Навчально-науковий інститут "Фізико-технічний факультет"

Постійне посилання на розділhttps://ekhnuir.karazin.ua/handle/123456789/49

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Ядерно-физическое металловедение сплавов циркония
    (Харкiвський нацiональний унiверситет iм. В.Н. Каразiна, 2008) Кириченко, В.Г.; Кирдин, А.И.
    Рассмотрены основы ядерно-физического металловедения сплавов циркония с помощью ядерного гамма-резонанса (эффекта Мессбауэра). Приведены результаты исследования сверхтонких взаимодействий и фазовых превращений в сплавах циркония, подвергнутых комплексной термомеханической обработке, облучению и коррозии. Изложены основы металловедческого моделирования ядерных трансмутационных эффектов в сплавах циркония. Микроструктура тройных сплавов, моделирующих трансмутационные явления, отличается от микроструктуры исходных сплавов и определяется механизмами кристаллизации двойных и тройных сплавов на основе циркония. Ансамбли частиц интерметаллидов, образовавшихся в сплавах после термомеханической обработки с финишным изохронным отжигом в диапазоне температур 570 1070 К, характеризуются различным типом связи с циркониевой матрицей и повышенной концентрацией интерметаллических фаз в поверхностном слое толщиной до 0,3 мкм. Полученные трехмерная диаграмма «концентрация изомерный сдвиг квадрупольное расщепление» и зависимости между величинами изомерного сдвига и квадрупольного расщепления позволяют проводить корректную обработку экспериментальных данных и надежно идентифицировать фазы в кристаллических и аморфных сплавах циркония. Обнаружена высокая подвижность частиц интерметаллических фаз в сплавах циркония. Коррозия циркониевых сплавов в воде высоких параметров приводит к формированию гетерофазной оксидной пленки, содержащей железо, и в составе оксидных аморфных фаз, и в составе интерметаллидов. Влияние электронной структуры примесей в цирконии на структурно-фазовые превращения проявляется в переносе заряда и электронной плотности при формировании интерметаллических фаз и в корреляции зависимостей коэффициента сегрегации, параметров сверхтонких взаимодействий, коррозионной стойкости и энергии внедрения примесей от электроотрицательности примесей по Мидеме. Тhe principles of nuclear-physical metallurgy of zirconium alloys by using nuclear gamma resonance (Mőssbauer effect) were considered. The results of nuclear-physical investigations of hyperfine interactions and phase transformations in zirconium alloys under complex thermomechanical treatment, irradiation and corrosion were described. The results of physical metallurgy simulation of nuclear transmutation effects in zirconium alloys were stated. The microstructure of simulated transmutation effects ternary alloys differs from microstructure of source alloys and it is determine by crystallization modes of binary and ternary zirconium alloys. The ensembles of intermetallic particles formed after thermal and mechanical treatment with final isochronous ageing in temperature range from 570 К to 1070 К are characterized by different connection type with zirconium matrix and increased intermetallic phases concentration in surface layers with depth up to 0,3μm. The obtained concentration–isomer shift–quadrupole splitting 3D-diagram and isomer shift dependences on quadrupole splitting enabled experimental data correct handling and surely identify the phases in crystalline and amorphous zirconium alloys. High mobility of phase intermetallic particles in zirconium matrix are revealed. Zirconium alloys corrosion in high parameters water leads to formation of heterogeneous phase oxide films contained iron in oxide amorphous phases and in intermetallic phases. Admixture electron structure in zirconium effect on structure and phase transformations appears as transference of charge and electron density during intermetallic phases forming and as correlation of segregation factor, corrosion stability and admixture implantation energy dependences on Miedema’s electronegativity.
  • Ескіз
    Документ
    Влияние электронной структуры легирующих добавок на коррозионную стойкость циркониевых сплавов
    (Харкiвський нацiональний унiверситет iм. В.Н. Каразiна, 2008) Кириченко, В.Г.; Кирдин, А.И.; Остапов, А.В.
    Приведены результаты исследования структуры и фазового состава поверхности железосодержащих сплавов на основе циркония после термомеханической обработки и коррозионных испытаний в воде высоких параметров. Термомеханическая обработка с финишным изохронным отжигом в диапазоне температур 570 1070 К приводит к повышению концентрации интерметаллических фаз в поверхностном слое сплавов толщиной до 0,3 мкм. Повышение концентрации фаз зависит от состава сплавов. Увеличение содержания ниобия от 0,5% до 2,5% в тройном сплаве Zr+0,31%Fe+0,5%Nb приводит к двукратному снижению концентрации интерметаллических фаз в поверхностном слое. Коррозия циркониевых сплавов в воде высоких параметров приводит к формированию гетерофазной оксидной пленки, содержащей железо в составе, как оксидных аморфных фаз, так и в составе интерметаллидов. Влияние электронной структуры примесей в цирконии проявляется в корреляции зависимостей коррозионной стойкости, атомного размера примесей, плотности состояний на уровне Ферми, энергии внедрения примесей и s–электронной плотности на ядрах 57Fe от электроотрицательности примесей по Мидеме. Investigations results of contained iron zirconium alloys surface structure and phase composition after thermal and mechanical treatment and corrosion in the high parameters water are presented. It is shown the thermal and mechanical treatment with final isochronous ageing in temperature range from 570 К to 1070 К leads to concentration growth of intermetallic phases in surface layers up to 0.3 μm depth. Concentration growth depends upon alloy composition. For example, Nb concentration increase from 0,5% to 2,5% in Zr+0.31%Fe+0.5%Nb alloy leads to twice decrease of intermetallic phases concentration in surface layer. Zirconium alloys corrosion in high parameters water leads to formation of heterogeneous phase oxide films which contained iron in oxide amorphous phases and in intermetallic phases. Effect of admixture electron structure appears as some dependences correlation such as admixtures atomic size, interstitial admixtures density of Fermi energy levels, 57Fe nuclei s-electron density with Miedema’s electronegativity.