Навчально-науковий інститут "Фізико-технічний факультет"

Постійне посилання на розділhttps://ekhnuir.karazin.ua/handle/123456789/49

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Modes of low-pressure dual-frequency (27/2 MHz) discharges in hydrogen
    (PLASMA SOURCES SCIENCE AND TECHNOLOGY, 2008-03) Lisovskiy, V.; Booth, Jean-Paul; Landry, K.; Douai, D.; Cassagne, V.; Yegorenkov, V.
    This paper studies the modes of dual-frequency (high-frequency (HF)/low-frequency (LF)) low-pressure discharges. The dual-frequency discharges are shown to burn in one of three possible modes. At small LF voltages the first mode is observed, i.e. the HF discharge perturbed by the LF voltage. The second mode, i.e. the combined discharge, exists in the presence of intense ionization in the sheaths, when the LF voltage exceeds some critical value. The third mode (the LF discharge perturbed by an HF field) is observed when a small HF voltage is applied to the burning LF discharge. The range of parameters within which the first mode of the combined discharge may be extinguished by the LF voltage increase is shown to be limited by the HF discharge extinction curve from the low-pressure side as well as the lowest HF voltage for the transition of the discharge from the first mode to the second one.
  • Ескіз
    Документ
    Modes of longitudinal combined discharge in low pressure nitrogen
    (JOURNAL OF PHYSICS D: APPLIED PHYSICS, 2008-05) Lisovskiy, V.; Kharchenko, N.; Yegorenkov, V.
    This paper reports the modes of a low pressure discharge in the combined (rf + dc) electric field. We propose to distinguish three modes of a longitudinal combined discharge (rf and dc voltages were applied to the same electrodes): (1) a non-self-sustained rf discharge perturbed by a dc electric field, (2) a combined discharge and (3) a non-self-sustained dc discharge perturbed by an rf electric field. The existence conditions of these modes are determined. The parameter range in which the first mode of the combined discharge may be extinguished via increasing dc voltage is shown to be limited with an rf discharge extinction curve from the low pressure side as well as with a curve of the least rf voltage corresponding to the transition of the combined discharge from the first mode to the second one. The relation between the thicknesses of the ‘cathode’ and ‘anode’ near-electrode sheaths is derived analytically for the first mode, which is in good agreement with experimental data.