On the growth of ridge functions non-vanishing in an angular domain
dc.contributor.author | Vishnyakova, A.M. | |
dc.date.accessioned | 2013-05-21T11:44:58Z | |
dc.date.available | 2013-05-21T11:44:58Z | |
dc.date.issued | 1997 | |
dc.description.abstract | For an entire ridge function of finite order $\rho$ which is non-vanishing in the angle $\{z : |\arg z - \pi/2| < \alpha \} \cup \{z : |argz + \pi/2| < \alpha \}$, $0 < \alpha \le \pi/2$, the sharp estimate of $\rho $ in terms of $\alpha $ is obtained. Analogous result is obtained for ridge functions analytic in the upper half-plane. | en |
dc.identifier.citation | Bull. Hong Kong Math. Soc., 1, No. 2, 351-361 (1997). | en |
dc.identifier.uri | https://ekhnuir.karazin.ua/handle/123456789/8530 | |
dc.language.iso | en | en |
dc.subject | Mathematical analysis | en |
dc.title | On the growth of ridge functions non-vanishing in an angular domain | en |
dc.type | Article | en |
Файли
Контейнер файлів
1 - 1 з 1
Ліцензійна угода
1 - 1 з 1
Вантажиться...
- Назва:
- license.txt
- Розмір:
- 7.92 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: