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The generation of an electromagnetic field by oscillators in an open resonator is discussed in a one-dimensional
approximation. In this case, the development of the so-called dissipative instability — the dissipative generation re-
gime. Such an instability with the generation of electromagnetic oscillations arises when the decrement of oscilla-
tions in an open resonator in the absence of oscillators turns out to be greater than the increment of the resulting in-
stability of the system of oscillators placed in this resonator. It is assumed that the oscillators do not interact with
each other, and only the resonator field affects their behavior. If the resonator field is absent or small, the superradi-
ance regime is possible, when the radiation of each oscillator is essential and the field in the system is the sum of all
the eigenfields of the oscillators. In the dissipative regime of instability generation, the system of oscillators is syn-
chronized by the induced resonator field. The synchronization of the oscillators in the superradiance mode owes its
existence to the integral field of the entire system of oscillators. With a weak nonlinearity of the oscillators, a small
initiating external field is required to excite the generation regime. It is noteworthy that the maximum value of the
superradiance field is approximately two times less than the maximum field that the same particles could generate if
they were at the same point. In all cases, for a given open resonator, the superradiance field turned out to be some-
what larger than the resonator field. Nevertheless, for the same resonator, the increments and attainable field ampli-

tudes in both cases are of the same order of magnitude.
PACS: 05.45.Xt, 52.40.M;j

INTRODUCTION

Interest in the dynamics of dissipative instabilities,
that is, the processes of generation or amplification of
oscillations under conditions of significant absorption of
their energy (or the extraction of energy due to radiation
from the core) was due to practical necessity. In elec-
tronics, attention was drawn to the peculiarity of these
processes in works [1 - 3]. Later it was shown that dis-
sipative processes in these regimes do not lead to the
appearance of an instability threshold [4, 5] when prac-
tically monoenergetic electron beams (of high quality
[6]) are used for generation. In this case, the greatest
energy flux from the system to the loss channel can be
achieved [7]. In such open systems, when the reflection
of waves from the boundaries of the system is weak-
ened, dissipative generation regimes and superradiance
regimes [8 - 12] can be realized, the physical mecha-
nisms of which were discussed in [13, 14].

The peculiarity of the superradiance regime is that a
resonator or waveguide field may not be present in the
system of oscillators. As a rule, superradiance regimes
are realized in open systems with weak reflection (or
even its absence) of excited oscillations from the ends
of the system (resonator or waveguide). Then the direct
interaction of oscillators becomes the main physical
phenomenon. In the classical case, the oscillators have
an energy that significantly exceeds the energy of the
field quantum. Long-term interaction of such oscillators
(which only gradually lose their energy) with the total
field of the system can lead to mutual synchronization
of the phase of an individual oscillator and the phase of
this total field. In this case, induced radiation is formed
even in the absence of a resonator or waveguide field.
Remarkable is the similarity between the superradiance
process and the dissipative instability regime, discov-
ered by the authors of [16] under the conditions of the
existence of a resonator or waveguide field.
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The aim of this work is to consider the features of
dissipative instabilities and superradiance regimes for
systems of excited classical oscillators; comparison of
the characteristic times of these processes, as well as the
attainable amplitudes of the excited fields.

1. RADIATION OF CLASSICAL
OSCILLATORS

The issues of oscillator radiation in electronic de-
vices have been actively discussed since [17, 18]. An
important circumstance is the conditions for synchroni-
zation by the eigenfields of the radiation of the system
of oscillators in the superradiance regime. It turns out
that only when the nonlinearity of the oscillators is
taken into account, it becomes possible in this case to
ensure the phase synchronization of the field and the
oscillator [19] (see also [20]).

Consider an oscillator whose charge (electron)
moves along the 00X axis, that is
x(t)=i-a-exp{—iot+iy}, at the same time,
Rex =a-sin(wt —y) where 7 = (x(¢),0,z,) . In this
case, the speed dx/dt=a-w-exp{—iot+iy} and cur-
rent J =—edx/dt =—e-a-w-exp{—iot+iy} can be writ-
ten as the equation describing the field excitation by the
oscillator current takes the form

OE, 10D, _4ndJ, _
ozt ot oot

(1
Ar ) . . .
=——e-a - -i-exp{—iot+iy}-6(z—z,).
c
The dielectric constant of the medium in the absence
of oscillators is set equal to unity (&, =1). We are look-
ing for a solution for the amplitude of the electric field
in the form E =(E-exp{—iot+ikz},0,0), that is
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E_ = E -exp{-iot+ikz}, assuming the slowness of

the change in the complex amplitude £ (¢,z) :

1
I+ )gEx(r,z) <<,
,Z
: @)

| L —E (t,2)|<<k.
E (t,z) 0z
The field excited in the system of oscillators consists
of the general field of the resonator and the sum of all
fields of the individual oscillators.

2. FIELD OF THE WAVEGUIDE
OR RESONATOR

However, a resonator or a waveguide can shape the
field in such a way that the form of the field does not
depend on the radiation of individual oscillators, or,
more precisely, it is not essential to take into account
individual fields of the oscillators. This is the traditional
so-called resonator (waveguide) mode of radiation. Note
that such a field, generally speaking, should consist of
traveling waves in two directions (k > 0)

E =E -expl-iot+ikz} +E_-exp{—iot—ikz}, (3)
where the slowly varying complex wave amplitude has
the form E, = E, |-exp{ip,} . The equation describing

the interaction of oscillators with these fields can be
represented as

)

=—ew

4
2 m;‘). Iasdz -expliy, Fikz}-8(z—z,),
i

where O, is the decrement of wave absorption in the
absence of sources, 4, =a;exp(iy;). We represent the

equations of motion in the form

L S S N 5)
m

where
x,(t) =i-a,-exp{—iot+iy} =id-exp{-iot},
v, =w-a,-expi{—-iot+iy} = wA-exp{-iot}.
We use the following notation below
e| E(t) | expip}
myoa)ao

=E(@), Yt=7, ys=ne’n,/m=0, /4,

— 3w

A, =a;lay, kz, =21Z,, 0=561y,, a =4—(koao)2 -
0

determines the dependence of the relativistic particle

mass on the velocity. We rewrite (4) and (5) in the form

ZA eXpi{T27Z,} » (6)

] 1

—E, +60-E, =

LA i A =—LE,
dr 2

+E_-expi{-27Z }],

expi{2nZ } + 7

imagine A, = aAf.
The law of conservation of energy can be obtained
in the form

(*+29){|E F+|E_['}= 25 Z\A B ®
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3. DESCRIPTION OF THE DISSIPATIVE
INSTABILITY REGIME

Let us consider below the so-called dissipative re-
gime of instability. If there is no preferred direction of
radiation, at a sufficiently large value of radiation losses
8, >0E/Edt, the decrement of which can be deter-

mined from the condition
S5, = (jc< E>* /Ar) dS/j(< E>* /Am)-dV ~c/l. (9)

Equatlon (6) then takes the form
E, = ZA -expi{F2nZ;},

+

~vo (10)

and the equation of motlon (7) does not change, but can
be represented as follows
d
—A —iaA |A =
d J o J ‘ J ‘ (1 1)
——E(Z )= ——ZA Cos{27(Z,-Z,},
i=1
where the equation for the field can be written in the form
E(Z,)=E, -expi{2nZ,}+E_-expi{-27Z,} =

2 N
=—>"A,Cos{2n(Z, - Z}.

N6 5
The energy conservation law in this case takes the form
L d1A, P 3 " 12
>  — - =—Re} E(Z))A%, . (12)
Jj=1 Jj=1

N

In this case {|E, } +|E_[*} =—Re;E(Zj)A*j .

The field E(Z;) here is the field of the induced ra-
diation. It is not difficult to see the nature of the forma-
tion of particle radiation coherence under the action of a
waveguide or resonator field. Neglecting the relativistic
corrections, the equation for the phase of the oscillator
can be written in the form

oy, /0t=—(e|E|/mwa,) -Sin(p -y, )= 53

=—(Q/n)-Sin(p -y ,), (%
where ea, |E|o/mw’a’,=2d |E|/nh=Q/n is the en-
ergy of the oscillator, expressed by the number of field
quanta. For oscillators in the quantum case n=1 and
Q) is the Rabi frequency.

Obviously, the matching time — synchronizing the
phase of the oscillator with the phase of the field at the
place where the particle is located is of the order of
n/ € almost the same for all oscillators in the core.
Recall that the reciprocal of the Rabi frequency Q' in
quantum mechanics is proportional to the probability of
induced radiation [21, 22].

If we go to the time scale r =yt >yt =y,d/c=y,/0,

then the variables will have the form
E(?) | expii
LEOISDID) g o e
myw,a,
A, =a;la,, kyz;=2nZ;, a= 30, (k,a,)*, and the
: : r r y

dissipative excitation mode takes the form

d 1
—A —ia(A,|A,[))=-=E(Z,
oA miaA A 1) =2 E(Z) (14)

1 N
= —NZA, Cos{27(Z, - Z,}

i=l1
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and the field satisfies the expression
E(Z) =[E, -expi{2nZ}+E_-expi{-2nZ}]=
:EiA; Cos{2n(Z—-Z,)}. (15)
N i=1
Here the time scale is somewhat different 7, = ¥#; the
increment has also changed, n, — the density of parti-
cles per unit volume, M =b-n,, b — the length of the

considered space in the longitudinal direction. The en-
ergy conservation law takes the form

ZN:dlAJIZ
dr

J=1

— ReYE(Z)A¥, (16)

to the summation j over the core space.

4. DESCRIPTION OF THE
SUPERRADIATION MODE.
TOTAL FIELD OF OSCILLATORS

Let us consider the superradiance regime when the
resonator field or waveguide field is absent. It is also
possible to determine the total radiation field of the os-
cillators in the same volume. First, let's find the field of
one oscillator. For the amplitude of the radiation field
slowly varying in space, the equation is valid

% s eaw L expliy +ikz}-5(z—z,) =
Oz ck

=1-0(z—z).

The solution of which £=C+1-6(z-z,), where
0(z<0)=0, 6(z=0)=1. Since for the wave emitted by
the oscillator the equation D(w,k)=(w’s,—k’)=0 is
valid, the roots of which
k., =H@,Reg, /c)1+ilme, /Reg,) =@,/ ce))(1+i0), then

(17)

for the wave propagating in the directionz > z,, the
wavenumber &k = k, > 0 and the value of the constant
C should be chosen equal to zero, in order to avoid
unlimited growth of the field at infinity. For a wave
propagating in the direction z < z, of the wavenumber
k=k, <0, the value of the constant should be chosen
equal —A for the same reasons. The amplitude of the
electric field in this case
E_ =2neamyM -c " expi{—icxt +iy}-explik|z—z, |}, (18)
because

expiik(z—2z,)}-0(z—z,)) +

expi-ik(z—2,)}-0(z, —2) = explik | 2~ z, |}

For one particle in such a volume of unit cross sec-
tion and length of the resonator, it is numerically equal
to unity.

The equation of motion for an oscillating electron
has the form (5). Using these notation, we write (5) tak-
ing into account (18) in form

dd; |34, o’
dt 4c? !

2 N

Te-M 1

———— > A explik|z, -z |},
e A explik |2, =z, )

(19)
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J

dd; |34, o’
dt 4c? /

o 1 (19)
SIS A explik|z, -z, I
mc p ’
or in dimensionless form
dA,
: —iA].A]. =
. i
l N
_VZAS'GXP{I-Z”|Z,~_Z~V [} — (20)
s=1
niZ 1 2rniZ
—E, -’ = -SE.(Z,,1)-E, e %,
Here y=y,/6,=ne’M /mc; E=eE/moyay;
A=Alay; kz=2xZ; T=yt; A =a( 4, 4);

Vo =me’ng/m=w /4; a=3klajo/4y .
The electric field strength of the oscillator radiation
in dimensionless units can be described as follows
N
E (Z,7) =%ZAS exp{i2n|Z-Z,}. (21)
s=1
in this case, the expression for the energy conservation
law is the same as (16)
i|A.|2:—Re{E (Z.,1)A* }. (22)
dT J x J J
5. RESULTS OF NUMERICAL
CALCULATIONS OF GENERATION
MODELS
5.1. RESULTS OF CALCULATIONS WITHOUT
TAKING INTO ACCOUNT THE EIGENFIELDS
OF OSCILLATORS (14), (15), THAT IS, EXCLUD-
ING EQUATIONS (20), (21)

Such parameters were chosen for the calculation.
The number of particles N =3600, a =1. At the initial
moment, the modules of the amplitudes of the oscilla-

tors are equal to unity ‘ A, (0)‘ =1, the phases ¥, have
random values in the range (—z,7). Fig. 1 shows the

time dependence of the modulus of the waveguide field
at the edges of the system (Z = 0 and Z = 1) and the
maximum value of the modulus of the field in the sys-
tem. Fig. 2 shows the dependence of the mean square of

the oscillator amplitudes ‘A‘z VZ%Z‘AJ‘f (average
€
J

energy of the oscillators) on time.

[E|

0.3

0.2

0.1

0 5 10 15 T

Fig. 1. Dependence of the field modulus in different
parts of the system on time t:

I -max[E|; 2— [E(Z=1)|=|E(Z =0)|
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0.6

0.4

0 5 10 15 T

Fig. 2. Time dependence of the mean square
of the oscillator amplitudes |A|26V

During the development of the field, there is a par-
tial synchronization of the phases of the oscillators with
the phase of the field at the point where the oscillator is
located. This is most clearly manifested at the moment
of reaching the maximum of the field in the regions of
the system where the field is greatest.

The field maximum is reached at the moment
T = 15.2. Fig. 3 shows the dependence of the field
modulus along the length of the system at this moment.
Fig. 4 shows the spatial distribution of the phase differ-
ence between the oscillators and the field
Ay, =arg(4;)—arg(E(Z;)) =y, -¢(Z,) at this mo-

ment ( £(Z,7) = |E(Z,7)|exp(¢(Z,7)) ).

[E|

0.3
0.2

0.1

0
0 02 04 06 08 |Z

Fig. 3. Dependence of the field modulus on Z at t = 15.2

Ay T T T T
n

b2

. e
| | | |

1] 02 0.4 0.6 0.3 Zz

Fig. 4. Spatial distribution of the phase difference between

the oscillator and the field for each particle at t = 15.2

5.2. RESULTS OF CALCULATIONS WITHOUT
TAKING INTO ACCOUNT THE RESONATOR
OR WAVEGUIDE FIELDS

The following options are selected. The number of par-
ticles N =3600, o =1. At the initial moment, the modules
of the amplitudes of the oscillators are equal to unity
|A j(0)| =1, the phases y, have random values in the
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range (-, 7). For the selected value « =1, no addi-

tional external field was used to initiate the superradiance
process. However, it is important to note that the need for
it arises at small o, that is, weak nonlinearity. Fig. 5
shows the time dependence of the field modulus of the
oscillators at the edges of the system (Z =0 and Z = 1) and
the maximum value of the field modulus in the system.
Fig. 6 shows the time dependence of the mean square of the
oscillator amplitudes (average energy of the oscillators).

[Ex|

0.4

0.2

Fig. 5. Dependence of the field modulus in different
parts of the system on time t: 1 — maX|EX| ;

2-[E,Z=D)|;3-[E.(Z=0)
2
AL
1
0.9
0.8
0.7
0 5 10 T

Fig. 6. Time dependence of the mean square
of the oscillator amplitudes |A|26V (1)

The field maximum E ,,,, =0.54 is reached at the
moment T = 9.7. The maximum possible with full co-
herence of radiation in the adopted units is equal
|E, ’=1, but in reality the level of coherence did not
exceed |E ' (@ =1)~027 that is, 27%. At lower
values of nonlinearity there was
|E yux ' (@ =02)~0.4>=0.16, but an additional
external field initiating the superradiance process was
use E¢= 0.05.

Figs. 7 and 8 show the spatial distribution of the am-
plitudes of the oscillators ‘ Aj‘ and the phase difference

between the oscillators and the field
Ay, =arg(4))—arg(E(Z,)) =y, -p(Z,) at the mo-
ment of the maximum field.

In the superradiance regime and with the previously
considered dissipative instability, the effective decre-
ment (responsible for radiation from the system) is quite
significant, so the condition &§, >0E/Eot is always
satisfied. It should be noted that in equations (6) the

2
instability increment y=y/5, = (ﬂ)(i) , the
m ¢
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nondissipative instability increment y, for the system of
oscillators is equal to half the Langmuir frequency

Yo R @, /2=«/7tezn0 /m.

S

o

05

o 0.2 o4 0.E o8 Z
Fig. 7. Space distribution of oscillator amplitudes | A/.|

att=29.7

B i
0 0.2 04 0.6 0.8 Z

Fig. 8. Space distribution of the phase difference
between the oscillator and the field at t = 9.7

Dimensionless value of the electric field strength
E =eE/ mwya,y = eE | mw,a,y, - (8, /v,) < J,. That is,

the real value of the intensity will be proportional to the
square of the effective damping decrement.

N =<E>* /4nhw o (5—0)2.
Yo

It is of interest to compare the excited field with a
field of another type that could generate the same parti-
cles (shown in Figs. 9 and 10 by the dotted line). It is
curious that in all cases the superradiance field would
turn out to be greater than the resonator field.

One should also pay attention to the fact that the
maximum value of the superradiance field is approxi-
mately two times less than the maximum field that the
same particles could generate if they were located at one
point (see Fig. 10). That is, the degree of coherence of
superradiance is approximately equal to and slightly
more than 25% (compare with [15]).

The growth of the field in the superradiance regime
occurs from the level of fluctuations (i.e., from the level
of spontaneous emission), the intensity of which is pro-
portional to 1/+/N , where N is the number of particles.
Under real conditions, the initial spontaneous field in-
tensity in the superradiance regime is large and very low
(under the conditions considered, it is 15 times less than
the attainable amplitudes in the case of dissipative in-
stability and in superradiance regimes).

In the example above N =3600, the spontaneous
emission of particles is also very significant. Only with
weak relativism a <<1, to ensure generation, it is nec-
essary to use an external initiating field.
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(23)

[E]
0.4
0.3
0.2

0.1

0

0 5 10 15 T
Fig. 9. Time dependence of the maximum amplitude
of the resonator field (15) in the volume (solid line 1)
and estimate of the total field (21), which could gener-
ate the same particles (dashed line 2). Here ot =1

[E]
0.4
1
0.2
0 -\--/I'.

0 5 10 T

Fig. 10. Time dependence of the maximum amplitude
of the superradiance field (21) in the volume (solid line 1)
and an estimate of the resonator field (15), which could
generate the same particles (dotted line 2). Here o =1

In systems where the number of particles is very
large (gas at normal pressure and a solid), the intensity
of spontaneous emission is much lower than the re-
quired intensity of the induced generation field, there-
fore, to accelerate the process of synchronization of
emitters, it is necessary to use an initiating field.
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JUCCUITIATUBHBIE HEYCTOMYUBOCTH U PEXKUMbI CBEPXU3JTYYEHUSA
(KIIACCUYECKHUE MOJIEJIN)
B.M. Kyxnun, E.B. Iloxnonckuii

OO0cyxmaercsi B OMHOMEPHOM NPUONIKEHUH TeHEepalysi 3JeKTPOMAarHUTHOTO IIOJISl OCHMJUIATOPaMH, KOTOpPbIE
HaXOJATCS B OTKPBITOM pe3oHaTope. B 3ToM ciydae BO3MOXKHO pa3BUTHE TaK Ha3bIBAEMOH MUCCHIIATHBHOW HEycC-
TOWYHMBOCTH — JMCCHIIATUBHOIO PEXMMa reHepauuu. Takas HEyCTOMYMBOCTh C I'eHEpalyeidl 3JeKTPOMAarHUTHBIX
KoneOaHUi BO3HHMKAET B Ciydae, KOrja JIEKPEMEHT KoJieOaHUH B OTKPBITOM PE30HATOpPE B OTCYTCTBUE OCLMILISTO-
POB OKa3bIBaeTCsl OOJbIlIE UHKPEMEHTa BO3HHMKAIONICH HEYCTOWYHMBOCTH CHCTEMBI OCLMILUIATOPOB, OMEUIEHHOH B
aTOT pe3oHarop. [Ipearnornaraercs, 4To OCHMILISATOPHI TIPU 3TOM MEXIY cOO0W He B3aMMOJIEHCTBYIOT, U Ha MX ITOBE-
JIEHUE BIIMSIET TOJBKO pPE30HATOpHOE moie. Ecim ke pe3oHaTOpHOe MOoJie OTCYTCTBYET MM HEBEIHMKO, BO3MOXKEH
PEKUM CBEPXU3IIYYECHHUS], KOT/Ia CYIIECTBEHHO M3JIyYeHHE KaXKIOro OCHHJUISTOpA U TOJIe B CHCTEME MPENCTaBISIeT
co0o0i cyMMy BceX COOCTBEHHBIX MOJIEH OCHIUIATOPOB. B IHMCCHIIATHBHOM pEeXMME T'eHEpaluyi HeyCTOWYHBOCTH
CHCTEMY OCLMUIATOPOB CHHXPOHU3YET MHAYLHPOBAHHOE pe30HAaTOpHOE mosie. CHHXPOHHM3ALUs OCLMUIATOPOB B
PEeKHME CBEPXHU3ITydeHHUs! 00s3aHa CBOUM CYIECTBOBAHHEM HHTErPajJbHOMY ITOJI0 BCEH CHUCTEMBI OCIMILISTOPOB.
[Ipu caboli HENMMHEHHOCTH OCIMJUIATOPOB UIS BO3OYXKICHUSA PEKUMa TeHepalud HeoOXO0AUMO HEOOIbIIOe WHU-
IUHpYIolliee BHeNHee rnoje. [[pumMedarensHo, YTO MaKCUMAalIbHOE 3HAUEHHE TTO0JISl CBEPXH3ITYIEeHUsI IPUMEPHO B JIBA
pa3a MeHbllle MAKCUMaJIbHOTO OIS, KOTOPOE MOIJIH OBl T€HEPUPOBATH 3TH )K€ YACTHIBI, €CITH Obl OHU HAXOJMIINCH
B OJIHO# TouKe. Bo Bcex ciydasix Ajisi JaHHOTO OTKPBITOIO PE30HATOPA T10JIE CBEPXHU3IYUEHHS 0Ka3aJI0Ch HECKOJIBKO
OOJIBILINIM, YEeM pe30HaTOpHOE Nose. TeM He MeHee, [UIsl OJIHOTO U TOT0 JK€ Pe30HATOpa MHKPEMEHTHI U JIOCTH)KUMBIE
aMIUTUTYBI ITOJISl B 000MX CITy4asiX OJHOTO MOpsIIKa.

JACHUTIATUBHI HECTIMKOCTI TA PEXKMMM HAJIBUITPOMIHIOBAHHS (KJTACUYHI MOJIEJII)
B.M. Kyxnin, €.B. Iloknoncexkuii

OOroBOPIOETHCS B OJJHOBUMIPHOMY HAaONMKEHHI TeHEepallisl €JIeKTPOMAarHiTHOTO MOJS OCHIIISTOPaMH, SIKi 3HaXo-
JITBCS Y BIIKPUTOMY pe30HATOpi. Y HbOMY BUIAKy MOXIIUBHI PO3BUTOK TaK 3BaHOI JUCUIIATHBHOI HECTIHKOCTI —
JIMCUTIATUBHOTO PeXUMYy rerepaiii. Taka HECTIHKICTh 3 TeHepalli€lo elIeKTPOMAarHiTHUX KOJIMBaHb BUHUKAE B pasi,
KOJIM JIEKPEMEHT KOJHMBaHb y BIIKPUTOMY PE30HATOPI y BiZICYTHOCTI OCHMIISITOPIB BHUSBJISIETHCS OLJIbIIIE iIHKPEMEHTY
BHUHHKAaIO40l HECTIHKOCTI CHCTEMH OCIIMJISITOPIB, BMIillIeHi B 1ieli pe3oHartop. [lependadyaeTses, M0 OCHMIATOPY TIPU
IILOMY MIJK COOOH0 HE B3a€MOJIIIOTh, 1 Ha iX MOBEIIHKY BIUTMBAE TUILKH PE30HATOPHE IMoje. SIKIIO K pEe30HATOPHE
TIoJIe BiICyTHE 200 HEBENMKE, MOKJIMBHH PEKUM HAJBUIIPOMIHIOBAHHS, KOJH iCTOTHE BHIIPOMIHIOBAHHS KOXKHOTO
OCLIJISITOpA 1 TIOJIE B CHCTEMI € CYMOIO BCiX BJIACHHX TIOJIIB OCIHJISITOPIB. Y TUCUITIATHBHOMY PEKHMI reHepariii He-
CTIMIKOCTI CHCTEMY OCI[WIATOPIB CHHXPOHI3Ye IHAYKOBaHE pe3oHaTopHe mnoye. CHHXPOHI3AIlisl OCIHISATOPIB y pe-
YKMMI Ha/IBUTIPOMIHIOBAaHHsI 3000B's13aHa CBOIM ICHYBaHHSIM 1HTETPAJIbHOMY ITOJIIO BCi€l CHCTEMHU OcIIsATOpiB. [1pn
calOKii HeNHIHHOCTI OCHMIIATOPIB [UIsl 30YIDKEHHS peXXUMY TeHepallii HeoOXiHe HeBeJIMKe 1Hiliani3yrodye 30BHill-
HE ToJie. BaxxnuBo, 110 MakcHMaibHe 3HaYeHHS TOJIsl HaJBUIIPOMIHIOBAHHS TIPHOJM3HO B JIBa Pa3y MEHILIE MaKCHMa-
JIBHOTO TIOJIS, SIKE MOTJIM O TeHEepyBaTH 1l K YACTUHKH, SKOM BOHM 3HAXOJWIINCS B OJHIN TOUlll. Y BCIX BHIAIKax s
JTAaHOTO BiJIKPUTOTO Pe30HATOpA T10JIe HaIBUIIPOMIHIOBAHHS BUSBUIOCS TPOXH OUTBIINM, HDK pe3oHaropHe mode. [Ipo-
Te JUIsl OTHOTO 1 TOT'O 3K PE30HATOpa IHKPEMEHTH 1 TOCSHKHI aMILTITY/IN IOJISl B 000X BUIAIKAX OIHOTO HOPSIIKY.
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