Some class of nonlinear partial differential equations in the ring of copolynomials over a commutative ring
Вантажиться...
Дата
ORCID
Науковий ступінь
Рівень дисертації
Шифр та назва спеціальності
Рада захисту
Установа захисту
Науковий керівник
Члени комітету
Назва журналу
Номер ISSN
Назва тому
Видавець
Lausanne-London -Madrid-Beijing : Frontiers Media S.A.
Анотація
We study the copolynomials, i.e., K-linear mappings from the ring of polynomials K[x] into the commutative ring K. With the help of the Cauchy–Stieltjes transform of a copolynomial, we introduce and examine a multiplication of copolynomials. We investigate the Cauchy problem related to the nonlinear partial differencial equation ∂u/∂t = aum0 • (∂u/∂x)m1 • (∂2u/∂x2)m2 • (∂3u/∂x3)m3 , m0, m1, m2, m3 ∈ N0, ∑3 (j=0) mj > 0, a ∈ K in the ring of copolynomials. To find a solution, we use the series of powers of the δ-function. As examples, we consider the Cauchy problem with the Euler-Hopf equation ∂u/∂t + u•(∂u/∂x) = 0, for a Hamilton–Jacobi type equation ∂u/∂t = (∂u/∂x)2 , and for the Harry Dym equation ∂u/∂t = u3 • (∂3u/∂x3).
Опис
Funding. The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This research was partially supported by Akhiezer Foundation grant, 2024.
Acknowledgments. The authors express their gratitude to Eugene Karolinsky and Sergey Poslavsky for their insightful discussions regarding the findings of the paper.
Бібліографічний опис
Gefter S. L Some class of nonlinear partial differential equations in the ring of copolynomials over a commutative ring / S. L Gefter, A. L. Piven’ // Front. Appl. Math. Stat. – 2024. – Vol. 10. – 1–9 p. – DOI: https://doi.org/10.3389/fams.2024.1466569.