk. )2 (&, - Enk. )2

Let us use a rule of summarizing over Landau quantum numbers:

= Zwﬂ(en,( ) j ONACACE

nkk

where , (¢) is certain function and

Q 1
°h fe— £,
is density of electron states in n-th Landau zone. With taking into account this rule we obtain:

X,{ S(&,) = f(e £ uH)

v, () =(m/2)"? O(s—-¢,)

. . 12y} '
or.(q,0) wn(m/2) zsz Lg,lr - eF2uH — ha)

1(6,)~ f (e F ) i

br o 1 P{ LN 2/ m .
V& +il —et2uH +ho \/g—gn (&, -¢&) (5 —5)

+

6h’q 2/m
+
(¢, -¢)

a4 nHl
(e—¢g)+ 5 (grigim)ﬁ (2.46)

+i2_ n _qz(n+1/2)
2 (s —&+hQ)’ (&, —¢)’

&.. =—pn(m/2)"? ”%2 > >r, [delf(e,) - [ e+ quH)]x

wj— 1 b1 x (2.47)
g —il,—e-ho & +il —¢+hw
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2 2 2 2
» 1 P 1 2_’_7'zqz/m3_’_6h qz/r:i(g_gn)+
\/5ng (6, —¢€) (e.—¢) (&-¢)
L9 n+1 L4 n _qz(n+l/2)
2 (6,—6-hQ)’ 2 (s,-e+hQ) (6,—¢)} |

Here ¢, =7Q(n+1/2), n=0,1,2,

In these formulae if one neglects the width of a quasi-local level (I', = 0) or applies them to
. . . 1 1 L
a local level and also if one uses a symbolic identity 100 = P—¥ino(x) the imaginary part
xti X

of susceptibility turns out to be equal to:

Imdy. (G, ®) = —2mu’n(m/2)""?

thz{ 0z, — &, 7 2uH —ho)

\/5 —&,F2uH —ho
1 n’q’/m
(F2uH +ho)? (+2/1H+ha))

x| f(e,)- 1, J?ﬂH—hw)}{

2.2 =2
_Ohg.im +(e. —&, F2uH — ho) + g_(n+1) >+
(R2uH + ho) 2(X2uH + ha — hQ)

T 2uH + o+ hQ) (£24H +ho)

g’n 72 (n+1/2) }_ 2.48)

0, -e, +2m+hw){f(%)_f(8yiuH%m}

T Je, —e, £2uH +1
“ 1 B h’q’/m gl /m (e -
(R2uH +ho)  (F2uH +ho)’ (+2yH+hw)“ '
Z’(n+1) q’n _
£2pH ho)+ 2(R2uH + heo + hQY)? N 2(F2uH —heo + hQY)?
_ q’(n+1/2)
(R2uH +ho)* ||’

X

Im&y...(§.0) = ~min (m/2)"> 7;;2

erg{l@(a‘r —g,—hw)/ &, —¢, —ha)Jx

no

1 hzq:2 /m
(ho)’ (ha))3

x[f(6,,)= /(s ~ho+ouH ){
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2.2
+%(5, -¢,—ho)+
®

g (n+1) N g’n _gz(n+1/2) :
2hw-hQ)  2(ho+hQ)* (hw)

_O(e.—¢, +ho)

e [f(¢,,)— f (&, + hor+ ouH)]x (2.49)

2 2 2.2
{ L g /m  67°q:/m

3 3 (&, —¢, +hw)+
(hw) (hw) (hw)

'+, gn qz(n+1/2)}
20hw+ Q)  2(hQ—hw)’ (hw)? ’

where the discontinuous Heaviside function @ restricts a summarizing over that » wherein

the radicals are real.

From these formulae it is evident that dynamic spin susceptibility has root singularities on
frequencies of electron resonance transitions between quasi-local level and Landau levels.
These transitions are accompanied by spin-flip +—7T in the case of §_ and T—{ in the
case of Oy, and they are not accompanied by spin-flip in the case of Jy_ . This is due to
features of electron state density on Landau levels taking part in the transitions.

The real part of susceptibility can be obtained from the formulae (2.46), (2.47) or from the
dispersion relations (2.8) connecting the real and the imaginary parts. It is easy to make sure
that the real part of susceptibility also has root singularities on resonance frequencies.

The imaginary parts of susceptibility (2.48) and (2.49) determine energy absorbed by the
system of conductivity electrons [23, 58, 59], a differential cross-section of neutron scattering
on oscillations of spin magnetization in conductors with quasi-local states of electrons [60].
From the formula (2.48) it is seen that the first item in the right part of the Imdy_ has root

singularities on frequencies
@, :%(é‘,_ —&,+2uH) (2.50)

of resonance electron transitions from Landau levels on a quasi-local level with the spin-flip

47T . The second item has a feature of the same type on frequencies
a)r,,=%(gn—gr+2,uH) (2.51)

of the trasitions +—T from quasi-local level on Landau levels.
If frequency w lies near one of the resonance frequencies obtained above, in the sum over
n incoming in susceptibility one can determine a resonance item and the rest of the sum can

be changed into an integral. It contributes to susceptibility in the absence of a magnetic field
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[61]. This contribution leads to threshold effects in the absorption of electromagnetic waves
by electrons. These effects are accompanied by umklapps of electrons (localized on
impurities) in a conduction band. It is easy to make sure that in the resonance contribution in
susceptibility the finite width of the quasi-local level can be taken into account by the change
o—>o+il'/h. (2.52)
As a result near resonance frequencies in the long-wavelength case the components of

susceptibility gy have a form listed in the appendix I. Here resonance frequencies of electron
transitions are marked ,,. The values a,(g) incoming in the (I1.1)-(I.3) play the role of

oscillator forces of resonance transitions. They depend on temperature, strength of a magnetic
field, wave vector and are proportional to the concentration of impurity atoms. The
differences of Fermi functions incoming in these oscillator forces provide realization of the
Pauli principle.

The expressions (I.1)-(I.3) must be taken into account in the dispersion equation for a

spectrum of spin waves in a Fermi-liquid of metals. They have features of the

_ 1_, -1/2
[a)— g, g”h+ 2uH H.hT] (2.53)
type or
_ 1_, -1/2
[a)—g” g"ﬁ* Zut +ih‘] (2.54)

on frequencies of the transitions (2.50) and (2.51) respectively.
2.3. Dynamic spin susceptibility of metals with anisotropic Fermi surface

In the previous section the case when prime electron energy spectrum of a non-
ferromagnetic metal is isotropic and quadratic was considered. Here dynamic spin
susceptibility of electrons in metals whose Fermi surface has a form of revolution ellipsoid is

investigated. Results obtained in this paragraph were published in [62].

Let us consider an electron with anisotropic quadratic dispersion law:

- 1 _
&(p) =52m,;p,-pk , (2.55)
ik
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where m, =m, is a tensor of effective mass. At presence of a magnetic field ﬁ“z its
Hamiltonian has a form:
[¢]

H, = %Z ! (—ihV, + L AW—ihV , +
ik

C C

el o
g A

where H = rul/_l; A= (0, Hx,0) is a vector potential, e = —|e‘ is a charge of an electron.

If isoenergetic surfaces have a form of revolution ellipsoids, a tensor of inverse effective

mass is diagonal in principal axes:

m' 0 0
)y e =| O om0 |,
0 0 "y ;

where m, and my are transversal and longitudinal effective mass.

An orientation of principal axes in accordance with the laboratory system of coordinates is

the following. The axes p, and p; coincide. Let us mark ¢ as an angle between the p: and

p., i.e. between the ellipsoid axis of revolution and a magnetic field. With such a choice of
the axes
p,=p.cos@—psing, pl=p . p.=psind+p, cosd. (2.56)
An inverse transformation is:
p,=p,cosf+p.sind, p =p,
p,=-p.sinf+ pcosd.
Let us substitute (2.56) in the dispersion law
(=Lt B
2m, 2m"
and compare this expression with (2.55). We shall obtain the tensor m,' in the laboratory

system connected with the magnetic field:

2 s 2
cos H+sm 17 0 l(Lfi)sinZG
m, m 2 myom,

] =1
m, = 0 m; 0

LA Ly o S0 w0
2mﬂ m, n, m

In this system
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m, " c m,

2 .2 .
H0=l cos 9+sm % ﬁf+i(ﬁy+‘e‘Hx)z+ sin 0+
2 m,

2
+M ﬁf+(i—i)sin29ﬁxﬁz ,
mom

d L

where 1:7 =—ihV.

A solution of the Schrodinger equation with such a Hamiltonian

Hy =&y

we search in the form [62]

w(x,y,2) = y(x)exp {ikvy +ik {z - ;(W]sm 29}} ,

where M =m, sin2¢9+mH cos’@.

The equation for the y(x) has a form:

d’y N 2m, my {g 3 Wkl B eH?

x—x,)t+y=0,
"M 5T o ame T %

chk},
where x, =——+=

el
Comparing it with an equation for the oscillator [15] we make sure that the m Ly /M plays a

role of a mass of the oscillator, frequency of the oscillator equals to
el
m,c

. .. s ch | M
and a radius of a minimal “orbit” is [, = |[—— |— .
‘e‘H m

M/m”

Substituting these values in a wave function of a stationary state of the oscillator we will
find

Wik (x,y,Z):Llexp ik y +ik, P i sin26 |} x
nkk. \/ZL ¥ z 5 M

xexp{fi(xfxo)z}Hn[x;xo} (2.57)

*

where A4, =z2"nl,.
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An electron energy equals to

'k’

z
s

&y =ho.(n+1/2)+ M

H M .
where @, :ﬂ — 1is cyclotron frequency [32].
[

mc\m
Using (2.57) let us obtain matrix elements of a plane wave in the Landau basis:

i o~
i o)z [ nl

1.(+5)= <K‘

! —
K > = 0wy k4O k1€

2
L[ x,—xg ~ 2
xexps——|| 21| +(/ x
Xp 4{[ I ] (*qx)}

n'!

where

M

J . in20
=q.,+q,———-sin26;
9e=q+4.—

dnn (efxxnivll)

Li(x)= %e"x’“ =

are generalized Laguerr polynomials, &, ;. is Kronecker symbol.
Calculations analogous to those given in the previous paragraph lead to such a result (see

appendix II).

From the (II.1) and (II.2) it is easy to find circular components of susceptibility near the

resonance frequencies.

For simplicity we neglect spatial dispersion of susceptibility and restrict to resonance
contributions due to transitions QL —LL. To take into account a contribution of transitions
LL—QL it is necessary to change the o, in the F, and [, into the o, and the o, into the
o,.

Thus, resonance contribution in components of dynamic spin susceptibility tensor of

electrons, whose Fermi surface has a form of revolution ellipsoid depends on an angle
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between a direction of a magnetic field in which a sample is placed and an axis of ellipsoid
revolution.
The formulae of appendix II can be used for calculation of characteristics of spin waves and

a cross-section of neutron magnetic scattering in metals with anisotropic Fermi surface.
2.4. A limit case H=0

As it was pointed out above spin susceptibility of metals dependent on frequency and a
wave vector defines a series of observable values: a differential cross-section of neutron
magnetic scattering by electrons, fluctuation spectrum of spin magnetization and others
[23,49,78]. Being sensitive to dynamics of conductivity electrons it experiences an influence
of impurity atoms which are present in the sample. The last ones not only restrict length of a
carrier free path but also change their energy spectrum.

Under certain conditions in conductors impurity electron states (local and resonance) appear
[1,10] that must affect dynamic susceptibility and the values connected with it. As a result a
possibility to study impurity electron states appears in the experiments of neutron magnetic
scattering.

As a rule local electron states do not appear in metals [13]. Resonance states were
discovered in Al with impurity of Cu and with impurities of transition metals [6-9,14]. In
these systems impurity atoms lead to d -resonances, localized magnetic moments being
absent.

A contribution of resonance electron states on impurity atoms in the dynamic spin
susceptibility of simple metals in absence of magnetic field can be obtained from the formulae
(2.41) and (2.42) by a limiting transition A — 0. But we would like to revise a method of
calculation used in the paragraph 2.2 supposing H =0 [61] from the beginning.

In this section simple metals with non-magnetic impurities are considered. An electron
dispersion law of matrix metal is supposed to be parabolic ¢; = k*/2m where m and k are

effective mass and a momentum of an electron. In Al such approximation leads to the error
which doesn’t exceed 3% [14]. In the proposed theory a pole part of electron
scattering amplitude is important. This part doesn’t depend on a particular form of the
impurity potential [15]. Only characteristics of resonance states (energy and widths of
resonances, residues of scattering amplitude in poles) depend on it. In our consideration these

values are parameters which can be found by comparison with an experiment. On this reason
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here a particular form of scattering potential is not important. The only thing which is
important is that its intensity is sufficient for the resonance appearing. One can make a
scattering potential self-consistent after subjecting it to the rule of Friedel sums [6-9,14]. Pole

structure of scattering amplitude can be taken into account precisely approximating impurity

potential by a separable operator [10,17] ‘¢>u0<(p‘ (u, is a constant characterizing intensity of

interaction, go(F):<F‘(p> is arbitrary function) used in the theory of pseudopotential. This

potential can be used for both s—resonance description and a description of resonances with
non-zero orbital moment. In the last case the function ¢ must not be invariant relatively to
rotations. Consideration of separable potential using for description of diluted alloy properties
is contained in [10]. We will calculate dynamic spin susceptibility in [.M.Lifshits model
[1,10]. In particular, this model was used for Pauli susceptibility calculation of simple metal
alloys with 3d-elements at low temperatures when local magnetic moments of impurity atoms
are absent [6-9]. It was used also for description of magnetic systems [12].

Dynamic spin susceptibility tensor y, (g,®) of a conductor coincides with Fourier

component of a retarded Green function assembled on spin magnetization operators [23]. For
calculation of the last one let us introduce Green temperature function [47]. Writing down
magnetization operators in the secondary quantization representation and approximating
configuration average mean of two Green electron function product by the product of average

then we obtain

d*k 1 -
(Goo)=—w2 | —Nc" o' —>G, (k+§,s)x
2@ ==t 20000 5 2.0 (k4G

xG, (k,e,-®,), (2.58)
where G, (12,.;,,) is average one-particle temperature Green function of electrons; &, are
Pauli matrices; g, is Bohr magneton; @, and & are Matsubara frequencies of bosons and
fermions; a is spin quantum number; f=T"" is inverse temperature, k, =h=1.

Function G incoming in (2.58) is connected with the transition operator R by a relation
[10] G=G,+G,RG, (G, is Green function of free electrons). In a case of small

concentration of impurity centers the full operator of transition R can be represented into a
sum of one-center operators. The last ones can be found precisely [10]. As a result we obtain

G =G, +dG, where 6G is an addition to the Green function, which is linear over impurity

concentration.
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An approximation adapted here is equivalent to an account of a set of diagrams with one
cross which describe multiple scattering of electrons and holes by an impurity center in

electron lap for the (2.58). It means that the frequency @ and a wave number ¢ of external
magnetic field satisfy a condition [45] ‘a}_ —qvp‘z' >>1. Here v, is Fermi velocity; 7 is time
of electron free path; @, =@=*¢g,. In other words, ¢ and @ denote a point (g,®) on the
plane “transferred momentum — transferred energy” which lies far from the region located
between the parabolas w=1qv, +¢, and axis g . In this region the conservation laws of

energy and momentum allow forming electron-hole pares by quantum of external field.

For calculation (2.58) it is convenient to use spectral representation of Green function [45]
allowing to express y through spectral density. The last one coincides with imaginary part of
retarded Green function. Substituting spectral expansion of G in (2.58), making summarizing
over Matsubara frequencies and analytical extension we obtain y = y, +Jy , where x,(g,®)
is spin susceptibility of pure conductor; Jy is impurity addition. It consists of two items:

S =0y, +0y. (I, is a contribution of localized electrons)

©(q.0) =]

(;’”’; > Ol O | 4L (8) = f e, )]
P, (k+4,2)
PukrT5)

&, —et+tw+i0
&

+H(@—i0 = —w—i0, 1 =V) (2.59)

is a contribution of transitions in continuous spectrum. Here dp, (l;,g) is impurity
contribution to spectral density of Green function; f(¢) is Fermi function.

In isotropic paramagnetic the tensor y,, is diagonal. It has both real 7" and imaginary y"
parts. If ¢ >0 and @ — 0 the imaginary part being odd function of frequency turns into zero
and the real part coincides with the Pauli susceptibility y, =% +Jy, where
2 =242v, (&) is spin susceptibility of pure conductor (v,(g,) is dissolvent density of
states on Fermi level &,.); dy, is impurity addition. If the resonance in the electron spectrum
is absent or its width I" is big in comparison with the width of the Fermi distribution thermal
disassembly for strongly degenerated electrons we obtain &y, =2u;dv(e,) where dv is
impurity addition to the state density. In the case of a sharp resonance (I'<<7 <<¢,) an

additional item appears. It equals to
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1 . ,¢e—¢
=2u3n —ch 2=k
K, Ho AT T

(2.60)
Here n, is density of impurity atoms; &, is the resonance energy. It is the root of the equation
[1,10] 1—u,F, () =0 getting into the region of continuous spectrum. The contribution (2.60)
is evident if &, and ¢, are located in a zone of the Fermi distribution disassembly.

Let us consider the imaginary part of susceptibility of isotropic paramagnetic connected
directly with the differential cross-section of neutron magnetic scattering by electrons [23]. In
the region of frequencies and wave vectors evolved y; =0 therefore the impurity part dy"
dominates. If ag <<1 (a is radius of scattering potential) a Fourier component of the function
@(7) can be considered as a constant ¢, . In this case one can neglect spatial dispersion of the

susceptibility. As a result from the (2.59) we obtain
2 2 @
&7 () = TEE [ ek (o)~ Tm D7 (6 + )] f (&)
T

- fle+w)]0(e+w)— (0> —w), (2.61)
where D(¢) is resonance denominator occurring in the theory of quasi-local states [10]; € is

Heaviside function, k() = (2me)"?>.

In the Born approximation over electron-impurity interaction at @ <<T <<g, from the
(2.61) an expression
Sy"(@) = dmuiulvi (e, o, (2.62)
follows valid at w7 >>1.
In the case of the sharp resonance (I' <<7") under the integral sign in the (2.61) one can
suppose that
—ImD™ (&) = 7(u,|F'(¢,)

) 'S(e-¢,),
where derivative over energy in the point &, is marked by the prime. As a result

"=+ o)y

St @) =EA ke o) f(e) - f(e, + )] (2.63)
7lF'(e, )0’

is contribution of electron transitions from a resonance level into the zone and

(@)= TEOM g ke, ~ o)Lf (e, — o)~ [(&,)] (2.64)
7lF'(g,)|o’
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is contribution of zone electron transitions into the resonance level. The expressions (2.63)
and (2.64) are proportional to the zone state density and possess typical factors (in square
brackets) due to the Pauli principle. If the resonance level is located below the Fermi level
only the first item (2.63) remains. At @ >> &, —¢&, it decreases according to @™'> law. If then

g, > ¢, the second item (2.64) remains. It has threshold frequency &, connected with the

transitions of zone bottom electrons into a resonance level. Near threshold Jy,,~ (¢, — @)">.

In both cases at 7 — 0 lower threshold ‘sF —¢&,| exists due to the Pauli principle. Taking into

account thermal motion of electrons leads to disassembly of this red bound. Let us point out
that the maximum items (2.63) and (2.64) exist at the background of the smooth dependence
(2.62) due to potential scattering of electrons.

The expressions (2.63) and (2.64) can be checked in the experiments measuring neutron
magnetic scattering cross-section in Al with impurity atoms mentioned above. For checking
the formula (2.63) one should use diluted alloys of Al with those 3d -elements (Cr, ..., Cu)
which are located in Mendeleev periodic chart after the Chromium. They lead to the d -
resonance located below the Fermi level [6-9,14]. In alloys of Al with Ti and V the resonance
level is located above the Fermi boundary [6-9,14] which corresponds to the formula (2.64).
The method of inelastic neutron magnetic scattering was used for measuring dynamic spin
susceptibility of Ni above the Curie point [88]. Experimental data are listed at a fig. 3 in [88].
It is not inconceivable that evident non-monotony in distribution of experimental points in
interval @=(0,05-0,1) eV is connected with the effect of resonance state activation
descripted here.

Let us consider static case @ — 0. Since the imaginary part of the susceptibility turns into
zero in a point @ =0 we can deal with linear term of expansion over @ powers beyond Kohn
threshold where g >>2k, . In the Born approximation at @ —0, g >>2k,., T <<g&, from
(2.59) we obtain

Sy = mugueve (€, )mw/ 8; . (2.65)
At presence of sharp resonance one should add a resonance contribution

51: _ Z}DO) Znira)z Lch,z Ep— €&, (266)
vo(ep)e, 4T 2T

to the smooth part (2.65) which is due to potential scattering of electrons.
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This expression differs from zero in the case where there is a possibility of thermal

excitation of resonance level (‘gF —-&,

sT). At T — 0 the expression (2.66) comes to a o -
shaped splash in the point &, =¢,.
Let us list a final expression for the contribution into dynamic spin susceptibility of

transitions “local level-zone”:

2
", 7[(0 n kl(a))
Syl(q,w) = yp" ==
! " k(e

{wf —["1—‘1) } , (2.67)
m

where ¢, is energy of local state; k(@) =[2m(a)—wg)]”2; o, :‘5,‘ is threshold frequency.

(o—w,)Lf (&)~ f (& +w)]x

This expression differs from zero at @ > ®,, while near the threshold 8y ~(0 -, Ye2If
T —0 then the threshold moves to a point @, +&,. With the increase of frequency the
expression (2.67) passes through the maximum and at @ >> @, decreases proportionally to

32 . .
@>'?. As electron local levels in metals are non-known, one should refer to experiments on

neutron magnetic scattering in semiconductors for examining the formula (2.67).
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CHAPTER III. SPIN WAVES IN NON-FERROMAGNETIC METALS WITH THE QUASI-
LOCAL ELECTRON STATES IN THE MAGNETIC FIELD

3.1. A new type of spin waves in metals with the quasi-local states of electrons

It is necessary to take into account the contributions (I.1)-(I1.3) in the dispersion equation
for the transversal spin wave spectrum. Let us consider spin waves with the right circular
polarization “minus” propagating along the magnetic field. The materials of this paragraph are
listed at the works [51,53,55,63,65,66,69-72].

Let us take into account an electron-electron interaction in the random phase approximation
[73-76] as it was done in [37]. The Landau quantization in this approximation was taken into
account in [75,77,78] and the potential scattering of electrons by the impurity atoms (not
considering the quasi-local states) was in [79,80]. Dispersion equation for the waves near the
frequencies of resonance electron transitions from quasi-local level with the spin “down”

(QLY ) into the Landau levels with the spin “up” (LL 1) has a form [75]:
I (0) (n)
1—272[L (¢.0)+ 5" (q.0)|=0, @3.1)

where [ is a constant of Fermi-liquid interaction [44].

At fig. 2 the scheme of these transitions is listed. Spin-splitted Landau levels are painted in
solid lines and the quasi-local level is dotted. The transitions QL4—LLT on the resonance
frequencies (2.50) are shown by vertical arrows.

The last ones can be rewritten in such a form
@, = @y + £ +nQ2, (3.2)

where Q) is the spin resonance frequency, n =0.1,... is the resonance number, Q is the
cyclotron frequency, i@, =¢, — ¢, the distance between the quasi-local level and the nearest

Landau one &, lied above. One should mean that mutual location of the quasi-local level
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¢, and the nearest Landau level &, can be different (see fig. 2). In the case b) the resonance

n=1

ha, a)
€.
LY
L) ™\

€ a3

L

b)
Fig.2. Resonance transitions QL{—LL 7T :
a) scheme of transitions for the case &, > ¢, ;
b) the case ¢, > ¢, .
frequency equals to (3.2) in which it is necessary to suppose @, = —‘a)o‘ where h‘a)o‘ =g —g.
Due to the Fermi function difference in (I.2,b) such transitions are possible if the Fermi
boundary ¢, is located between the first and the final levels taking part in the transitions.
This difference equals to 1 if &, lies far from the initial and the final levels (the width from
& to these levels must exceed the disassembly of Fermi step k7). If the field H is reduced

some low-frequency resonances are “switched off” due to the difference of Fermi functions,
i.e. the Pauli principle.

From the expression (2.31) with taking into account electron scattering in the case of

longitudinal propagation (QHFI ) of long-wavelength excitations when gv, and relaxation

frequency v, of transversal magnetization are small in comparison with ‘a)— QO‘ we obtain
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Q 1 o(qv,) . Q
O (g, @) = +o F)_ 4 0 , 33
74 ZP{QO—a) 3@ -0y (@-0,) G-

where y, is Pauli susceptibility. The part with v, is due to the potential electron scattering on
impurities and the other scatters. The Landau quantization in this form is not taken into
account since Q<< &, .

Near the frequencies (3.2) the component (1.2,b) has the resonance. Let us write it in a form

oy _(q,0) = xpa, (q)i(w"”J , (34

w-o,, +il_/h
where ' is a half-width of quasi-local level. If one neglects spatial dispersion of the

susceptibility, the oscillator forces incoming in this expression will be equal to

L/ PR
@ = Z(hw’l)z(thwm)l/z [f(é'rj,) fle, +h60,.,,)]. 3.5

Here @, = @, +nQ2.
The real part (3.4) is responsible for the dispersion of spin waves and the imaginary part —
for their damping. The root singularities of the imaginary part of 3.4)at I’ =0, o > ®,, +0

reproduce the peculiarities of electron state density at Landau levels taking part in the
transitions. From the equations (2.8) it follows that the real part of susceptibility will have

the same features on the other side of the resonance. In the region @ > @,, the imaginary part
is big, i.e. strong damping of spin waves due to resonance transitions QLV—LLT takes
place. The new branches of the spin wave spectrum can be formed only in the region w < ®,,

where their damping is small.

Substituting (3.3) and (3.4) in the dispersion equation (3.1) we obtain
2
& 1+ lﬁ ﬂ +1i V2 +
Q- 3Q,\Q)-w Q,-w

1/2 1
S [ E— (3.6)
@, —w—il /h |B,

rn

where ‘BD‘ = Ig,. is a parameter describing the Fermi-liquid interaction, g,. is the state density
at the Fermi boundary. It is known [28] that ‘BO‘ <1. Neglecting the little values v, and I'"_ in

the (3.6) and assuming g =0 we obtain the equation for the limit frequencies, i.e. proper

oscillation frequencies of spin magnetization with taking into account the quasi-local state:
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Q, | @, 1
+a, =
Qo @ @, — @ ‘ o‘
This equation can be written in the form

N el G XU D CICRD (3.7)
From this it is evident that the solutions of this equation can exist in the regions @ > Q, and
0 <Qy(1-|B,).

Thus, new branches of spin waves can be formed both above the corner of the Stoner sector
Q, and below the limit frequency of the Silin wave [28]. In the last case the transparency
band of the new spin waves lays on the spectrum of the Silin waves.

We solve the dispersion equation (3.6) in the region @ < ,,. Near the @,, one can assume

o = w,, everywhere except the root in the denominator:

2 1/2
o PUNLCCHY L BRSPS R I
-, 30, o, , o, —ow—il /h ‘BO

w,—o—il_/h _ (a;)z
@, - 2 ; ?
1 1o gy | iy,
‘B(,‘ , 30,( o, ,

Let us linearize the dispersion equation over the small imaginary additions which lead to the

spin wave damping:

) 2
PP S B oo (enY | (1 9 .
ho, | 1, Q 31,9\ o, B o,
‘Bo‘ @, ‘ 0‘ @,
(a;)z zl'VZQll:i
T e o,

It is well seen that the solution of this equation has a form
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o=0,9)-iy,(q), (3.8)

where

_ ele, (3.9)

@,(q) = @,,1-| a,b,
1+§bn(qvﬁ./a)n)2

is the dispersion law of the spin waves and

)3
{Hlbn[quJ } (3.10)
a)l”l 3 a)’l

I , Q w
7 @) ===+ 20 (a, )b, =5

is wave damping decrement. Here a designation

__ @B
, +QU‘BO‘

n

is introduced.
In the long-wavelength limit with taking into account the item with 14> we obtain
2
r 2
V@) =—=+2v,(a,)’ B} + v[qvj (@, =,
h [2) [0)

3\ o

n rn

rn

where v is the frequency of electron collisions accompanied by a momentum relaxation and
the part with v,¢* is omitted.

In the fig. 3 the new branch of the spin wave spectrum is shown at #» =0. The branches with

n=12,... are located at higher frequencies.

(€3]
N
@, - — — —
new branch
m_(0) -
Q,
Stoner sector
Qo (1-1B, 1) \
Silin wavse
o > q

Fig.3. The dispersion curve (3.9) location at n = Orelatively to the Stoner sector and the Silin

wave spectrum.



The relationship y,(0)—I" /% to the first item in the right part of (3.10) equals to:

7,0 =T /h _ 2vhi(a;)’ b},
[ /h I o,

(3.11)

The estimations listed below show that this expression is usually little in comparison with the

1. Presence of small values v, and I'_ in the damping decrement (3.10) means that the spin
waves slightly damp in transparency bands [@,(0),®,,] located between the resonance

frequencies and the proper oscillation frequencies.

The limit frequency @,(0) can be obtained directly from the equation (3.7):

2

ay@,|By|

0)=0,| - |
,(0) wr0|: {‘%"’Qu ]}

The width of the transparency band for the waves with n =0 equals to

2
0 @B,
Awy =,y — w0 (0) = wro(amj :
o T 5205

In the general case:

Ao, =0, (a,bo,/o,) . (3.12)

n=n""n

The dispersion of these waves is normal. They will be slightly damped if the width of
transparency band (3.12) exceeds the damping decrement (3.10). If

% >>2v,(a) )’ —QOf’" ,

rm

this condition has a form

2 2 2 2
—h?f"" —”41;3(9 j 71? ”fzhz >1. (3.13)
N o, ) &l o

rm

With increasing » the widths (3.12) and the oscillator forces (3.5) decrease proportionally to

4

. -5/
n* and n"?

respectively. At
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22,2,2,0 174

nzn, = % (3.14)
he QT

the band width is compared to I"_/# and one could not resolve it.

The condition (3.13) allows to define the minimal concentration of impurity starting with
which the width of 7 -th transparency band exceeds I /7 :

i :g. ) w, +QO‘BO‘)

& 1/2

—= gl )", 3.15
S0 1B (1) (3.15)
Dynamic spin susceptibility y_  also has the root singularities at the frequencies of

resonance transitions +—7T between the Landau levels and the quasi-local level shown at

fig. 4.

h 3
g, o < ‘f«‘ .
hQ
¢
J—(hQDQ .
a)
haw, n=0 PN
€
SL - — r -fgt’gr
T r ~— e _i
b)

Fig. 4. Resonance transitions LL4— QLT :
a) transition scheme for the case &, > ¢, ;

b) the case ¢, <¢,.



It is well shown from this figure that the resonance frequencies are equal to
w,, =a,+€,+n as in the previous case but now i@, =¢, —¢, and n is limited from

above by the number of the filled Landau levels. In this case the resonance part of

susceptibility and the oscillator force equal to

a)n 1/2
% (¢,0) = xpa, (q)l(—a)—ll"/h]

and
_ hQryn;
a, = 2 172
200, (eha,)

rn

[f (& —har,)~ f(5,0)]

respectively. Weak damping solution of the equation (3.1) exists now only at n=0 if @, <0
(&, <g, but ¢, >¢, ) and ‘a)o‘ <QO‘BO‘. This case is shown on the fig. 4, b. The dispersion

law of the spin waves in the vicinity of the frequency @,, =, — ‘a)o‘ has a form

@)= 01+ aphy — 20| (3.16)
l+§b0(qu/a)U)2
and damping decrement is:
)3
70(‘1)_*‘*'2‘/2( 0)’by w0|:1+b0(quJ:| ' (3.17)
o 3 ,
Here
by =——ouol
O‘B‘ “"0‘

The transparency width for these waves is located between the central Stoner sector and the
branch of the quasi-classical Silin wave. Dispersion curve (3.16) is shown schematically on
the fig. 5. The dispersion of the wave is anomalous in contrast to (3.9). The width of the

transparency band is defined by the expression

Aw, = ro(aabo‘wo‘/wro)
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Fig.5. The location of the dispersion curve
(3.16) relatively to the Stoner sector

and the Silin wave spectrum.

The quasi-local electron states in the absence of the magnetic field were discovered in
Bismuth with the impurities of IV and VI qroups of elements [81]. For example, the
impurities of Sn, Pb and Se, Te lead to the quasi-local levels located below and above the

Fermi boundary respectively. For the estimations we use the residue 7, calculated in the
model of Gauss separable potential [46,82]. Substituting in the formulae (3.2), (3.11)-(3.15)
the values &, =4.8-10"" erg, & =4,6-10""erg, m=10"g, T /he, =107, ‘BO‘:O,I,

n,=102 at. %, v,=10° s', H=10" Oe, we  obtain w,=15-107 s,

Ayl @,y =7,7-107, he, /T =87, n, =4

m s

" =19-10"  sm?,
I -6
(F(0) =T /1)/ == =1,7-10°.

Thus, in Bi with impurities of Sn or Pb one can observe a few branches of the spin waves

with the spectrum (3.9), for example, in the experiments with slow neutrons.
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3.2. Spin waves propagating at the angle to the magnetic field

In the previous paragraph the spectrum and the damping decrement of spin waves
propagating along quantizing magnetic field were calculated. In this paragraph the waves
whose wave vector is oriented arbitrarily in relation to the field direction are considered [71].

Circularly polarized spin waves with the right circular polarization weakly damp near the
frequencies of electron transitions +—T from the quasi-local level into the Landau level and

are propagated at the angle o to the magnetic field. Their spectrum is defined from the

equation
Q +¢’D o
i Bon_ =—, (3.18)
Q- (0—-Qy) w,—o—il_/h ‘ 0‘
in which
D =i£ cos’ o sin’ a(w+iv—Q,)
T3 e+iv-Q, (o+iv-Q)-Q* |

v is a frequency of electron momentum relaxation. As regards the dispersion of dy_ one can
neglect it since ¢ incomes as a factor at a little impurity concentration #, .

From the dispersion equation (3.18) near the resonance frequency (3.2) of the above
mentioned transitions we obtain the wave dispersion law:

oo @ B @ 0, | 5.19)
[1+136,(qv, /@, 4, ()]

where

e 5(_2/(3,);;’? "
From the formula (3.19) it is well shown that there is the critical angle ¢, at which the
normal dispersion of the waves changes into the anomalous one. It is defined from an
equation

"“0
cosa, = . 3.20
c 0 ( )

If o <a, the dispersion of the wave with the spectrum (3.19) is normal. At a > ¢, the
dispersion becomes anomalous. The wave dispersion in the bands n =1,2,... remains normal

at any value of & . In the case of the waves near the frequencies of transitions +—7T from the

Landau level into the quasi-local level, which were considered in the previous paragraph, the
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situation is reverse. Their dispersion is anomalous at & <e,. From the formula (3.20) it is
well shown that with increasing the magnetic field the angle «, decreases if one neglects a
dependence of the quasi-local level location on the magnetic field. In the case of the
magnetoimpurity states @, ~H?, i.e. the angle a, also decreases with increasing magnetic
field. Let us point out that the critical angle also exists in the Silin theory [28]. It is defined by
the parameters of the Fermi-liquid interaction and does not depend on a magnetic field.

In the long-wavelength limit the damping decrement of the waves with the spectrum (3.19)

equals to

2
¥ (@) ==t 2v, (2o b Lo 2| L (ary28? Lo (ay
) @ 3 @, @

re n rn

where
2
Cla)= cos’a +sin* o LY, .
[-/e)f
Function C; and damping decrement y, have the minimum at & =7/2 if Q/w, < V3. The
widths of the transparency bands for the spin waves do not depend on & . As in (3.12)
they are equal to

@,

Aw, =, .a’ig"l 'L
T @, + QB )

Let us consider the resonance transitions of electrons from the quasi-local level into the

Landau levels. These transitions are accompanied by the spin-flip T— . The scheme of those

transitions is listed at a fig. 6. In this case the frequencies @,, of electron transitions are
h,
"
n
A N
hQ
By, —Yt mm0

€, _!im_<_i o

Fig. 6. The resonance transitions QLT LLL.
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w, =0,—Q,+nQ, (3.21)
where o, is the distance between the quasi-local level ¢, non-splitted due to the spin and the
next Landau level located above it; n=n,,... (n, is the number of the Landau levels between
¢, and the Fermi boundary). The circular component of magnetic electron susceptibility y,
has the root singularities due to the state density at the Landau levels. From the expression for

%, in the long-wavelength limit (gqv, <<1, v, << ‘a)fQo‘) in the case éHI:I we obtain [28]

Q . vy, +¢’D
O (g, ) = +iw—2 5, 3.22
Z. (@0)=xp oro wra) (3.22)
where
I —iﬁ cos’ a sin’ a(@+Q, +iv)
T3 | erQ+iv (0+Q,+iv)Y Q7 |

On the frequencies (3.21) the component
1/2
8.(0,0) = | ———— (323)
o "\ w-w, +iT,/h) ’
has the resonance. In this expression the oscillator forces of the resonance transitions in the

neglecting of spatial dispersion of susceptibility dy, equal to

+

hQr,n;
a, = W[ﬂgn) -fleq,+ ha’m)]-
n F rn

The dispersion equation for the spin waves with taking into account the contributions (3.22)
and (3.23) has a form

2 1/2
£ +ia;v2+qD*2+a; w’”‘ :—L.
o+Q, (0+9Q,) o, —o—il, /h |B,|

Its analyses shows that there are the transparency bands for slightly-damping transversal spin
waves with the “left” circular polarization below frequencies (3.21). The dispersion law of
these waves equals to

o,q) =0, (0){1 +2 Aﬂ-”’”(“’”j (quJ } (3.24)

2+
3a, o, o,

and the damping decrement in the long-wavelength limit has a form
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2 3/2 2
o) . e ) LMl L/ (3.25)
h aﬂ a)ﬂ a)rn 3 a)/l

where Aw, = ®,,(a})’ b (w,/®,,)" are the transparency band widths. Here

__IB
" wn—‘B(,

a)m
QO

If one consider reversal transitions from the Landau level into the quasi-local level with the
spin-flip T—{ it turns out that the dispersion equation does not have slightly-damping
solutions. The spin waves near the frequencies of these transitions are absent.

The expressions (3.24) and (3.25) are also valid in the case of the magnetoimpurity levels

splitted from the each Landau level with the value %@, . Now the scattering amplitude residue

of electrons by the impurity atom in the pole &, —il" equals to [82]

2

o Qhaw,/my’"?

7

and oscillator forces contain an additional summarizing over the numbers of the
magnetoimpurity levels which take part in electron transitions between the magnetoimpurity

levels and the Landau levels on the given frequency [37].

3.3. Quantum spin waves in the non-ferromagnetic metals with the quasi-local states of

electrons

Quantum spin waves in the non-ferromagnetic metals without taking into account quasi-
local states of electrons are considered in the works [42,77,78] and the same waves with
taking into account these states are described in the works [54,56,83].

Let us consider transversal quantum spin waves propagating along the magnetic field. The
oscillations of the electron spin magnetization occur in the plane (x,y) which is normal to the
magnetic field. If one neglects the orbital quantization of the electron motion, the spin waves
with the “left” circular polarization whose spectrum is defined by the dispersion equation
(3.1) will experience collisionless damping in the region of the plane (q,®) limited by the

parabolas

w=QO+qu+a)q,

0=Q,-qv; + o,
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(for the electrons Q, >0). Here o, = hq* /2m.

The Landau quantization leads to the fact that inside of this region transparency windows
appear, in which quantum spin waves can propagate [77,78]. Let us make sure of this.

Let us restrict ourselves by the consideration of the spin waves with the “left” circular
polarization propagating along the magnetic field. In the absence of impurities they damp
due to Cherenkov absorption of spin waves by electrons [29]. To find regions of damping on

the plane (q,w) let us use the laws of energy
ho+e] (k)= g7 (k) (3.26)

and z -momentum component conservation
hq +hk_ =nhk! (3.27)

at the magnon absorption by the electron. Here & (k,) is electron energy (2.32) before

absorption, g;’,'(k_f) the energy after it. According to conservation laws let us take into
account Pauli principle:
&, (k)<¢,

& (k) 2, (3.28)

where ¢ is chemical potential of electrons in the magnetic field at zero temperature (7' =0).
Let us take into account the selection rules [42]
An=n"-n=0,

3.29
Aoc=0c"-c=2 (3-29)

for the transitions +—T between the states within one Landau zone.

Form the relations (3.26)-(3.29) it follows that the Landau damping exists in the hatching
regions at the fig. 7. For simplicity we restrict ourselves the case of one filled Landau zone
with n=0. At this figure v_ is a velocity projection of the electron which belongs to the n” -
th Landau tube on the magnetic field, & =mv_ /h, o ==1. Indices + and — correspond the

electron spin orientation along and against the magnetic field respectively.
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Fig. 7. The regions of collisionless wave damping in the case

of one filled Landau zone.

At fig. 8 the Landau damping regions are hatched in the case of two filled Landau zones.

Besides it is supposed that Q>Q, i.e. v,,, <v, . From the fig. 8 it is well-shown that three

el
types of the transparency windows (P — petalous, Par — parabolic, T — triangular) exist.

At fig. 9 the Landau damping regions are shown (hatched) at little ¢. By N +1 the number
of filled Landau levels is designated. The magnetic field is selected in such a way that the
number of filled spin-splitted Landau sublevels is even. In the case of odd number of filled
Landau sublevels the parabolic window at fig. 8 is partially closed. In this case the Landau
pipe N~ is filled and the N -th one is empty.

Let us find the solutions of dispersion equation (3.1) in the transparency windows. The real
part of #'* in these regions is given by the first item in (2.36). Low frequency solution

(2.36) of the dispersion equation can be obtained in the quasi-classical limit #Q <<¢:

s

_ 1 fgve i
w(q) = QO(I+BO){1+ 35, ( 0, J

where B, < 0. This solution corresponds to the quasi-classical Silin spin wave.
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Fig.8. The Landau damping regions and transparency windows for

the spin waves in the case of the two filled Landau zones.

Fig.9. The Landau damping regions in the long-wavelength limit.
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If only two Landau sublevels 0~ and 0 are filled, then in the sum z in y° (2.35) it is

necessary to remain only one item with #»=0. Then the dispersion equation can be solved

precisely:
_ 9, - qz - N2 g2
w(q) =€, —E(V0 -V, )ctho + T(VO —Vv,) cth*a +
+q*vovy —q,(vy + vy )ctha+ w2, (3.30)
2
where « = M The dispersion curve corresponding to this solution lies in the
2ml| ‘e‘H

parabolic transparency window (fig. 10). In the long-wavelength limit from (3.30) we obtain
27 ch’q?
o(q) =0, + % .
mllelH(———)

Voo Vo
Let us notice that the spectrum of this quantum wave is quadratic in the long-wavelength

limit. The spin wave spectrum in petalous transparency windows is linear at ¢ — 0.

w (q)

> g

Fig.10. The dispersion curve of the quantum spin
waves in the parabolic transparency window
without taking into account the quasi-local
states at two filled Landau sublevels 0*.
Let us consider the case of slow quantum spin waves in the parabolic transparency window
w—Q,
q

for which << vy . Performing expansion of the logarithm in (2.26) over the powers of
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w-Q,
qvy

<<1 we find the spectrum of the slow quantum spin waves in the parabolic

transparency window in the case of arbitrary even number of the filled Landau sublevels:

_ hg’
)= Qo{l o, (g, - g)} ’

where g_ is the state density of Fermi electrons in the magnetic field.

Let us find out how the quasi-local electron states influence the properties of the quantum
spin waves in the parabolic transparency window. The main cause of the existence of
quantum spin waves in degenerated electron liquid of non-ferromagnetic metals in the
magnetic field is the quantization of Fermi electron velocity projections on the field direction.
As a result of the quantization in the continuous region of the wave quasiclassical
collisionless damping the transparency windows, in which the damping is absent, appear. The

boundaries of these windows can be found from the conservation laws of energy and z-th

momentum component (zHFI ) in the process of magnon absorption by electron with taking

into account the Pauli principle and the selection rules. In the windows the new branches of
the spin wave spectrum can be located. These waves were named “the quantum waves”. The
variety in the system of conductivity electrons, which are at the different Landau levels, leads
to the phenomenon that the spectrum of the transversal quantum spin waves appears to be
basically linear in the long-wavelength limit. The dispersion curves of these waves begin at
the frequency of the spin resonance Q, and phase velocities are defined by the Landau pipe
lengths. If the electron cyclotron frequency Q exceeds the frequency of the spin transitions
Q, and the even number of the spin-splitted Landau sublevels are located below the Fermi
boundary, the wide transparency window for the transversal quantum spin waves with the left
circular polarization propagating along the magnetic field exists in the neighborhood of Q, .
Its boundaries are parabolas

0=Q,*qv, -0, (3.31)
where N is the number of the last filled Landau level, vy are velocities of the Fermi

electrons on the Landau sublevels N*. In this window the dispersion curve of the slow
quantum spin waves whose spectrum is quadratic in the long-wavelength limit is located.
The circular components of the high-frequency electron spin susceptibility y, have the

features on the frequencies of the resonance electron transitions between the quasi-local levels
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and the Landau levels with the spin flip [54]. It is necessary to take into account these features
in the dispersion equation (3.1). It turns out that intersection of the quantum spin wave
dispersion curve with the resonance frequency of these transitions leads to the cross situation
which is analogous to that found in studying sound propagation in dielectrics with quasi-local
oscillations of the crystalline lattice [84]. Instead of one spectrum branch of the quantum spin
waves in each transparency window two branches — low and high frequency - appear. They
are due to the interaction of electron spin magnetization oscillations at the resonance
transitions with oscillations in the process of the spin wave propagation.

Let us consider a conductor with the isotropic quadratic spectrum of the carriers with
randomly distributed insulated impurity atoms on which the quasi-local states are formed. Let
us find out how they influence the quantum spin waves.

The results listed below are expressed through the characteristics of the quasi-local states,
i.e. energy & of resonances, their half-widths T, and the residues r, of the electron impurity
scattering amplitude in the pole & —il,. These values can be calculated giving concrete
expression to scattering potential or they can be obtained from the experiment. The sample
temperature and also the widths of the levels participating in the transitions induced by the
variable magnetic field of the spin wave are supposed to be little in comparison with the
transition energy. Quantizing magnetic field influences the electrons. It is selected in such a
way that below the Fermi boundary the even number of spin-splitted Landau sublevels is
located. Then between the parabolas (3.31) the transparency window for slow quantum spin
wave with the quadratic spectrum exists. If inequality

0—Q, <<qvy (3.32)

is obeyed its spectrum has a form"

mQ, [

o(g) =0 1+ (g+—g)l} (3:33)

D Here and then in this paragraph i=1.

where g, is state density of the electrons with the spin quantum number +1/2 on the Fermi
level; I the parameter of electron-electron interaction. It is connected with the constant B,
which appears in the theory of Fermi liquid by the relation ‘BO‘ = Ig,.. If the sublevels N* are

located on the different side from the Fermi boundary, electron transitions between them will

lead to appearance of the Landau damping region limited by parabolas

0=Q,tqvy +o,.
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Inside this region the propagation of the wave with the spectrum (3.33) is impossible.

The method of calculation of electron dynamic spin susceptibility tensor y, (¢,®) with
taking into account the quasi-local states is listed above. In the transparency windows where
collisionless damping of the spin waves is absent this tensor can be expanded in series over
the powers of impurity atom concentration #, :

X=X+
where y, is a well-known contribution calculated without taking into account quasi-local
states and Jy is the impurity addition which is due to these states. To obtain it we should take

into account the resonance structure of electron scattering operator by the impurity atoms.
With the help of this operator Green functions incoming in the electron lap for the high
frequency spin susceptibility are expressed.

The circular component of susceptibility y_ has the root singularities on the frequencies ,
of the electron transitions from the quasi-local level into the Landau levels which are
accompanied by the spin-flip +—7 . Near the resonance frequency (‘a)— a),,‘ << Q) it equals

to

&,(q,0) = an(q{“’"J , (3.34)

o, —o—il_

where the values a, play the role of oscillator forces of the resonance transitions. In the long-

wavelength limit at c}Hﬁ they are equal to

myz,uZQV ",
a,@) == s |60 - fe o)
=2 5
{1—90] {l+q(1—90/wn)‘}, (3.35)
, mao,

where u is electron magnetic moment; @, =¢,—¢, =Q,+¢&, —¢, are the resonance
frequencies (&, and ¢, are the locations of the n-th Landau level and the resonance level
without taking into account spin splitting); f is Fermi function. The radical in (3.34) is

connected with the singularity of the electron state density on the Landau level participating
in the transitions, and the difference of the Fermi functions in (3.35) takes into account the

Pauli principle.
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The expressions (3.34) and (3.35) are obtained on assuming that in the electron spectrum
one quasi-local state exists. Its characteristics can be calculated in the frames of a certain
model of the priming electron spectrum and the impurity potential. For example, in the case
of the resonance on the short-range impurity the residue of § -scattering amplitude in the pole
g, —iI" equals to [15]

3
r:27rg,l",

e,
where g, is the state density of free electrons in the point ¢,. In the case of electron
magnetoimpurity states formed on the short-range donor impurity in the magnetic field, the
residue is listed in the end of the p. 3.2. It consists A = %Q(a/l)*, i.e. the distance between

the Landau level and the magnetoimpurity level splitted off from it (a is scattering length, /

is magnetic length). In this case the width of the n-th magnetoimpurity level equals to [21,22]
1/2
T, =4A(én) (n>>1).
Q

The expressions (3.34) and (3.35) also remain valid for the magnetoimpurity states. But the
oscillator forces (3.35) contain an additional summarizing over the numbers of
magnetoimpurity levels participating in the transitions on the frequency o, [82].

The contribution (3.34) will be taken into account in the dispersion equation for the
spectrum of the quantum spin waves. Let us find spectrum and damping the transversal
spin waves with the left circular polarization which are propagating along the magnetic field.
The dispersion equation for them in the random phase approximation has the form (3.1).
Electron-electron interaction is supposed to be contact. This approximation is equivalent to
inclusion of the first item in the expansion of the exchange part of the function of Landau
Fermi-liquid interaction in the series over the Legendre polynomials [44]. We are interested
in the solution (4.40) of the dispersion equation (3.1) near the resonance frequency
o, =Q,+ o, which exceeds the spin resonance frequency with the value @, =¢,,, —¢,
which equals to the distance between the resonance level ¢, and the (N+1)-th Landau level.
The magnetic field is selected so that the Fermi boundary is located between the levels a‘f
and EAT,H.

Let us consider an influence of the quasi-local state on the properties of slow quantum spin

wave with the spectrum (3.33). In the region of intersection of the straight line @ =@, with
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the dispersion curve (3.33) of this wave the inequality (3.32) is obeyed, that is why the

dispersion equation in this region can be written in a form

(1-Ax)(1-x)"* =B, (3.36)
where
L Y ma;‘}l(& -g),
@y q

32 10 n,
B= (ﬂ] Vilfe) - f(e, +@)].

2 PONE

From the equation (3.36) it is well shown that the parameter B plays the role of the
coupling constant of electron spin magnetization oscillations at the transitions gf - g,tﬂ and
in the process of the spin wave propagation. In the absence of such a coupling (B=0) the
functions (3.33) are the solutions of the equation (3.36) and w =, .

At the presence of the quasi-local state the frequency change of the spectrum of electron
magnetization oscillations occurs. Two branches of the spin wave spectrum - low @,(g) and
high @,(gq) frequency appear. They are shown on the fig. 11 where only one sector in which
the Landau damping exists is depicted (hatched).

Low frequency solution of the equation (3.36) depends on the parameter

q, =[mawpI(g, — g )]"*. If g <q,, this solution has a form

1 2 1 T—@
=—[l+Z-2(1-— , 3.37
x 3[ ) ( A)GOS 3 1 (3.37)
27(BY 4
h =1-= 1-1/4)".
where cos ¢ > [Aj( )
w (a)

= g

0

Fig. 11. Two branches of the quantum spin wave spectrum.
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If ¢ > g, we find

1 2 1)
=—{1+=+2(1-1/A)ch=|, 3.38
X 3[ +A+ ( )c 3} (3.38)

2 -3
o= Z(2) ()
2\4)\ 4

In a long-wavelength limit (g << g, ) from the expression (3.37) we obtain

where now

0,(q) = Q{l HED g g)‘}. (339)

The quasi-local state leads to reducing frequency and group velocity of the quantum spin
wave with the spectrum (3.33). If ¢ >> ¢, , then with increasing ¢ the dispersion curve (3.38)

asymptotically approaches to a limit frequency

2
| m”IQanl.
=01~ 5555 | |-
1 r 23/27[@5@:/2

Low frequency branch of the quantum spin wave spectrum is located in the band [Q), @]

where the Landau damping is absent. The damping of this wave is defined by the collisions of

electrons with impurity atoms. The damping decrement equals to:

Va :|:v(1—x)+%(i—x):“:1—x+%(i—x):l , (3.40)

where x is equal to (3.37) or (3.38) in accordance with ¢/¢q, and v is a relaxation frequency
of the electron spin magnetization. This frequency is due to the potential scattering on the
impurities. In the long-wavelength limit (g <<g, ) from the formula (3.40) we obtain

q’B

e (v-T (g, -g)"

va(@=v+

Small values v and I'"_ provide the trifle of the decrement in comparison with the wave
frequency (3.39).

The spectrum of the high frequency wave in the long-wavelength limit gv, <<a®, can be

obtained in the quasi-classical approximation for y,:

2

2.2

0,(q) = o, 1—{a0bo“’°(1+1boq?)‘ , (3.41)
@, 37 o
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where
__ B
w, + ‘BO

wf‘
0

Q,’

a, is the value (3.35) at n=N+1 and g =0. The decrement of this wave equals to

7@ =T +2va’b} L .
[0

At g~w,/v, the dispersion curve (3.41) crosses the Landau damping boundary beyond
which the wave damps fast. If ® > @, , the contribution (3.34) becomes imaginary in general.

It means that the high frequency spectrum almost coincides with (3.33). With the increase of

q the dispersion curve of this wave approaches to the Landau damping boundary
o=Q+qvy +o,. In the region @z, this wave experiences strong damping with

decrement

B -1/2
2 —{‘”‘”J , (3.42)

A\ o,

due to the resonance electron transitions 5,_L - gIM induced by the magnetic field of the spin

wave.

The characteristics of a new type of spin waves discussed in this chapter depend on the
parameters of the quasi-local states — the resonance locations and widths, the residues of the
electron scattering amplitude by the insulated impurity atoms in the pole.

In the next chapter we will consider the neutron magnetic scattering method which is

convenient for the experimental detection of these waves.
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CHAPTER IV. NEUTRON MAGNETIC SCATTERING IN NON-FERROMAGNETIC
METALS WITH THE QUASI-LOCAL STATES OF ELECTRONS

4.1. Connection between the cross-section of neutron magnetic scattering and the

tensor of dynamic spin susceptibility

Spin waves to be considered here as well as the waves in the magneto-ordered crystals
[23,49,50,60,85-90] can be found in the experiments with slow neutrons and also in the
experiments on measuring light cross-section [91-93]. In this chapter we will find out how
new types of the spin waves in the non-ferromagnetic metals described in chapter III become
apparent in a neutron scattering cross-section.

Neutron magnetic scattering discussed in this chapter is due to the interaction of a neutron
magnetic moment with the current of spin magnetization of collectivized electrons [49,88,90].

Let ¥ be the Hamiltonian of this interaction. The latter causes the neutron transitions

(I;ml\,) —(k 'm.) from the initial state with the wave vector k and spin quantum number m, in

a final state (lg'm;) In Born approximation the probability of the transition in a unit of time

equals to:

Vk-,k.‘n>‘25(En+ € ~Eim i) @1

2 ,
VVk-m\ﬁk"ml :?Zp" <}’l
where n is index of the scatter stationary state with energy E,, p, is probability of the state

‘n>, V.

- 1s a matrix element of the operator /' assembled on neutron proper states, €, is

neutron energy.
If one takes into account the & -function expansion in the Fourier integral, the expression

(4.1) can be represented in a form

1 %, Lepmem/n N
_ 1 7R, =i | s
Wi, =57 | e (0P 1 ), 42)
where
~ LN iy
V(it)y=e" V(0)e "
is the interaction Hamiltonian in Heisenberg representation, H is the scatter Hamiltonian

(H | n> = En | n> ), averaging with the density matrix of the scatter and also configuration

averaging over locations of impurity atoms in the sample are designated by the angular
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2
. . . . . . o . .
brackets. To obtain twice differential neutron scattering cross-section ——— in a solid

Vd E/
angle dO' and the energy interval d €' it is necessary to multiply the probability (4.2) on the
number
Vi, k'dO'd €
87°n’

of neutron states with the wave vector &' in a solid angle dO' and with the energy €' in the

interval d € (m, is neutron mass, ¥ is the volume of the sample) and divide into the density

of falling neutron beam #7k/m V :

d’c _ (m, VK ‘: }
dt et~ € t
dO/d € (27[) w kn; J‘ exXp Km ekm‘\.) x

(Vi Ve o ) 3)

where is probability of neutron spin projection in a falling beam equals to . As usual,

mg
in (4.3) the averaging over neutron spin states in falling beam and summarizing over spin
states in a scattered beam are accomplished. It is well seen that (4.3) contains the Fourier
component of the correlator assembled on the operators of neutron interaction with the target
particles. The formula (4.3) is also applicable at presence of the magnetic field H . In this

case

'k’ e

€, = %4— 2‘7‘”6%}1’
where m, ==*1, y =1,913 is gyromagnetic relation for a neutron. The interaction energy of a
neutron with the matter consists of two main parts: the energy of nuclear interaction with the
nuclei of the atoms and the energy of magnetic interaction with electrons [85-89]. Let us
consider magnetic interaction of the magnetic field made by a neutron magnetic moment with
a spin magnetization current of conductivity electrons. The vector potential of neutron

magnetic field in the point of electron location 7, equals to [88]

-7l

where /i, is a magnetic moment of the neutron located in the point 7 . It equals to
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[P

n

P

2m,c
where &, is the ort directed against zi,. The energy operator of neutron interaction with the

spin electron current equals to [88]

p=-Lian i),
C

where J is the operator of magnetization current density. Passing to Fourier components over

7, we obtain
V= —LZJ:Z(—”)
oy 2D
where

Z(—c?,?) _ J'dareefqa [ﬂ,:(’”e j}”)] .
. 7|

Let us calculate matrix elements of the operator V/ between the states of neutron & , k' and

'

the scatter n, n'. Let us take into account the matrix element of the spin current operator

[15]:
er' = 76/'”‘01(1//:6_‘//%) 5
where y, is a wave function of the target, 4 is an electron magnetic moment, & are Pauli

matrices. As a result of not complicated calculations we obtain:

<V>4’M<zs

mn

n>[§” —-ex(@S)], (4.4)

where

2
e

= —
0 2
mc

is a classical radius of the electron, Z is summarizing over electrons, S,and S, are spin

.
moments of electron and neutron respectively, g =k —k' is a neutron scattering vector,

é =¢/q . Substituting the matrix element (4.4) in the formulae (4.1) and (4.3) we find

dZO_ Zkr =
dode ~ ;Z;sz zﬂ(% ~€a8p)Sup(>@) 5 45)

where
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S.p (@) = [ dte™ (M (G@.OM ;(~7.0))

M’(g) is a spatial Fourier component of the electron spin magnetization operator (2.4),

har=e— € . The formula (4.5) is also applicable in the case of a magneto-ordered crystal with

"

localized magnetic moments. If ‘I; ‘ =|k’| one can obtain Bragg scattering cross-section which

equals to
(m)n* > (- ef)é'qgé'(hm) s
b
Here n=[n(0)—n_(01/2, n,(g) is a Fourier component of electron density with the spin

projection o =+1, b isa vector of reciprocal magnetic lattice.
To connect the cross-section (4.5) with the tensor of dynamic spin susceptibility of

electrons y,,(¢,®) let us notice that the comelator §_, in (4.5) can be changed into a
symmetrized expression
o1
. ' g
Siy= E(baﬂ +55).
Comparing (4.5) with the Kubo formula (2.14) we find the connection of cross-section of

neutron magnetic scattering with the tensor z,,:

d’c (m)VE'
do'd € Amik

(1-& /) 'Z(ﬁaﬁ - eﬂeﬂ)lmx:ﬂ(é,m) . (4.6)
ap

Here £ is an inverse temperature. Thus if the scattering vector g is normal to the magnetic
field [€ = (1,0,0)] it is easy to obtain

P AT AR R
af

If §

‘ﬁ [ =(0,0,1)] then
Z(Juﬂ = eueﬂ)ziﬂ =X ti,
af

where

X =X Y,

are circular components of a susceptibility tensor. So, from the formula (4.6) in the case

c}HE’ we find:
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d*c VK’ e - -
i = e il G+ 1 G @)

The features of susceptibility described in chapter II can be discovered in the experiments

with slow neutrons.

4.2. Neutron magnetic scattering on spin waves in non-ferromagnetic metals with quasi-local

electron states

The results listed in this paragraph were published in the work [52].
In the previous paragraph it was shown that twice differential cross- section of inelastic
magnetic neutron scattering by an electron subsystem of a conductor contains a spin

contribution:

d’c 1 Woz r ~ ~
=—| 22| V(n,+1)=I o)+ y (g, )], 4.8
T0d o 4”[# (n, +1) 1Mz, (§,0) + 1G] 8)

where

ho=——(p* - p?)
2m

i
are changes of a neutron momentum and energy as a result of scattering, y, and y are

circular components of electron dynamic spin susceptibility,

1

© = " halk,T
et —1

n

is Planck function, V' is a scatter volume. Scattering vector ¢ is supposed to be parallel to
H . The components y, and y_ correspond to the electron transitions with the spin-flip

T>J and {7 respectively.
Susceptibility features considered in the chapter II become apparent directly in the cross-
section. We are interested in behavior of the cross-section as a function of @ near the
frequencies of the electron transitions between the quasi-local level and Landau levels. At the
random phase approximation (RPA) a circular component of dynamic spin susceptibility
equals to:
2.(4,®)

7 . 4.9
1—272)(_(6?:0))
i
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The function y (g,w) with taking into account the quasi-local states and the magnetic field
was calculated in the par. 2.2. From the formula (4.9) it is well seen that the features of
susceptibility can be of two types. The first type is presented also in the case 7/ =0. It is due
to the numerator in (4.9). Due to the numerator we obtain the contribution of one-particle
excitations with the spin-flip in the neutron cross-section. Further we will consider this
contribution near the frequencies of the transitions between the quasi-local levels and the
Landau levels. The other type of susceptibility (4.9) features is connected with the zeros of
the denominator. They correspond to the collective electron excitations, i.e. the spin waves.
Let us calculate the cross-section (4.8) in the regions of existence of spin waves considered in
the par. 3.1, 3.2.
The following results from (4.9)

Z ’ I " " 1 ’
Im—%&—= — X + 1-— X
T {zzﬂzz x'( 2;121)}
247
I I -
x 1_ "2 + "2 , 410
{( 2% x) (Tﬂz 2" } (4.10)
where y =y’ +iy" and indices "+" and "-" of susceptibility are omitted. This expression has

a sharp maximum in the region of existence of slightly damping spin waves where

! x.(§,0)=0 (4.11)

1—
2.7

and y” is small. The solutions @(g) of the dispersion equation (4.11) was considered in par.

3.1, 3.2. The left part of the equation (4.11) near zero of @w(q) can be represented in the form

_d
dw

1- 12
2u

7.q.0) z[w—w(q)]ziﬂz[ zi(q,w)}

w=0(q)

Substituting this expression in (4.10) near the point @ = w(q) we obtain

1" (q,0(q))

RPA

Imy ™" (q,0) »

2
I d "
S| |(@-a@)+] F
H w '
wq 7%
do™ J,,

where (4.11) is taking into account. This expression can be written like this:
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RPA 4/‘4 . 1 7y

I ~ . 4.12
e ey (d}(ﬁj (@-a) +7;’ 1

do ),

where
" @

y, = Zlg,o(@)] 4.13)

a7 @)

dwlﬁ q, 5

is a damping decrement of the spin wave. Substituting (4.12) in the formula (4.8) we will
obtain differential cross-section of neutron scattering accompanied by a magnon production

with the energy %w(g) and also by an electron spin-flip +—7 . In the same way one can

consider the contribution of the processes with the spin-flip T—{ . Let us find out how the
cross-section (4.8) behaves in the region of existence of new spectrum branches of the spin
waves considered in par. 3.1, 3.2.

As it has been noticed before the magnetic scattering cross-section of slow-neutrons by a
spin current in normal metals is connected with dynamic spin susceptibility of conductivity
electrons [49,88,90]. Susceptibility of the non-ferromagnetic metals with the quasi-local
electron states on insulated nonmagnetic impurity atoms in the absence of the magnetic field
was considered in the work [61]. It was shown that electron transitions between the quasi-
local and zone states caused by the variable magnetic field lead to the features of dynamic
spin susceptibility. In a quantizing magnetic field these features become stronger [37]. The
electron resonance transitions from the quasi-local levels into the Landau levels lead to the
root singularities of susceptibility, which reproduce the features of electron state density. The
new spectrum branches of collective excitations of metal spin system are based on these root
singularities. The features of susceptibility must arise in the cross-section of neutron inelastic
magnetic scattering. In the energy spectrum of scattered neutrons the maxima must be
observed when the energy transmitted by a neutron equals to the resonance frequency. It is
true not only for the metals with the proper quasi-local electron states [10] also existing in the
absence of the magnetic field but also with the magnetoimpurity levels [37].

The calculation results of inelastic magnetic scattering cross-section of slow neutrons by a
spin current in normal metals with the quasi-local electron states in the presence of a
quantizing magnetic field are listed below. The model and the method of the calculation are

described in [37,61]. It is supposed that %Zw exceeds summary width of the levels
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participating in the transitions and a scattering vector ¢ is parallel to the constant magnetic
field H . The scatter temperature is supposed to be low in comparison with transition energy.
The frequencies of the electron resonance transitions between the quasi-local level
g, =&, — puH (indices M correspond to the spin orientation along and against the field H )
and the Landau levels accompanied by the spin-flip equal to
@, =0, +Q,+n, (4.14)
where @, =&, —¢, (&, =&, +uH is the nearest to the Fermi energy &, free Landau
level), Q, is the spin resonance frequency, Q is the cyclotron frequency, n=0,l,... is the
resonance number. In the neighborhood of the frequency (4.14) the circular component of
susceptibility y (¢q,®) equals to y = y,+Jdy where gy, is a well-known contribution [78]
and Jy is a resonance part connected with electron transitions evolved. It equals to (3.4).

This expression leads to the additional maxima in the energy spectrum of scattered neutrons.
These maxima lie above the Stoner sectors. These maxima are due to one-particle excitations
of localized electrons with the spin-flip. The dimensionless twice differential scattering cross-

section in the solid angle dO and the energy interval dw

hdz“.“”[ £ J (4.15)

" dOdw .\ 197,

as a function of @ has maxima at the frequencies (4.14). The value of the »-th maximum

1/2
h,=a hao,
n = "n or : (4.16)

The maxima are asymmetric and displaced in the high frequency region. With the increase of

equals to

n the value (4.16) decreases proportionally to #~>. Let us notice that the electron resonance
transitions +—T between the nearest to &, filled Landau level and free quasi-local level

located above ¢, lead at ¢, <&, (but £, >¢, ) to the analogous cross-section maximum at
frequency Q, —‘é:, —EL‘ lying below a central Stoner sector. This maximum is displaced in

the low frequency region.

Let us take into account electron-electron interaction in the random phase approximation. In
this approximation the new spectrum branches of collective excitations of non-ferromagnetic
metal spin system appear outside the Stoner sectors. They are analogous to the transversal

magnetoimpurity spin waves [37]. These waves slightly damp due to electron collisions in
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narrow transparency bands lying below the resonance frequencies (4.14). The dispersion law
and damping decrement of the waves in the # -th band equal to (3.9) and (3.10).

The neutron cross-section with the excitation of the quantum of the spin wave with the
spectrum (3.9) as a function of @ has Lorentz maxima at spin wave frequencies. In the

neighborhood of the » -th maximum

—X
dOodew  I’gra, \ o z

rn

2 2 12
d’c, (197 Aa)"(Aa)nJ 1

<7 (@o-o,@F +Ir, @} (4.17)

where Aw, is the transparency band width (3.12). The maximal value of the cross-section

(4.17) equals to

1/2
h=—2 [A%] Ao, (4.18)
(Ugp)a,\ @, Vu

The width of the maximum coincides with the damping decrement of the spin waves (3.10).
With the increase of 7 the value of the maximum (4.18) decreases proportionally to n™* and
its width tends to a constant limit " .

As it has already been mentioned the quasi-local electron states below the Fermi boundary
in the absence of the magnetic field were observed in Bi with the impurities of Sn and Pb
[81]. Using the parameters of the Bi spectrum and also the characteristics of quasi-local states
listed in [81] we find the ratio of the value of the first (7 = 0) maximum (4.16) at #, =107 at.
%, H =10 Oe to maximal value of Im(y,/y,) at the spin resonance: 24,2(v,/Q,). If one
takes Ig,. =0,1, the ratio of 4, (4.18) to the maximal value of the cross-section with
excitation of the quasi-classical Silin waves [90] will equal 142,4(v,/€,). The ratio of the

value of the first maximum (4.18) to (4.16) turns out to be equal to 5,4. For calculations we
used the residue r in the model of Gauss separable potential [82].
Let us consider the case when the scattering vector § is oriented at an angle to H . As it has

already been pointed out the differential cross-section of the neutron magnetic scattering on
the spin magnetization fluctuations of collectivized electrons is connected to the anti-

Hermitian part of susceptibility tensor [87-90]. Susceptibility features become apparent
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directly in the scattered neutron spectrum. On the curve of cross-section dependence on
transmission of neutron energy %o =& — &' the maxima due to one-particle Stoner excitations
of electrons are present. They are located near energy fiw =#h(€2, +n€2) and restricted by the
Stoner sectors [90]. In the metals with the quasi-local states there exist additional maxima
connected with electron (localized on the impurities) excitations by the neutron magnetic
field. The maxima due to the electron transitions +—7T are located in the points (4.14) the
value @, higher than the Stoner sector corners. They are asymmetric. The character of the
maximum asymmetry depends on the transition type. For example, in the case of the
transitions from the quasi-local level into Landau levels the maxima are displaced in the high
energy region and in the case of the transitions from the Landau levels into the quasi-local
level — in the region of low energies. The series of the maxima due to the transitions T—{ is
located in the points

@, =0, —Q, +nQ. (4.19)

Depending on the ratio @,/€, they can be located both above and below the Stoner sectors.

The differential cross-section of the neutron scattering in the energy interval de’ in the solid

angle dO' related to the unit volume of a sample in the neighborhood of the energy #wm,,

(4.19) equals to

dZO',1 _ xp( 197
dedO' 8x\ u

1/2
x Re[a)”'j , (4.20)

2 ’
] %(n”) +1)(1+cos’ a)a; x

o-o,+il, /h
where « is the angle of the neutron scattering.

On the fig.12 the dependence of dimensionless scattering cross-section
h

0.9

0.6

0.0 1 1
-3 0 3 X

Fig. 12. The dependence of the neutron scattering cross-section on

the value of energy loss near the frequency @, .
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2 172 "
do, | xp 19’6 a+ @,
T dgdo | 4 2T, /h
on x=h(w—-w,,)/T, at @ =0 is presented. The scattering cross-section near frequencies of

the transitions from the Landau levels into the quasi-local level can be obtained by the change

of the resonance denominator in the expression (4.20) into (@, —@—il" /#), indices "+,T"

@,

into "-,4 " at the characteristics of the quasi-local state and by the change of the oscillator
forces described in [71].
The neutron scattering cross-section also has the maxima at the points
w, =a, +nQ.
They are due to the features of the longitudinal susceptibility on the frequencies of the

transitions without the electron spin orientation change. Near these frequencies due to the

transitions from the quasi-local level into the Landau levels we obtain

2 ’
o, =ﬁ(1’9r0j ﬁ( +1)sin’ a x

ded0' 8z\ u
1/2
R _ 4.21
) eZa (w o, +1F /hj “.21)
where
Qo
a: e 1/2$5/2 [f(ng) f(gw +hw,)].

The maxima in the expression (4.21) are displaced in the region of high frequencies. The ratio

of the maximal value of the cross-section at » =0 to the maximum of the cross-section on the
quasi-classical Silin waves [90] equals to a,(v,/Q,)(fim,/T)"?. For the magnetoimpurity
states in bismuth with the impurities of Te at n,/n, =107, v, =10° s™', H =10* Oe this ratio
equals to 0,013.

With the increase of n the maxima values of cross-sections defined by the expressions
(4.20), (4.21) decrease proportionally to 77>. In the case of the transitions from the Landau
levels into the quasi-local level it is necessary to change the sign of the resonance
denominator in (4.21) that will lead to the series of the maxima displaced in the low energy
region.

Besides the maxima due to the one-particle excitations in energy spectrum of scattered

neutrons the Lorentz lines connected with scattering on the spin waves are present. The cross-
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section of scattering with emission of a quantum of the transversal spin waves considered in

ch. III equals to

2 2 ’
d ’O'n' _Xr 1,97, ﬁ(nw .
dedO'  4r\ g, ) k

3/2
+1)(1 + cos? a)“a’[Aw“’J 7.(q)x (4.22)

n n

x{[o-o,@F +7,(@)}"
The maxima of this expression are located inside of the transparency bands and their widths
coincide with the wave damping decrement. Along with the maxima in the region @w<0
connected with the wave absorption they form satellites located symmetrically relative to the
unshifted line @=0. The experimental examining of these satellites would allow to define

®,(q) and y,(q) of new waves. The ratio of the expression (4.21) maximum value to the
maximum value of the scattering cross-section with excitation of the Silin waves [90] in the

3/2

case of narrow quasi-local level (T <<(a,,/®,)*(A®,/ @,,) m) equals to
a

C, = /Qo, g
If the typical values
Iz, =03; 0,/Q,=0,1
are substituted here, we obtain C,=0,1. With the increase of n the ratio C, decreases

proportionally to 7.

The listed values show that several branches of spin waves in the non-ferromagnetic metals
predicted in the work can be discovered in the experiments with slow neutrons. As for the
new branches of the wave spectrum they can exist in the ferromagnetic metals either. The
consistent theory of these waves with taking into account the Fermi liquid effects (without the

quasi-local electron states) is evolved in the works [94-96].
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CHAPTER V. SILIN SPIN WAVES IN TWO-DIMENSIONAL ELECTRON GAS

5.1. Dynamic spin susceptibility of two-dimensional electron gas with impurity electron states

A reaction of the two-dimensional electron gas [97] on a slight variable magnetic field is
characterised by a tensor of dynamic spin susceptibility y(¢,®) depending on the wave
vector ¢ and the field frequency @ . The features of susceptibility on a complex plane of the

frequency @ determine the spectrum and damping of magnetic excitations of a system.
Susceptibility allows to obtain the fluctuation spectrum of the spin magnetization of the two-
dimensional electron gas, the cross-section of the neutron magnetic scattering by the spin
magnetization current of conductivity electrons and the other values.

A big deal of the works are dedicated to a calculation of spin susceptibility of two-
dimensional electron systems. The calculation results of free electron gas static susceptibility
in a magnetic field which is normal to a plane of electron motion, are listed in a work [98].
Coulomb electron interaction is taken into account in [99]. A precise expression for dynamic
spin susceptibility and also the functions of a reaction density-density of free degenerated
two-dimensional electron gas were listed in the works [97,100]. The quantizing magnetic field
was taken into account in [101]. High frequency asymptotics of spin susceptibility of two-
dimensional Fermi liquid was obtained in a work [102]. An influence of the impurity atoms
(which potentially scatter conductivity electrons) on susceptibility was considered in [103].
The review of properties of two-dimensional disordered systems in a magnetic field was
given in [104].

Being sensitive to the dynamics of conductivity electrons, spin susceptibility experiences an
influence of impurity atoms in the system. In particular, the electron impurity states must
affect on susceptibility and the values connected with it. To include these states is actual since
in the two-dimensional case the impurity atom which attracts the electrons in any slight way
forms a bound state. The corresponding local level is located at a lower edge of two-
dimensional conductivity zone. In a magnetic field the “multiplication” of the local levels
takes place. They exist in the field of both attracting and repulsing scatters. The local levels
are located between the Landau levels [105].

Here an influence of the local states on high-frequency dynamic spin susceptibility of the
two-dimensional electron gas is considered at low temperatures. The method of the local

excitations [10] applied earlier [106] for the calculation of susceptibility tensor is used. The
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field frequency @ is supposed to be high in comparison with the frequency of the electron
collisions.

As in the par. 2.2 for the calculation of spin susceptibility tensor let us use the Kubo formula
Zap(@-0) =i[ dte™ (M., (3.0).M ,(-3.0))) . 5.1)
0

here M(g,7) is spatial Fourier component of Heisenberg operator of the two-dimensional
electron spin magnetization; a commutator of operators is designated by the brackets and the
Gibbs averaging and averaging over the configurations of the impurity atoms are marked by
corner brackets; o, f=x,y; the sample area and quantum constant are equal to 1. The
operator of the spin magnetization in the representation of the secondary quantization has a

form

M(§)=—1).05a0; 50 . (5.2)

pss'
where p is electron magnetic moment; p and s are momentum and spin quantum number;
a;, and a; the annihilation and production operators of electrons in the state ‘ fzs>; o” is the
Pauli matrices. Substituting the expression (5.2) in the formula (5.1) we obtain a connection
between susceptibility tensor and the Fourier component of the retarded two-electron Green
function. Let us use the method of the temperature Green functions [45] for calculation of the
last one.

In the one-electron approximation the two-particle Green function comes to one-particle
Green function product averaged over the impurity atom configurations. If one neglects the
vertex corrections [45] then this mean value will come to the product of the mean values of
one-particle Green functions. Using their spectral representations [45] we obtain for the tensor

(5.1) the expression

Zop(G-0)=—1° Y 05070

pss’

«Jae [ e LETE 0 ovputpd., (53)
in which f(¢g) is the Fermi function; p, (p,€) is spectral density of the one-electron Green
function averaged over the impurity configurations. In a pure sample it equals to

po(P,6)=6(s-¢;),

where ¢, = p*/2m, m is the effective electron mass.
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The one-particle Green function G is connected with the scattering operator 7' of electrons
by the impurity centers [10]:

G=G,+GTG,, (5.4)

where G, is Green function of the free electrons. The exact expression for the mean value of

electron scattering operator by short-range acting impurity atoms in the one-center
approximation is well-known [10]. Therefore, the spectral density of the mean Green function

(5.4) can be represented in the form p = p, + dp, where dp, is the impurity addition. In the
linear approximation over the impurity atom density », it is proportional to n,. As a result
X =X, +0x; where y, is tensor of spin susceptibility of a pure sample and Jy, is impurity
contribution. It equals to c?,{f;}, =,0,, where

F.(G.0) =24y, [da (P LS (&)= f (6,01

P —xo

x[ ! —+ ! —|. (5.5)
E—&,,—0—i0 e—& +0+i0

From the formula (5.4) it is well seen that the function G has an additional peculiarities
connected with the features of the scattering operator. The electron local energy levels on
insulated impurity atoms correspond to them. A contribution of local levels in the spectral

density of the mean Green function equals to
p(p,&)= ‘Vo

where v, is a constant characterizing the intensity of short-range acting impurity potential;

n(s—&,) 2 Sll-v,F(&)], (5.6)

F(¢&) is the function of the Lifshits equation [10] 1—-v,F (&) =0 for the local levels. From the

formula (5.6) it is well seen that the spectral density has the delta-shaped maxima on the local

levels:
P(p,8)=n2 ri(e, = &) 5 =4), (5.7)
1
where g, is location of /-th local level;

dF (&)
de

1

£=¢,

is a residue of electron scattering amplitude by the impurity center in a pole &, . In the case of

a shallow (m‘vo‘ <<1) local level it equals to
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r:27z‘€1‘/m.

From the formulae (5.5) and (5.7) we find the contribution of the local levels into the high-

frequency spin susceptibility:

H(G.@)=245'n D i, 5 — &) LS (£;) = f(&)]x

x( LR L ] (5.8)
&g —0—i0 g-¢g+w+i0
As it would be expected, the real part of this expression is an even function of the frequency
and the imaginary one is an odd function.

If in the energy spectrum of the system there is only one local level located at the lower
edge of two-dimensional conductivity zone from the formula (5.8) after the integration over

vector p directions we obtain

8 (q.) = 4mmprn, x

x fds[f(S)—f(S,)][g S jx

 —E+w+i0 g —-c-w—i0
2 -3/2
xle—g +e (e - +e,) -4, (5.9)
In the case of the weak spatial dispersion (&, << ‘51‘) we can expand the real part of the

function (5.9) in series over &,/ powers. Then with taking into account the terms of q

order for the degenerated electrons we find

Redy(q, ) = dmmpl’rn,om™ x
-1
x{|:14€q(l3€1ﬂh1 +4g"(181"] X
0] 20 & &
3 -1
{1—(1—“] } +(0— ), (5.10)
4 g

where ¢, is Fermi energy and by (@ — —w) the item obtained from the previous one by a

& —&

0+ep—§

change of the frequency sign is designated. The function (5.10) has a logarithm peculiarity at
the threshold frequency ¢, +‘5,‘ of activation of electrons localized on impurities by the

temporal magnetic field. Impurity absorption of temporal field energy has a threshold at this
frequency.

The imaginary part of (5.9) at any degree of electron degeneracy and any ¢ equals to
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Imdy (g, ) = 47r2my2rn,.‘a)+‘6‘(a) +&)lf(g)—
—f(s,+a))][a)f—4£q(a)+51)]’3/2—(a)—)—a)), (5.11)
where o, =wt¢,; 6 is Heaviside function. At finite temperature the expression (5.11) has a
threshold on the frequency «, = ‘g,‘ of local level activation. As the temperature is reduced
the threshold is displaced into the point &, +‘£,‘ in accordance with the Pauli principle. At

transition through the threshold frequency the imaginary part of susceptibility (5.11)
experiences a jump which is equal to (at ¢ =0) 47r2m,uzrnl.wg’2. With increasing frequency

the expression (5.11) decreases proportionally to @>. Taking into account final width of the
local level leads naturally to the jump disassembly.

The method of the local perturbations used above is also applicable in that case when two-
dimensional electron gas is located in a quantizing magnetic field which is normal to z=0
plane in which electrons move. In this case electrons are located on the Landau levels and the
local levels disjoined from them. For the calculation of spin susceptibility tensor of such a
system it is convenient to use the Landau representation. In particular, the spatial Fourier

component of the spin magnetization operator in this representation has a form

M(@)=-uD 00, (-§)aa,

where v is a set of the electron orbital quantum numbers in a magnetic field;

1@ =1

iqr
e q!

v’> are matrix elements of the flat wave in the Landau basis.

As a result of the above described transformations we obtain the contribution of local levels

in the tensor of high-frequency spin susceptibility of the two-dimensional electrons:

2
muy”o.n,
@caﬁ(q,m:—””‘ Y x

LD oo 3 r(al yx

1 N2
(‘("m\_g}u)
a _f a _f
[eptleye O, Ol
x| = i/ - S (5.12)
Ey —Epy +0+I0 g —&,, —0—i0

Here , is cyclotron frequency; ¢, and &, are a location of 7-th Landau level and k -th

0 = (ﬁ,) £ exp(— EJL';‘"@) ,
n'l 2
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L™ are generalized Laguerre polynomials; & = ¢*/(2ma,); the wave vector § is parallel to
v axis. If the distance @, between the Landau level and the local level disjoined from it is
small in comparison with @, the residue of electron scattering amplitude by the impurity
atom in the pole &/, equals to
r=2mw; (me,).
In that case when & <<1 one can neglect spatial dispersion of a tensor (5.12). Then the

circular components of susceptibility equal to

(@)= (W) £idy, (0) =

e Y e AR CIIE

a kn (gn+ - gk+)

1
x —+(+> ), 5.13
&, —¢, T+ti0 ( ) ©-13)

n—

- / L .
where indices + at 7,,, &,, and &, correspond to the electron spin orientation along and

against a magnetic field; by (+ <> —) the item (which is obtained from the previous one by
the change of the sign of the electron spin projection and the sign of @+i0) is designated.
From the formulae (5.12) and (5.13) it is well seen that spin susceptibility of the two-
dimensional electron gas has the resonance features at the frequencies of the electron

transitions between the Landau levels and the local levels accompanied by the spin flip. The

resonance frequencies equal to |&,, — 5,1@‘ .

On fig. 13 the dependence of the real (/) and the imaginary (2) parts of the value

50— Zzlzyn. 5 (5.14)

on x=1-w/w near the frequency @, =, —w, of the resonance electron transitions

between the Landau level and the local level with the electron spin flip (—— +) within one

Landau subzone are listed. Here y=I'/w, where I' is the summary width of the levels

involved in the transitions. The calculations are performed for y =0,1. The ratio of the

maximal value of Redy_ to the Pauli susceptibility of the two-dimensional electron gas [98]
Zo =€ (4mmc®)™

equals to




Substituting the values 7, =10'2 sm?, H =10* Oe, i.e. the strength of constant magnetic field,
w,/®, =0,1 are typical for the experiments with the inversion layer at the boundary Si —

SiO; we will obtain k£ =218.

1,04
05F v

O i L

w 0 ~0.1 0 0,1 X
~0,5F !

Fig. 13. The dependence of the real (/) and the imaginary (2) parts of
susceptibility (5.14) on the frequency in the neighborhood of

the resonance.

In this paragraph an influence of the electron localization in the field of the impurity atoms
on tensor of high-frequency spin susceptibility of the two-dimensional electron gas is
considered. The mean distance between the impurity atoms is supposed to be big in
comparison with the radius of electron orbit in the magnetic field and the frequency of
variable magnetic field is sufficiently higher than the electron collision frequency. It allows to
use the expansion of susceptibility in series over powers of impurity atom

density », and to select the contribution of the local levels which is proportional to #,. The

local levels are the poles of one-electron Green function averaged over the impurity

configurations. They become apparent in the form of the delta-shaped maxima on the
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dependence of the spectral density of the mean Green function on the electron energy. Taking
into account these maxima allows to obtain the susceptibility contribution due to the electron
transitions between the bound and zone states induced by the variable field. This contribution
can be obtained both in appearance and absence of quantizing magnetic field which is normal
to the electron layer.

In the absence of the magnetic field the real part of the dynamic spin susceptibility of the
degenerated electrons has the logarithm feature on the threshold frequency of the localized
electron transitions into the two-dimensional conductivity zone. The imaginary part of
susceptibility has the threshold and experiences the jump at this frequency. Taking into
account the finite width of the local level leads to the disassembly of the jump and to the
maximum on the frequency dependence of susceptibility.

In the quantizing magnetic field susceptibility has the resonance features on the frequencies
of the electron transitions between the Landau levels and the local levels alternating with
them. The real part of susceptibility as a function of the frequency has the simple poles on the
resonance frequencies and the imaginary one has the delta-shaped maxima. Let us notice that
at the deduction of the formulae (5.10)-(5.13) only the fact of existence of the local levels in

the electron energy spectrum is used. Their characteristics (locations of levels &l and
residues of scattering amplitude r,, ) are not defined precisely. Therefore, the formulae (5.10)-

(5.13) can be used for obtaining these characteristics by comparison of the theory with the
experiment.

The results obtained can be used at studying high-frequency magnetic properties of
inversion layers at the boundary of semiconductors and dielectrics, heterotransitions,
superlattices, two-dimensional and layered metals, thin metal films in the conditions when the
electrons fill only the lower energy level due to the spatial quantization [97]. It is necessary to
take into account the above obtained features of imaginary part of susceptibility in the
dispersion equation for the spin wave spectrum in the two-dimensional non-ferromagnetic
Fermi-liquid. Below we will see that they will lead to the reorganization of the wave spectrum
in the neighborhood of the resonance frequencies. The maxima of the imaginary part of
susceptibility must become apparent in the energy absorption of the high-frequency field and
in the cross-section of inelastic neutron magnetic scattering by the two-dimensional electron

gas.
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5.2. The spin waves in the non-magnetic two-dimensional electron liquid

In par. 1.1 it was noticed that the spin waves in the non-ferromagnetic metals in a magnetic
field are connected with the spin resonance of the conductivity electrons forming the
degenerated electron liquid of the metal. The spin branch of the spin excitation spectrum of
the system of interacting electrons corresponds to a dynamic spin susceptibility pole located
outside the Stoner sectors [24,33]. Wave damping at low temperatures is due to the electron
collisions with the impurity atoms and lattice defects. Usually they are taken into account by
introducing collision frequency due to the relaxation of the electron momentum and spin [36].

In the presence of the impurity atoms attracting electrons and also the magnetic field in a
sample the other types of the electron resonance transitions induced by the variable magnetic
field are also possible. Those are the transitions with the spin flip between the quasi-local [10]
and also magnetoimpurity [21,22] levels and the Landau levels. Near the frequencies of these
transitions the new spectrum branches of the spin waves which were called magnetoimpurity
waves [37,51] are located.

In the existence of an additional poles of dynamic spin susceptibility connected with the
above mentioned electron resonance transitions can be proved on a basis of the simplest
approximation, which takes into account the electron-electron interaction in random phase
approximation [36]. In this approximation the electron exchange energy is taken into account
and their mutual scattering is considered in the stair approximation [36]. The random phase
approximation for the description of the spin waves in the non-ferromagnetic metals in the
presence of the magnetic field was used in the work [75]. The review of the works in which
an influence of impurity atoms on dynamic spin susceptibility without taking into account the
electron impurity states is delivered in [76].

In connection with the heightened interest to the two-dimensional systems [97] it is
advisable to ascertain how the impurity atoms influence the properties of the spin waves
propagating in the two-dimensional electron liquid placed into a magnetic field. The actuality
of this task is connected with the fact that in the two-dimensional electron system in a
magnetic field an impurity which intensity is somehow small removes the degeneracy over a
location of the electron “orbit” center and splits off the local levels from each Landau level
[47,105]. In contrast to a three-dimensional case [22] in two-dimensional system the local
levels exist in the field of both attracting and repulsing impurity atoms. The electron
resonance transitions between the local levels and the Landau levels must be accompanied by

appearance of new branches in a wave spectrum.
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In the present paragraph the results of calculation of spin wave spectrum and damping in the
two-dimensional electron liquid are listed with taking into account the electron local states on
impurity atoms in a magnetic field [108]. Electron-electron interaction is taken into account at
random phase approximation. Rare impurity atoms are supposed to be distributed at random.

Let us consider two-dimensional electron liquid in a plane z=0 which is normal to stable

magnetic field H . Electron dispersion law is supposed to be isotropic and quadratic and
chaotically distributed impurity atoms in a small concentration are supposed to be short-range
acting. In the random phase approximation a dispersion equation for the spin waves
propagating in the two-dimensional electron liquid normally to the magnetic field has a form
[75]

1—%Zi(é,w)=0, (5.15)

2u

where p is electron spin magnetic moment; y, =y, iy, are circular components of
dynamic spin susceptibility tensor (they depend on a wave vector g and the frequency w); [

is Fourier component of electron-electron interaction energy. The last one takes into account
only s-th wave part of particle mutual scattering amplitude. The sheet z =0 occupied by
electrons is submerged in a media whose magnetic susceptibility is taken to be equal to 1. The
value / in quasi-classical approximation is connected with the parameter By which appear in

Fermi-liquid theory by a relationship
B, =ml [(27h*)
(m is electron effective mass). The constant By is proportional to zero item of spin part
expansion of Landau interaction function over Legendre polynomials [36]. Its sign is opposite
to the constant sign used in [36].
©

Let us use quasi-classical long-wavelength approximation for the components y,  of pure

sample susceptibility:

2
_ Q 1{ gv
G, w) = 0 |1+— a . 5.16
e (@) ZOQOira) 2\ Q0 (5.16)

Here vr is Fermi velocity, Qo=2uH/# is frequency of electron paramagnetic resonance,
Xo=mu’ | A’
is Pauli susceptibility of two-dimensional electrons. Substituting the expression (5.16) in

dispersion equation (5.15) we make sure that distribution of spin waves with polarization
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corresponding to the “plus” sign in (5.15) and (5.16) is impossible in the electron system. The

waves with the polarization “minus” are characterized by a dispersion law

o(q)=Q,(1- B,) 1—;(?} : (5.17)

It differs from the dispersion law of the waves in three-dimensional sample [24] only in
numerical factor before ¢”. Damping decrement of the waves with the spectrum (5.17) equals
to the frequency v of electron collisions with impurity atoms. This frequency is due to
momentum and spin relaxation [36].

In the previous paragraph it was shown that taking into account local levels in energy
spectrum of two-dimensional electrons leads to appearance of resonance contributions Jy, in
components of high-frequency (@ >>v) susceptibility tensor. It is necessary to take into
account these contributions in dispersion equation (5.15). Near frequencies @; of the
resonance electron transitions between Landau levels and local levels circular components of

spin susceptibility besides (5.16) consist items

+

() _ + @y
s =X T, (5.18)
o; —w—iv,

where o is oscillator forces of the resonance transitions, 7v, is local level width. The
values @ depend on a wave vector. This dependence becomes apparent in terms of the order

(gR)* (R is cyclotron radius), which lead to the weak renormalization of the group velocity
of the waves and will not be taken into account later on.
In the case of electron transitions from the Landau level into the local level with a spin-flip
+ —>F the resonance frequencies equal to
& =50, FQy — @, (5.19)
where @, is electron cyclotron frequency, %@, is a distance between the Landau level and a

local level splitted off from it, s is a resonance number. In the case involved the oscillator
forces equal to

aS

F !
=—5————> 1 If (i)~ f(E)] 5.20
s WA UCSENCS) (520
where &, and &} are locations of #-th Landau level and k-th local one with a spin projection
o ==, f is Fermi function, 7; is a residue of amplitude of electron-impurity scattering in a

pole &, —ihv,, n; is impurity atom density. Summarizing in (5.20) is performed over couples
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of the levels participating in the transitions at a frequency @; . Function Fermi difference
includes the Pauli principle. The number of items in (5.20) depends on location of Fermi
energy &, of degenerated electrons.
Electron transition frequencies from the local level into the Landau level with a spin-flip
+—F equal to
& =50, FQ +a,. (5.21)
The corresponding oscillator forces have a form

+ _ a)cn,‘ + Iy
o WA UCRETICES) (5:22)

s

Let us consider a neighborhood of frequency @, =Q,—a, of electron transitions from

Landau level ¢, into local level !, . Since ¢, <&, <&\, , in the sum over k incoming in

the formula (5.20) only one item with £ =N remains. Other transitions at the frequency are

forbidden by the Pauli principle. It is supposed that Q) > @,. And if @, > B/, the resonance
frequency @ is less then a limit frequency of the wave with a spectrum (5.17). In this case a

dispersion curve (5.17) of Silin wave intersects with a straight line @=¢, and there is a

cross-situation which is analogous to the discovered one in a crystalline lattice with the quasi-
local oscillations [84]. The cross-situation is an intersection of dispersion law curves of two
type waves or elementary excitations. If one takes into account the contributions (5.16) and
(5.18) the dispersion equation (5.15) for limit (¢ =0) frequencies in the spin wave spectrum
takes a form

1-B,-w/Q, a
=B, ,
1-0/Q, 1-0/o,

(5.23)

where o, =a,,

S ean
0 = 2
(ha,)” o,

(5.24)
This equation has two solutions @, corresponding to low- and high-frequency branches of
spin wave spectrum:

@, = %w;(] _aBo)"'%Qo(l -B)*

i%{[w,(l—aBo)—Qo(l—Bo)]z+4QOwraBOZ}”2, (5.25)
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The limit frequency @_ is located below @, and @, is located in a gap [Q,(1-B,), Q,].

The parameter defining branch (5.17) splitting into two branches is «. If o — 0 then the
frequency @_ approaches to w,, and @, approaches to Q,(1—-B,). In the spin wave
spectrum there is a gap [@_, o,] within which wave propagation is impossible. Its width
equals to

w=Q,-ao,-o._. (5.26)

The curve (5.17) crosses a line @ =@, in a point
12
“ :QO[ZBO(a)O BOQU)} .
Vi Q,(1-B,)

If g <<g, one may only take an expansion of the dispersion equation (5.15) in a series over g

powers. In long-wavelength limit we obtain a dispersion law of considered spin wave

branches:

-1

a)t(q) =, _l(qvl‘)z|:1 +awr(QO_w+\J :| . (5.27)

2Q, -, Q\ o -0,

The dispersion of these waves is anomalous. They represent heterogeneous precession of
magnetization around the direction of a constant magnetic field. This precession propagates in
a plane z=0. Component ratio of spin magnetization vector m induced by a variable magnetic
field in the waves with the spectrum (5.27) equals to

m. Xu X-TX

ﬂ:@:iﬂﬁ_ﬂﬁ

One can easily obtain cartesian coordinates of susceptibility tensor from (5.16) and (5.18).
The damping of spin waves propagating normally to the magnetic field is due to electron

collisions with the impurity atoms. They are determined by the parameters v and v,

characterizing the impurity broadening of Landau levels and local levels. Taking into account
small imaginary additions in the expansion (5.16) and (5.18) we make sure that the solution of

the dispersion equation (5.15) has a form

o=0.(q)—iy.(q),

where ®,(g) is the dispersion law of the waves (5.27) and y, is damping decrement. It

equals to
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Q\ 0, -,

2 277!
S PRV 0 Sl [N FUDMCS 2 el I (5.28)
& oo -o
0 r +

Small values v and v, provide fulfillment of inequality y, <<w, . If a —0 then from the

formulae (5.27) and (5.28) we obtain spectrum and damping decrement of spin waves in the
absence of electron localization.

Two solutions (5.27) of the dispersion equation also remain in the case @, < B,£2,. But now
o <Q(1-By), o, <o, <Q,.
Let us consider electron transitions from local level ¢, into Landau level ¢,,. The
transition frequency equals to @, =, + @, and the oscillator force is

PR 4 — (5.29)
(ha,) (Qy + @)
The dispersion equation for the limit frequencies in a considered case has a previous form
(5.23) but now @, =Q, + @, and oscillator force « is expressed by the formula (5.29). The
limit frequencies are located in the regions
o <Q(1-B)), Q <o, <o,.

Low-frequency spectrum branch is recovered with the band of Silin wave (5.17). High-
frequency branch is located in a frequency region where propagation of quasi-classical Silin
waves is impossible. The solutions of the dispersion equation differ from (5.25), (5.27) and
(5.28) by the other values of resonance frequency and oscillator force. Spin waves with a

dispersion law @, (¢ ) slightly damp in a transparency band [ @, , @, ] with width
Ao=Q,+o,-o,. (5.30)

Let us consider the waves with “plus” polarization. From the formula (5.16) it is well seen
that in the absence of electron localization a slightly damping solution of the equation (5.15)
for the spin waves with “plus” polarization can exist only in a case B, >1. But electron liquid
under this condition becomes instable [36]. The positive contribution (5.18) of local levels in
real part of spin susceptibility in a region @ <, leads to the possibility of propagation of
such waves. This situation reminds antihelicons in electron gas [39] whose propagation is
possible due to the existence of subsystem of localized electrons with a direction of rotation

which is determined not only by a magnetic field but also by impurity center.
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Resonance frequency of transitions from Landau level ¢, ), into local level &,  with spin
flip + > — equals to @' =m, —Q, — @, . Oscillator force

L L TP W P ) (531)

=322 2
(o, —w,) o
In this case dispersion equation for limit frequencies of spin waves has a form

a)+QO(1—BO):aBO , , (5.32)
o+, [O?]

)

where @, =@, @ =¢," . Inaregion @< @, two solutions of this equation exist

1 1
@, :Ewr(l_“Bo)_EQo(l_Bo)i

i%{[a)r(l +aB,)+Q,(1-B,)] -

—doByw, (o, + Q). (5.33)
If @ — 0 the upper branch (5.33) approaches the resonance frequency @, and a solution @_

becomes negative.
In a long-wavelength limit the solutions of the equation (5.15) in a considered case are the

following:

20, +w, Q\ o -,

a)+(q)=a)++1(qu)2|:l—0{w'£gwj :1 s (5.34)

where @, are the limit frequencies of (5.33). Dispersion of these waves is normal. They
slightly damp due to electron collisions with impurity atoms in the transparency bands
located between limit frequencies (5.33) and a resonance frequency @, .
The frequency of electron transitions from the local level &), into Landau level Ena)
equals to
o, =0, —Q)+a,
and oscillator force is

B, L) = S G - (535)

A= g

(o +0) o

In this case two branches of spin waves are located in the interval (0, , ). The solutions of the
dispersion equation are given by formulae (5.33) and (5.34) in which o, =, -Q, + @, and

the oscillator force is determined by (5.35).
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5.3. Neutron magnetic scattering by two-dimensional electron gas with the magnetoimpurity

electron states

The spin waves considered in the parts 5.1 and 5.2 can be detected in the experiments with
slow neutrons. Differential cross-section of neutron magnetic scattering by two-dimensional
electron liquid which is calculated on a square unit equals to [60]

2 2.,
do _1(7m)| K, 1«
do'de' 4n\ u ) k

x Y (8, —ee)Im z, (G, ), (5.36)
ik

s . . PIETT 2 2 - .
where y; is symmetrized tensor of spin susceptibility, 7y =e”/mc” is classical electron

radius, y=1,91 is a neutron giromagnetic ratio, ¢ =k—k' and ho=c—¢' are changes of the
neutron wave vector and energy at scattering in a solid angle dO’, n, is a Planck distribution

function, e =¢g/q.

Since scattering vector ¢ is normal to magnetic field the sum incoming in (5.36) equals to

1
5(;@ X Xeas (5:37)

where components of spin susceptibility tensor are calculated in random phase approximation.
In the absence of electron-electron interaction a local level contribution in longitudinal

component of dynamic spin susceptibility equals to

1 r’
@(zz(a)) = Eﬂ(oha)cniz .

—k__x
e (6, — gli )2

<Lf(el) — £ (60)] (5 : ¥ ! J

! . ! .
L — & tho+io & ,—& —ho—io

This function has resonance singularities at frequencies

”

s, —s,i‘/h of electron transitions

between Landau levels and local levels without spin flip.

From the formula (5.36) one can easily obtain a contribution of one-particle excitations of
electrons localized on impurity atoms in a cross-section of inelastic neutron scattering. Items
with y, in (5.3) give contribution in scattering cross-section with electron spin flip £+ —F
and items with y,. give a contribution without spin flip. In particular, cross-section of the
scattering accompanied by electron transitions from local level into Landau level with spin

flip £ —> F near w=w; (5.21) equals to
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d’o, 1 K v,
e e 39
Here temperature is supposed to be small in comparison with the transition energy. In the
energy spectrum of scattered neutrons symmetrical maxima (5.38) are present due to one-
particle excitations of localized electrons. Such maxima connected with electron transitions

from Landau levels into local levels must be observed at @ = @ (5.19). Let us notice that in a
three-dimensional case analogous maxima are asymmetrical [52]. It is connected with
asymmetry of electron state density at the Landau levels.

Besides maxima described by the formula (5.38) in spectrum of scattered neutrons a series
of Lorentz maxima is present due to the scattering on spin waves with the spectrum (5.27) and
(5.34). Cross-section of a scattering with emission of spin wave quantum with a dispersion
law @, equals to:

2 24
d Oy _ 1 % &(a) _QO)Z X
do'de'  2mQ\ I )k °

-1
,

2
-Q
x[14a 2] L0 R (5.39)
Q| o, -0, (w-w) +7,

where @, is a resonance frequency (5.19) or (5.21), « is an oscillator force (5.20) or (5.22),

7, 1s a wave damping decrement. If & — 0 from the formula (5.39) we obtain neutron cross-

section on the spin waves with the spectrum (5.17) [90].

Characteristics of local electron states (locations and widths of local levels, residues of
electron scattering amplitude by impurity atoms) have not been given a precise expression so
far. Only the fact of existence of a pole of electron-impurity scattering amplitude has been
used. These characteristics can be obtained by the way of comparison of the theory with the
experiment or they can be calculated on a basis of a certain model of impurity potential. In
particular, in a case of short-range acting potential of impurity atom and slight splitting local

level from Landau level off (@, << ®,) a residue of scattering amplitude equals to [82,107]
7 =27’@] / me, . This expression will be used for estimations.

For an estimation of values of differential cross-section maxima obtained in this part for
neutron scattering we use values of parameters which are typical for thin films of semi-metals
and inversion layer at a boundary of Silicon with Silica [97]: m =10"" kg, n=10"° m?, i.e.

two-dimensional electron liquid density, #/n.~0,01, @,/Q,= 0,2, B,= 0,1, v=v,. Then in

96



the field with magnetic flux density 10 T we obtain Q,= 1,9-10" s, ratios of maximal

values of cross-sections (5.38) and (5.39) to the cross-section maximum of the scattering on a
Silin wave equal to 0,23 and 0,12. In this case ratios of widths of the gap (5.26) and of the
transparency band (5.30) to €, equal to 0,74 and 0,02 respectively.

Resuming the results obtained in the parts 5.2 and 5.3 we notice that impurity atoms in two-
dimensional electron systems exert important influence on a quasi-particle energy spectrum.
In such systems a very weak impurity is able to form a local level at the edge of a
conductivity zone. In a quantizing magnetic field which is normal to a plane of electron
motion multiplication of local levels occurs. They are splitting off up or down from each
Landau level in dependence on a sign of impurity potential. Such a structure of spectrum of
two-dimensional electron system in magnetic field affects on its high-frequency
characteristics. In particular, dynamic spin susceptibility has resonance singularities on
frequencies of electron transitions between Landau levels and local level with spin flip. On
these singularities new branches of spin wave spectrum are formed in non-ferromagnetic two-
dimensional electron liquid.

Here it is shown that electron localization on impurity atoms competing with dissipation
processes is conducive to spin wave propagation. New spectrum branches of collective
oscillations of spin magnetization exist in those regions where Silin wave propagation is
impossible. The spectrum and damping decrement of these waves have been calculated.

When the Silin wave frequency coincides with the frequency of electron resonance
transitions between Landau levels and resonance levels the rearrangement of spin wave
spectrum which is due to binding oscillations in the spin wave with oscillations at the
resonance occurs. Dispersion curve of Silin wave in two-dimensional electron liquid splits
into two branches: low- and high-frequency. They are divided by a gap within which the wave
propagation is impossible.

The spin waves considered here can be detected in experiments over measurement of
differential cross-section of inelastic neutron magnetic scattering by the current of spin
magnetization of two-dimensional electrons. In energy spectrum of scattered neutrons there
are maxima due to both one-particle excitations of electrons localized on impurities and spin
waves. Symmetrical maxima due to one-particle excitations are located on resonance
frequencies of transitions between Landau levels and local levels. The widths of these

maxima are determined by the widths of levels participating in the transitions. Locations of
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Lorentz maxima of scattering cross-section on the spin waves allow to obtain the wave
spectrum and their widths allows to obtain damping decrement.

The results listed in this chapter can be used at studying two-dimensional metals, inversion
layers on the boundary of semi-conductor with dielectric, layered systems, thin metal films
under the conditions when electrons are located on a lower energy level which is due to

dimensional quantization.
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CONCLUSION

Here we resume the main results listed in the monograph.

Dynamic spin susceptibility of conductivity electrons in non-ferromagnetic metals with
quasi-local states of carriers on impurity atoms in a magnetic field has the resonance
singularities on frequencies of electron transitions induced by a variable magnetic field
between quasi-local levels and Landau levels.

Resonance contribution in a tensor of dynamic spin susceptibility of electrons with the
quasi-local states in metals whose Fermi surface has a form of a revolution ellipsoid depends
on orientation of strength vector of the magnetic field relatively to an axis of ellipsoid
revolution.

In non-ferromagnetic metals with the quasi-local electron states in magnetic field new
spectrum branches of transversal spin waves exist. Their frequencies lie in the transparency
bands near the frequencies of the resonance transitions of localized electrons into Landau
levels accompanied by a spin flip.

Characteristics of these waves (dispersion law, damping decrement, polarization) depends
on parameters of the quasi-local states.

The quasi-local states of electrons in a field of impurity atoms influence spectrum and
damping quantum spin waves in the non-ferromagnetic metals in a magnetic field. In the
region of intersection of spin wave dispersion curve with the frequency of resonance electron
transitions between the quasi-local levels and Landau levels the rearrangement of quantum
spin wave spectrum which is well-known under a name “cross-situation” occurs. Instead of
one branch in every transparency window two wave spectrum branches exist.

Inelastic neutron magnetic scattering in the non-ferromagnetic metals with the quasi-local
electron states on the impurity atoms in magnetic field leads to excitation of spin waves which
damp slightly in transparency bands near frequencies of resonance electron transitions
between quasi-local levels and Landau levels. Calculation of differential cross-section of
neutron magnetic scattering by these waves shows that in energy spectrum of scattered
neutrons there is a series of Lorentz satellites located symmetrically relatively to the unshifted
line.

High-frequency asymptotic of dynamic spin susceptibility of two-dimensional electron gas
is calculated. Local states of electrons on impurity atoms and quantizing magnetic field are
considered. Susceptibility has resonance singularities on frequencies of electron transitions

between Landau levels and local levels. In the absence of a magnetic field the real part of
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susceptibility has logarithm feature and the imaginary one has a maximum on threshold
activation frequency of bound electrons by a variable electromagnetic field.

In a random phase approximation spin waves in non-ferromagnetic two-dimensional
electron liquid are considered in a magnetic field. Bound electron states in a field of impurity
atoms are considered. It was shown that electron localization provides spin wave propagation.
New spectrum branches of the waves exist in frequency regions where propagation of Silin
waves is impossible. Wave spectrum and damping decrement of the waves are found. When
crossing a dispersion curve of Silin wave with electron resonance frequency between Landau
levels and local levels a cross-situation which is typical for bound waves takes place.

Differential cross-section of neutron magnetic scattering by two-dimensional electron
liquid in a magnetic field is calculated. In an energy spectrum of scattered neutrons additional
maxima are present due to one-particle excitations of localized electrons and spin waves.
Locations and widths of these maxima allow to obtain the data about a spectrum of electron

impurity states and also the spectrum and the damping of the spin waves.
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APPENDIX I

The formulae used in the text for the resonance contributions to circular components of a

tensor of dynamic spin susceptibility of electrons with isotropic and quadratic dispersion law

have a form:
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APPENDIX II

Formulae for resonance contributions to components of a tensor of dynamic spin

susceptibility of electrons with anisotropic dispersion law
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