Навчально-науковий інститут "Фізико-технічний факультет"
Постійне посилання на розділhttps://ekhnuir.karazin.ua/handle/123456789/49
Переглянути
22 результатів
Результати пошуку
Документ Low-pressure gas breakdown in uniform dc electric field(JOURNAL OF PHYSICS D: APPLIED PHYSICS, 2000-11) Lisovskiy, V.; Yakovin, S.; Yegorenkov, V.This paper studies in experiment and theory the breakdown of argon, nitrogen, air and oxygen in a uniform dc electric field at different discharge gaps L, discharge tube radii R and cathode materials. At arbitrary geometric dimensions of the cylindrical discharge vessel and cathode materials the ratio of the breakdown electric field value to the gas pressure p at the minimum of the breakdown curves is shown to remain constant, (Edc/p)min ≈ constant. A modified breakdown law for the low-pressure dc discharge Udc = f (pL, L/R) is obtained. That is, the breakdown voltage Udc is shown to depend not only on the product pL, but also on the ratio L/R. A method is presented enabling one to predict a dc breakdown curve in the cylindrical discharge vessel possessing arbitrary L and R values from the measured data on the dc breakdown.Документ Alpha–gamma transition in RF capacitive discharge in low-pressure oxygen(www.elsevier.com/locate/vacuum, 2004-01) Lisovskiy, V.; Yegorenkov, V.We report the recorded current–voltage characteristics of a RF capacitive discharge in oxygen. Low-frequency oscillations of the plasma potential in a kilohertz frequency range are observed to accompany the transition of the discharge from a weak- (a-) to a strong-current (g-) regime in the low-pressure range. The weak-current regime of the RF capacitive discharge is observed within the pressure range limited not only from the medium pressure side but also from the lower-pressure one. Electron temperature and plasma density are registered with a probe technique.Документ The effect of discharge chamber geometry on the ignition of low-pressure rf capacitive discharges(PHYSICS OF PLASMAS, 2005-09) Lisovskiy, V.; Martins, S.; Landry, K.; Douai, D.; Booth, Jean-Paul; Cassagne, V.; Yegorenkov, V.This paper reports measured and calculated breakdown curves in several gases of rf capacitive discharges excited at 13.56 MHz in chambers of three different geometries: parallel plates surrounded by a dielectric cylinder (“symmetric parallel plate”), parallel plates surrounded by a grounded metallic cylinder (“asymmetric parallel plate”), and parallel plates inside a much larger grounded metallic chamber (“large chamber”). The breakdown curves for the symmetric chamber have a multivalued section at low pressure. For the asymmetric chamber the breakdown curves are shifted to lower pressures and rf voltages, but the multivalued feature is still present. At higher pressures the breakdown voltages are much lower than for the symmetric geometry. For the large chamber geometry the multivalued behavior is not observed. The breakdown curves were also calculated using a numerical model based on fluid equations, giving results that are in satisfactory agreement with the measurements.Документ Double layer onset inside the near-electrode sheath of a RF capacitive discharge in oxygen(www.elsevier.com/locate/vacuum, 2006-04) Lisovskiy, V.; Yegorenkov, V.This paper reports the axial profiles of the electron temperature Te in the RF capacitive discharge in oxygen recorded with a probe technique. We observed the Te peaks near the boundaries of the sheaths as well as inside the near-electrode sheath. The Te peak inside the sheath is, probably, due to the formation of the double layer at the anode phase of this near-electrode sheath. The assumption of a double layer formation is also supported by the photos of the sheath glow making evident the bright region inside the sheath. The results of our measurements agree with our fluid simulation satisfactorily.Документ Electron drift velocity in argon, nitrogen, hydrogen, oxygen and ammonia in strong electric fields determined from rf breakdown curves(JOURNAL OF PHYSICS D: APPLIED PHYSICS, 2006-02) Lisovskiy, V.; Booth, Jean-Paul; Landry, K.; Douai, D.; Cassagne, V.; Yegorenkov, V.We report measurements of the breakdown curves for low-pressure rf capacitive discharges in nitrogen, hydrogen, argon, oxygen and ammonia. The electron drift velocity in these gases was deduced, as a function of reduced electric field, from the low-pressure turning points of the breakdown curves. The equation for rf breakdown proposed by Kihara (1952 Rev. Mod. Phys. 24 52) allows the position of both the turning point and the breakdown curve minimum to be calculated from the transport properties of each gas. Therefore we propose a new technique to determine the electron drift velocity from the position of the rf breakdown curve minima. We have determined the drift velocity in the range E/p = 52–1324 Vcm−1 Torr−1 for nitrogen, E/p = 33–720 Vcm−1 Torr−1 for argon, E/p = 32–713 Vcm−1 Torr−1 for ammonia, E/p = 32–550 Vcm−1 Torr−1 for hydrogen and E/p = 69–1673 Vcm−1 Torr−1 for oxygen.Документ Electron drift velocity in N2O in strong electric fields determined from rf breakdown curves(JOURNAL OF PHYSICS D: APPLIED PHYSICS, 2006-04) Lisovskiy, V.; Booth, Jean-Paul; Landry, K.; Douai, D.; Cassagne, V.; Yegorenkov, V.We report measurements of the breakdown curves of an rf capacitive discharge in low pressure nitrous oxide. The electron drift velocity was determined from the locations of the turning point and of the minimum in the breakdown curves in the range E/p = 87–840 Vcm−1 Torr−1. We compare our results with values calculated from the published cross-sections in the range E/p = 1–5000 Vcm−1 Torr−1 and find good agreement.Документ A technique for evaluating the RF voltage across the electrodes of a capacitively-coupled plasma reactor(http://www.edpsciences.org/epjap, 2006-10) Lisovskiy, V.; Booth, Jean-Paul; Landry, K.; Douai, D.; Cassagne, V.; Yegorenkov, V.We propose a new technique for evaluating the RF voltage across the electrodes of low-pressure capacitively-coupled plasma reactors when direct measurements are not possible. It is based on determining the coordinates of the turning point in the RF breakdown curve and using known values of the electron drift velocity for the gas. The results are in good agreement with those obtained by direct measurements at the driven electrode. Furthermore it allows RF breakdown curves to be determined for different frequencies, giving results that are physically reasonable (coincidence of right-hand branches) and in agreement with other published results. The technique for determining RF voltage we proposed is valid when there is no discharge plasma between electrodes (e.g., before gas breakdown), as well as for negligibly small discharge currents (before extinction of the weak-current discharge mode).Документ Modes and the alpha-gamma transition in rf capacitive discharges in N2O at different rf frequencies(PHYSICS OF PLASMAS, 2006-10) Lisovskiy, V.; Booth, Jean-Paul; Landry, K.; Douai, D.; Cassagne, V.; Yegorenkov, V.This paper reports current-voltage characteristics and pressure-voltage transition curves from the weak-current a-mode to the strong-current g-mode for rf capacitive discharges in N2O at frequencies of 2 MHz, 13.56 MHz, and 27.12 MHz. At 2 MHz the rf discharge is mostly resistive whereas at 13.56 MHz and 27.12 MHz it is mostly capacitive. The weak-current a-mode was found to exist only above a certain minimum gas pressure for all frequencies studied [N. Yatsenko Sov. Phys. Tech. Phys. 26, 678 (19810] previously proposed that the a−g transition corresponds to breakdown of the sheaths. However, we show that this is the case only for sufficiently high gas pressures. At lower pressure there is a smooth transition from the weak-current a-mode to a strong-current g-mode, in which the sheaths produce fast electrons but the sheath has not undergone breakdown.Документ The Effect of Discharge Chamber Geometry on the Characteristics of Low-Pressure RF Capacitive Discharges(IEEE TRANSACTIONS ON PLASMA SCIENCE, 2007-04) Lisovskiy, V.; Booth, Jean-Paul; Landry, K.; Douai, D.; Cassagne, V.; Yegorenkov, V.We report the measured extinction curves and current–voltage characteristics (CVCs) in several gases of RF capacitive discharges excited at 13.56 MHz in chambers of three different geometries: 1) parallel plates surrounded by a dielectric cylinder (“symmetric parallel plate”); 2) parallel plates surrounded by a metallic cylinder (“asymmetric confined”); and 3) parallel plates inside a much larger metallic chamber (“asymmetric unconfined”), similar to the gaseous electronics conference reference cell. The extinction curves and the CVCs show differences between the symmetric, asymmetric confined, and asymmetric unconfined chamber configurations. In particular, the discharges exist over a much broader range of RF voltages and gas pressures for the asymmetric unconfined chamber. For symmetric and asymmetric confined discharges, the extinction curves are close to each other in the regions near the minima and at lower pressure, but at higher pressure, the extinction curve of the asymmetric confined discharge runs at a lower voltage than the one for the discharge in a symmetric chamber. In the particular cases of an “asymmetric unconfined chamber” discharge or “asymmetric confined” one, the RF discharge experiences the transition from a “weak-current” mode to a “strong-current” one at lower RF voltages than is the case for a “symmetric parallel-plate” discharge.Документ Electron drift velocity in silane in strong electric fields determined from rf breakdown curves(JOURNAL OF PHYSICS D: APPLIED PHYSICS, 2007-05) Lisovskiy, V.; Booth, Jean-Paul; Landry, K.; Douai, D.; Cassagne, V.; Yegorenkov, V.We report measurements of the breakdown curves of an rf capacitive discharge in low pressure silane. The electron drift velocity was determined from the locations of the turning point and of the minimum in the breakdown curves in the range E/p = 145–1292 Vcm−1 Torr−1. We compare our results to values calculated from the published cross-sections in the range E/p = 1–2000 Vcm−1 Torr−1 and data calculated in other papers and find good agreement.
- «
- 1 (current)
- 2
- 3
- »